
Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Computational Challenges in the
Use of Emerging Many-Core

Architectures for DoD Applications

David Richie

Brown Deer Technology

August 17 th, 2009

2

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

�Many-core processors

�Challenges

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

Outline

3

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Future Parallelism of HPC Architectures

�Multi-node ~ 1,000 nodes
�Distributed - MPI

�Multi-core ~ 10 cores
�SMP - OpenMP

�Many-core ~ 1,000 cores
�Stream, SIMD, SIMT - OpenCL

AMD64 Linux Cluster

AMD Opteron (Shanghai)

AMD Radeon HD 4870X2
(2.4 TFLOPS single-precision)

� Challenges in productivity
� Very high level parallel languages

� Moderate challenges
� Not so different from SMP nodes

� New level of parallelism
� Significant Challenges

4

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Many-core: Massive Chip-Level Parallelism

� DoD DSRC major-center-scale Linux cluster
� Scheduled operation through 2011
� 4,400 cores, 26.4 TFLOPS (double precision)
� Cost: multi-million dollar acquisition

� GP-GPU Workstation “Supercomputer” (paper spec)
� Can be built today w/existing COTS parts (for gamers)
� 11,200 cores, 16-20 TFLOPS (single-precision)
� cost: < $10,000 (plus effort and ingenuity)

� Many-core processors can provide as many cores per
compute node as there are computer nodes

� Represents a complete inversion of the HPC paradigm
familiar to HPC software developers

GP-GPU Workstation

Linux Cluster

5

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Many-core (GPU) Architectures

� For years HPC asked for a chip with “lots of FP units”
� Who needs register renaming, out-of-order

execution? ...
� Here they are – 800 FP units (example shown)
� Read the fine print:

� Most of the complexity of a “core” has been
removed

� Highly constrained execution model
� Limited number of registers
� Constrained memory architecture
� Thread aggregation (SIMT model)

� Question: how dependent have HPC software
developers become on the capabilities of a modern core
architecture, e.g., Nehalem or Istanbul?

� ... port your code to a GPU and find out

6

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Many-core vs. Multi-core

• Many-core is not the logical evolution of multi-core

• Issue is not number of cores, rather the cores themselves

• Distinction is between ‘heavy-weight” cores and “light-weight”
cores

• Will likely generate debate similar to RISC vs. CISC

• Better to have 32 capable cores, or 1600 weak cores?

• Distinction is invariant, silicon has finite dimensions

• What about “medium-weight” cores (not-so-many-core)?

• These will be thrown into the debate also

7

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Many-core Evolution
• GPU (ancient times)

• Non-IEEE compliant FP units

• OpenGL, DirectX, Shader languages, ...

• GP-GPU (now)

• IEEE compliant FP units (sort of)

• RV790 (FireStream), GT200 (Tesla)

• CUDA, Brook

• Many-core (drop “graphics”, improve legitimacy) (ne ar future)

• RV870 (Evergreen), GT300, Larrabee(manycore or multi -core+vector?)

• OpenCL(?)

• Is HPC driving the evolution? Of course not, HPC i s a post-roadmap add-on

• Consumer market is driving the technology

• “Data parallel” closest driver related to HPC

• Understanding this provides a guide for what to (no t) expect

• HPC community successfully exploited x86_64, same d eal

8

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

The Many-core + Multi-core Problem

CPU CPUMemory

PCIe

•Co-processors are back, along with the unsolved pro blems, and entirely new problems

•Data and control must be orchestrated between distr ibuted resources – cores + memory

•Problem differs significantly from recent distribut ed HPC challenges

•Very serious latency and bandwidth constraints

•Problems: locking, memory consistency, asynchronous operations, concurrency

•Doesn’t the operating system take care of this? ... No, not anymore – see the OpenCL spec

Remember when this
seemed complicated?

GPU GPU

Memory

GPU GPU

Memory

GPU GPU

Memory

GPU GPU

Memory6,400 cores

8 cores

9

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Challenges
• Software is the greatest challenge – always is

• Theoretical challenge – the programming model

• Many-core offers worse case of many long-standing problems

• Co-processors, distributed shared memory, thread synchronization, ...

• Many-core adds third tier to parallelism requiring new API

• What should/will the SDK look like? Automation or expression?

• A programming model is a contract with the programmer

• What are the likely terms for many-core? agreeable?

• Practical challenges

• Quality of compilers and vendor-provided run-time

• Code portability, compliance, new compilation models

• Software developers will find the “many cores” primitive

10

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

�Many-core processors

�Challenges: software (anyone surprised)

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

(Outline)

11

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

• Objectives

• Evaluate representative computational kernels important in HPC

• Grids, finite-differencing, overlap integrals, particle s

• Understand GPU architecture, performance and optimisat ions

• Understand how to design GPU-optimised stream applica tions

• Approach

• Develop “clean” test codes, not full applications

• Easy to instrument and modify

• Exception is LAMMPS, a real production code from DOE/Sa ndia

• Exercise was to investigate treatment of a “real code ”

• Brings complexity, e.g., data structures not GPU-frien dly

Investigation of Application Kernels

12

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

� Commercial applications for
oil and gas exploration

� Military applications for detecting
buried structures

� Seismic Simulation of Velocity-Stress Wave Propagat ion
� Important algorithm for seismic forward modeling te chniques
� Used for iterative refinement and validation of sub -surface geological models

Seismic: 3D VS-FDTD

13

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Update Velocity Field

Update Stress Field

Apply Excitation

Initialization

Finalization

Stream Read

Stream Write

Update Velocity Field

Update Stress Field

Apply Excitation

N_burst

N_step / N_burst

GPU Acceleration
Seismic: 3D VS-FDTD

14

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

GPU vs. CPU: Time per Million Points

1

10

100

2 10 50 100 500 1000 5000

N_burst [steps]

T
im

e
[m

se
c]

GPU-256x128x128
GPU-384x128x128
GPU-512x128x128
CPU-256x128x128
CPU-384x128x128
CPU-512x128x128

� Performing many iterations in between data transfer mitigates PCIe bottleneck
� 31x speedup for largest grid

Seismic: 3D VS-FDTD: Benchmarks

15

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

� For a gaussian basis, evaluation of two-electron int egrals reduces to summation
over closed-form expression (Boys, 1949)

� Features of expression required to be evaluated:

� Certain pair quantities can be factored and pre-cal culated

� Expression contains +, -, *, /, sqrt(), exp(), erf()

� One of the most common approaches in
quantum chemical modeling employs gaussian
basis sets to represent the electronic orbitals
of the system

� A computationally costly component of these
calculations involves the evaluation of two-
electron integrals

Quantum Chemistry: Two-Electron Integrals

16

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Pair Pre-Calc

Calc 2-e Integrals

Initialization

Finalization

Stream Read

Stream Write

Pair Pre-Calc

Calc 2-e Integrals

GPU Acceleration
Quantum Chemistry: Two-Electron Integrals

17

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Implementation Details

� Consider simple test case: 3D lattice of Hydrogen a toms using a STO-6G basis (1s only)

� Evaluation of two-electron integrals reduces to man y summations over 36 ••••36= 1296 terms

� Use of float4 SIMD ops requires inner loop of only 36••••9 iterations

� Use of double2 SIMD ops requires inner loop of only 36••••18 iterations

� Most difficult part of implementation involved the erf() for which no hardware instr exists

� Most CPU-based codes us a piecewise approximation d ue to Cody (1968?)

� Good for CPUs, reduces FLOPS at expense of branchin g

� Terrible for GPUs, branching is a performance kille r

� Used approximation by Hastings (1949?) valid for en tire domain (with a few tricks)

� Quality of the erf() approximation warrants further investigation

� Benchmarks performed for various lattice dimensions (Nx,Ny,Nz) leading to wide span in
terms of number of integrals evaluated

Quantum Chemistry: Two-Electron Integrals

18

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

GPU vs. CPU: Time per Million 2-e Integrals

0.1

1

10

100

1000

7.2E+04 6.9E+05 2.2E+06 6.4E+06 2.0E+07 3.2E+07

Number of Integrals

Ti
m

e
[s

ec
]

GPU-fNL
GPU-fFL
GPU-fU
GPU-dU
GPU-dFLU2
CPU-f
CPU-d

� Various implementations:

� float(f)/double(d), Nested-Loop (NL), Fused-Loop (F L), Unrolled (U)

� Results are complex, reveal a lot about the archite cture and run-time API

� Best float implementation: fully unrolled loop (9 i terations)

� Best double implementation: fused-loop w/partial (2 iteration) unroll

Quantum Chemistry: Two-Electron Integrals

19

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

GPU vs. CPU: Time per Million 2-e Integrals

0.1

1

10

100

1000

7.2E+04 1.1E+06 6.4E+06 2.0E+07

Number of Integrals

Ti
m

e
[s

ec
]

GPU-fU
GPU-fU-s2
GPU-dFLU2
GPU-dFLU2-s2
CPU-f
CPU-d

� Large numbers of integrals: latency and GPU setup t ime is completely amortized

� Small numbers of integrals: repeating calculation (s2) reveals GPU setup/compute time

� Entire calculation is repeated including complete d ata transfer

� s2 time more reflective of real codes (integrals re -evaluate repeatedly)

Quantum Chemistry: Two-Electron Integrals

20

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

90.6 secAMD/175/GAMESS*
1.123 secNvidia/8800GTX/single*

80x72x
198.749 secAMD/9950(3GHz)/double

2.487 sec0.241 sec2.728 secATI/4870/double

814x244x
236.242 secAMD/9950(3GHz)/single

0.290 sec0.678 sec0.968 secATI/4870/single
GPU ComputeGPU SetupTotal

*Ufimtsev and Martinez

STO-6G(1s) 4x4x4

� Large number of integral limit (~10 million)
� SP: 814x speedup
� DP: 80x speedup

� CPU implementation definitely not optimized
� GPU performance/speedup will nevertheless be substa ntial

Quantum Chemistry: Two-Electron Integrals

21

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

*Original work due to Paul Crozier and
Mark Stevens at Sandia National Labs

Rhodopsin Protein

� Rhodopsin Protein Benchmark (most difficult)

� Details: All-atom rhodopsin protein in solvated
lipid bilayer with CHARMM force field, long-
range Coulomb via PPPM, SHAKE constraints,
system contains counter-ions and a reduced
amount of water

� Benchmark: 32,000 atoms for 100 timesteps

� Fundamental technique for molecular modeling
� Simulate motion of particles subject to inter-parti cle
forces

� LAMMPS is open-source MD code from DOE/Sandia
� Dr. Steve Plimpton, http://lammps.sandia.gov

� Goal: accelerate inter-particle force calculation

Molecular Dynamics: LAMMPS

22

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Pair Potential

Initialization

Finalization

Stream Read pos,vel

Propagator

Pair Potential

Stream Write

NN Calc

N_step_nn

N_step / N_step_nn

GPU Acceleration

Note: Older results (July 2008) using FireStream 9170
and ATI Stream SDK v1.1

Molecular Dynamics: LAMMPS

23

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

� Only pair potential calculation moved to GPGPU (~> 80% run time on CPU)

� Specifically: PairLJCharmmCoulLong::compute()

� Basic algorithm: “foreach atom-i calculate force fro m atom-j”

� Atom-i accessed in-order, atom-j accessed out-of-or der

� Pairs defined by pre-calculated nearest-neighbor li st (updated periodically)

� CPU efficiency achieved by using “half list” such t hat j > i

� Eliminates redundant force calculations

� Cannot be done with GPU/Brook+ due to out-of-order writeback

� Must use “full list” on GPU (~ 2x penalty)

� LAMMPS neighbor list calculation modified to genera te “full list”

Implementation Details
Molecular Dynamics: LAMMPS

24

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

� Host-side details:
� Pair potential compute function intercepted with ca ll to special GPGPU function

� Nearest-neighbor list re-packed and sent to board (only if new)

� Position/charge/type arrays repacked into GPGPU for mat and sent to board

� Per-particle kernel called

� Force array read back and unpacked into LAMMPS form at

� Energies and virial accumulated on CPU (reduce kerne l slower than CPU)

� GPU per-atom kernel details:
� Used 2D arrays accept for neighbor list

� Neighbor list used large 1D buffer(s) (no gain from use of 2D array)

� Neighbor list padded modulo 8 (per-atom) to allow c oncurrent force updates

� Calculated 4 force contributions per loop (no gain from 8)

� Neighbor list larger than max stream (float4 <41943 04>), broken up into 8 lists

� Force update performed using 8 successive kernel in vocations

Implementation (More) Details
Molecular Dynamics: LAMMPS

25

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

�General:
�Single-core performance benchmarks
�GPGPU implementation single-precision
�32,000 atoms, 100 timesteps (standard LAMMPS benchma rk)

�Test #1: GPGPU
�Pair Potential calc on GPGPU, full neighbor list, n ewton=off, no Coulomb table

�Test #2: CPU (“identical” algorithm, identical mode l)
�Pair Potential calc on CPU, full neighbor list, new ton=off, no Coulomb table

�Test #3: CPU (optimized algorithm, identical model)
�Pair Potential calc on CPU, half neighbor list, new ton=off, no Coulomb table

�Test #4: CPU (optimized algorithm, optimized model)
�Pair Potential calc on CPU, half neighbor list, new ton=on, Coulomb table

�ASCI RED single-core performance (from LAMMPS websi te)
�Most likely a Test #4, included here for reference

Direct comparison (THEORY)

Architecture Optimized (REALITY)

Benchmark Tests
Molecular Dynamics: LAMMPS

26

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

0

50

100

150

200

250

Firestream
9170 Test

#1

Athlon 64
X2 3.2GHz

Test #2

Athlon 64
X2 3.2GHz

Test #3

Athlon 64
X2 3.2GHz

Test #4

ASCI RED
Xeon

2.66GHz

Other Neighbor Calc Potential Calc Total

Amadahl’s Law: Pair Potential compared with total time: 35%(Test#1), 75%(Test#2), 83%(Test#4)

Rhodopsin Benchmark
Molecular Dynamics: LAMMPS

27

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

�Many-core processors

�Challenges: software (anyone surprised)

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

(Outline)

28

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

• What can be built today?
• COTS solution: 2U+4U - 16 RV770 GPUs - 16 TFLOPS - 2.5 KW

• Future assumptions
• Architecture: assume 3x performance increase

• RV770 (55nm) - 800 cores - Today

• RV870 (40nm) – 2000(?) cores – 2009

• RV970 (32nm?) – 2400(?) cores - 2010

• Design: assume 2x performance increase

• Dual-GPU boards available now, dual-slot form factor

• Dual-GPU boards, single-slot via lower power + liquid cooling

• Power: assume power constrained 200W/per board(?)

• Result:
• 96 TFLOPS - 3.2 KW ~2 cu. ft. (2U+4U) by 2011

• What will the software look like?
• Programming model? Compilers? Runtime? Portability?

• Impact of deployable HPC for battlefield applications?

100 TFLOPS, battlefield deployable, by
2012?

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

29

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

• Ultra Wide-Band Synchronous Impulse Reconstruction RADAR
– Obstacle avoidance and concealed target detection

– Under development by researchers at ARL/SEDD

– Algorithms developed in MATLAB, being ported to C and GPUs

Battlefield Application: UWB SIRE RADAR

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

30

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Transform and Extraction

Compute Frame Data

Fix Moving Distortion and Filter

Interp1

Calc Rx and Tx

Update Image

Get Frame Data

Back Projection

GPU

...
float s_data<nas>;
float4 s_rx<na>;
float4 s_tx<na>;
float4 s_img<100,64>;

streamRead(s_data,data_all);
streamRead(s_rx,rx4);
streamRead(s_tx,tx4);

backprojection_gpu_kern(
(float)na, (float)ns,
(float)nrange2,
(float)nxrange2,
yref, xr_inc, r_inc,
r_start, rdr,
coef1,coef2,coef3,
s_rx, s_tx,
s_data,s_img

);

streamWrite(s_img,img);
...

70% of computation

Host code using ATI Stream Brook+ compiler

GPU Acceleration of SIRE Back Projection

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

31

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

31

0
5

10
15
20
25
30
35
40

C/Xeon E5450 CUDA/8800GTX ATI/Radeon HD 4870
T

im
e

(s
ec

)

Accumulated Back Projection Time (137 Frames)

31.8

5.1 4.2

�CPU baseline uses a single-core – opportunity for SSE and OpenMP optimization
�GPU implementations have opportunity for optimization as well
�Impact on real-time capability

�C/Xeon E5450: total time 45.5sec ⇒ 13 mph
�ATI/Radeon HD 4870: total time ⇒ 34 mph

�Amdahl’s Law appears: relative cost of Back Projection 70% →→→→ 23%
�Need to examine other parts of the overall algorithm

UWB SIRE RADAR Initial Benchmarks

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

32

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

�Many-core processors

�Challenges: software (anyone surprised)

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

(Outline)

33

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

OpenCL – What It Is, What It Is Not

• Industry standard for parallel programming of heter ogeneous computing platforms

• Substance: OpenCL = CAL + CUDA + Brook + OpenGL buff er sharing

• Two parts:

• OpenCL is NOT designed to make programming GPUs eas ier

• OpenCL is a very low-level standard designed to sup port platform independent
software stack

Platform and runtime API

• Operating system moved into user-space

• Good news, programmer has control over

• Device discovery, registration, setup

• Creating work queues

• Memory consistency

• Bad news, programmer has responsibility
for ...

Programming language

•C extensions for device programming

•Execution context is a kernel

•Familiar with Brook/CUDA, no
surprises

34

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

� Direct iterative solution of Maxwell’s
Equations

� Important for modeling
electromagnetic radiation from small
devices to large-scale radar
applications

� Grid-based finite-differencing

Electromagnetics: 3D FDTD

� Implemented using AMD OpenCL CPUBeta
� OpenCL implementation submitted for certification

35

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

OpenCL By Example (1)

#include <CL/cl.h>

ctx = clCreateContextFromType(...);
clGetDeviceInfo(...);
cmdq = clCreateCommandQueue(...);

ee_buf = clCreateBuffer(...);
hh_buf = clCreateBuffer(...);

prg = clCreateProgramWithSource(...);
clBuildProgram(...);
cl_kernel hcomp_krn = clCreateKernel(...);
cl_kernel ecomp_krn = clCreateKernel(...);

� Device discovery, registration
� Create work queues

� Create buffers for data transfer

� Run-time/just-in-time (JIT) compilation

36

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

OpenCL By Example (2)

for(step = 0; step < nstep; step += nburst) {

clSetKernelArg(hcomp_krn,1,...);
clSetKernelArg(hcomp_krn,2,...);
...

for(burst = 0; burst < nburst; burst++) {
clEnqueueNDRangeKernel(cmdq,hcomp_krn, ..., &kev[2*burst]);
clEnqueueNDRangeKernel(cmdq,ecomp_krn, ...,&kev[2*burst+1]);

}

for(i=0;i<2*nburst;i++) clWaitForEvents(1,&kev[i]);

clEnqueueReadBuffer(cmdq,ee_buf, ...);
clEnqueueReadBuffer(cmdq,hh_buf, ...);

clWaitForEvents(1,&ev[2]);
clWaitForEvents(1,&ev[3]);

}

“Push” arguments

Scheduler

Wait

Setup DMA

Wait

37

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

OpenCL By Example (3)
__kernel void ecomp_kern(

float t, float omega,
uint nx, uint ny, uint nz, uint nb1, uint nt,
float ax, float ay, float az,
__global float* ee, __global float* hh,
__local float* eblock, __local float* hblock

)
{

uint gi000 = 4*nb*get_global_id(0);
uint gj000 = 4*nb*get_global_id(1);
uint gk000 = 4*nb*get_global_id(2);

for(ijk=0;ijk<nb3;ijk++) {
eblock[ci+EX] = ee[gci+EX];
...

}

barrier(CLK_LOCAL_MEM_FENCE);

for(ijk=0;ijk<nb3;ijk++) {
float ex000 = eblock[ci000+EX];
float hy000 = hblock[ci000+HY];
float hy001 = hblock[ci001+HY];
...
ex000 += az * (hy001 - hy000) + ...
float q = sin(t*omega);
ez000 = (gi == 4)? q : ez000;
ee[gci+EX] = ex000;
...

}
}

Get thread index

Memory consistency

38

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

�Many-core processors

�Challenges: software (anyone surprised)

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

(Outline)

39

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

� Mature – performs miracles with emitted machine code, nearl y
perfect compilations

� Optimizing – recognizes basic opportunities for optimization

� Quality – sophisticated transformation from source to machin e
code, avoids doing dumb things

� Semantic – handles any semantically correct language construc ts
thrown against it, emits correct machine code

� Functional – reasonably reliable results, verbose messages when
you ask too much, compiler knows what it cannot do

� Usable – can be used with great care, sometimes actually wo rks,
easily confused, fails without warning or errors

icc_x86, gcc →→→→

icc_ia64 →→→→

brcc, nvcc →→→→

� Many-core compiler technology well behind industry- standard CPUs (x86_64)

� Trails lesser CPU compilers, e.g., Itanium

� Reality: requires (at least) decade to build up com plexity found in x86_64 compilers

� Both vendors (Nvidia and ATI) offer relatively immat ure compilers

� (I have personally broken both of them, source-leve l tests indicate they’re not optimizing)

� Hardware makes effort worthwhile, no more difficult than SSE/OpenMP code opts

� Compilers are improving rapidly, market forces ($$$) will drive advances

State of Compilers

clc →→→→

40

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

LLVM (UIUC)

• What is it: compiler technology

• Importance for many-core: supports many features critical to
OpenCL

• AMD OpenCL implementation based on LLVM

• Impact on compilation model (compilation is VERY cheap)

• Current model is entrenched, pragmatic, but also archaic

• Run-time/just-in-time (JIT) compilation

• Portable code changes from compile time to runtime issue

• This project has significant importance for future HPC

41

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Building Upon OpenCL

•stdcl: POSIX-like extensions supporting OpenCL

•Embed (static link) CL code into ELF objects

•Initialize the most common use case by default

•Pre-load and compile CL kernels for identified devi ces

•stdcpu[0], stdcpu[1], ... stdgpu[0], stdgpu[2], ...

•Add additional convenience functions in spirit of stdio, stdlib

•Support dynamic/shared CL similar to dynamic librar ies

•clopen(), clsym(), clclose()

•No interference with direct OpenCL support

•coprthr: pthreads extensions for co-processing

•Integrate OpenCL with existing, proven APIs, e.g., O penMP

•OpenMP fork-join model represents typical many-core use case

•Other ideas?

•OpenCL is foundation, expect open-source community t o build software stack

42

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC. All Rights Reserved.

Conclusions

• Many-core creates an inversion of HPC parallelism

• Many challenges, mostly confronted by software developer

• OpenCL may provide a foundation for programming model

• Much will depend on vendor delivery of good compilers and
runtime implementations

• Introduces new concepts of compilation and portability

• Reconciling OpenCL software stack within HPC?

