BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Computational Challenges in the
Use of Emerging Many-Core
Architectures for DoD Applications

David Richie
Brown Deer Technology

August 17 th, 2009

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Outline

.Many-core processors
.Challenges
-Motivation
-Obvious benefit: performance
«Not so obvious benefit: mobile HPC
-OpenCL.: problem solved, more problems

.Future Developments

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI”DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

—+utreParallelism of HPC Architectures

.Multi-node ~ 1,000 nodes . Challenges in productivity

Distributed - MP!I . Very high level parallel languages
: -Multi-core ~ 10 cores - Moderate challenges
.SMP - OpenMP . Not so different from SMP nodes
.Many-core ~ 1,000 cores « New level of parallelism

. .Stream, SIMD, SIMT - OpenCL « Significant Challenges
T R —
AMD Radeon HD 4870X2
(2.4 TFLOPS single-precision)

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI”UW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Many-core: Massive Chip-Level Parallelism

« DoD DSRC major-center-scale Linux cluster
. Scheduled operation through 2011
. 4,400 cores, 26.4 TFLOPS (double precision)
« Cost: multi-million dollar acquisition

« GP-GPU Workstation “Supercomputer” (paper spec) Linux Cluster
. Can be built today wi/existing COTS parts (for gamers)
« 11,200 cores, 16-20 TFLOPS (single-precision)

« cost: < $10,000 (plus effort and ingenuity)

- Many-core processors can provide as many cores per
compute node as there are computer nodes

- Represents a complete inversion of the HPC paradigm

familiar to HPC software developers =
GP-GPU Workstation

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI”DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Many-core (GPU) Architectures

Ultra-Threaded Dispatch Processor

« For years HPC asked for a chip with “lots of FP unis”

. Who needs register renaming, out-of-order
execution? ...

« Here they are — 800 FP units (example shown)

- Read the fine print:
« Most of the complexity of a “core” has been

removed

Highly constrained execution model

« Limited number of registers

Constrained memory architecture

Thread aggregation (SIMT model)

« Question: how dependent have HPC software

Thread - developers become on the capabilities of a moderore

rresesser - architecture, e.g., Nehalem or Istanbul?

e ... pOrt your code to a GPU and find out

Unit

SIMD SIMD SIMD SIMD
Engine Engine Engine Engine

T-Stream

Stream
Core

Cores

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Many-core vs. Multi-core

. Many-core is not the logical evolution of multi-core
. Issue Is not number of cores, rather the cores themselves

. Distinction is between ‘heavy-weight” cores and “light-weight”
cores

. WiIll likely generate debate similar to RISC vs. CISC

. Better to have 32 capable cores, or 1600 weak cores?
. Distinction is invariant, silicon has finite dimensions

. What about “medium-weight” cores (not-so-many-core)?

. These will be thrown into the debate also

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Many-core Evolution

GPU (ancient times)
- Non-IEEE compliant FP units
OpenGL, DirectX, Shader languages, ...
. GP-GPU (now)
IEEE compliant FP units (sort of)
. RV790 (FireStream), GT200 (Tesla)
CUDA, Brook
- Many-core (drop “graphics”, improve legitimacy) (ne ar future)
RV870 (Evergreen), GT300, Larrabee(manycore or multi -core+vector?)
. OpenCL(?)
Is HPC driving the evolution? Of course not, HPCi s a post-roadmap add-on
. Consumer market is driving the technology

. “Data parallel” closest driver related to HPC
Understanding this provides a guide for what to (no t) expect

. HPC community successfully exploited x86 64, same d eal

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

B rown DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

The Many-core + Multi-core Problem

Remember when this
seemed complicated?

8 cores PCle

6,400 cores

-Co-processors are back, along with the unsolved pro blems, and entirely new problems
.Data and control must be orchestrated between distr ibuted resources — cores + memory
-Problem differs significantly from recent distribut ed HPC challenges

-Very serious latency and bandwidth constraints

-Problems: locking, memory consistency, asynchronous operations, concurrency

.Doesn’t the operating system take care of this? ... No, not anymore — see the OpenCL spec

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Challenges

. Software is the greatest challenge — always is
. Theoretical challenge — the programming model

. Many-core offers worse case of many long-standing problems

. Co-processors, distributed shared memory, thread symzhtion, ...

. Many-core adds third tier to parallelism requiring new API
. What should/will the SDK look like? Automation or expression?
. A programming model is a contract with the programmer
. What are the likely terms for many-core? agreeable?
. Practical challenges
. Quality of compilers and vendor-provided run-time
. Code portability, compliance, new compilation models

. Software developers will find the “many cores” primitive

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

(Outline)

.Many-core processors
.Challenges: software (anyone surprised)
-Motivation

-Obvious benefit: performance

«Not so obvious benefit: mobile HPC
-OpenCL.: problem solved, more problems

.Future Developments

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Investigation of Application Kernels

. Objectives
. Evaluate representative computational kernels important in HPC
. Grids, finite-differencing, overlap integrals, particle S
. Understand GPU architecture, performance and optimisat lons
. Understand how to design GPU-optimised stream applica tions

. Approach
. Develop “clean” test codes, not full applications
. Easy to instrument and modify
. Exception is LAMMPS, a real production code from DOE/Sa ndia
. Exercise was to investigate treatment of a “real code
. Brings complexity, e.g., data structures not GPU-frien dly

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Seismic: 3D VS-FDTD

. Seismic Simulation of Velocity-Stress Wave Propagat ion
. Important algorithm for seismic forward modeling te chniques
. Used for iterative refinement and validation of sub -surface geological models

. Commercial applications for
oil and gas exploration

. Military applications for detecting
__,,‘! buried structures

oo, (31 Ov, OV,
—={A+2pu) +A{(—+
Ie O X, cx, OUx,
J
()UEF_M,UvE_'_ /)
O OX. OX

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

B rown DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Seismic: 3D VS-FDTD
GPU Acceleration

Initialization

N_step / N_burst ‘

‘

------ r
e
N burst S
Update Velocity Field Update Velocity Field
Update Stress Field Update Stress Field
Apply Excitation Apply Excitation

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Seismic: 3D VS-FDTD: Benchmarks

GPU vs. CPU: Time per Million Points

100

- GPU-256x128x128
—<>- GPU-384x128x128
—— GPU-512x128x128
- CPU-256x128x128
——- CPU-384x128x128
—~ CPU-512x128x128

Time [msec]
|_\
o

2 10 50 100 500 1000 5000
N_burst [steps]

. Performing many iterations in between data transfer mitigates PCle bottleneck
. 31x speedup for largest grid

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Quantum Chemistry: Two-Electron Inteqgrals

« One of the most common approaches in
gquantum chemical modeling employs gaussian
basis sets to represent the electronic orbitals
of the system

« A computationally costly component of these
calculations involves the evaluation of two-
electron integrals

, , , 1 , ,
{ﬂV|?‘tT):J’]. drl drE(b,u{\Fl)(i)v{xrﬁjr_(b.l{‘r])'i)T{\rE)

12

c;');i{:r)**z'dkg(mk,r) g(ka,rjwexp(—karzj
. For a gaussian bas?s, evaluation of two-electron int egrals reduces to summation
over closed-form expression (Boys, 1949)
. Features of expression required to be evaluated:
. Certain pair quantities can be factored and pre-cal culated
« Expression contains +, -, *, /, sgrt(), exp(), erf()

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI”DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Quantum Chemistry: Two-Electron Integrals

GPU Acceleration

|
!

s

Pair Pre-Calc
Calc 2-e Integrals

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Quantum Chemistry: Two-Electron Integrals
Implementation Details

. Consider simple test case: 3D lattice of Hydrogena toms using a STO-6G basis (1s only)
. Evaluation of two-electron integrals reduces to man y summations over 36 ¢36= 1296 terms
« Use of float4 SIMD ops requires inner loop of only 369 iterations
« Use of double2 SIMD ops requires inner loop of only 36¢ 18 iterations
« Most difficult part of implementation involved the erf() for which no hardware instr exists
. Most CPU-based codes us a piecewise approximationd ue to Cody (19687?)
. Good for CPUs, reduces FLOPS at expense of branchin g
. Terrible for GPUs, branching is a performance kille r
« Used approximation by Hastings (1949?) valid for en tire domain (with a few tricks)
« Quality of the erf() approximation warrants further investigation

. Benchmarks performed for various lattice dimensions (Nx,Ny,Nz) leading to wide span in
terms of number of integrals evaluated

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Quantum Chemistry: Two-Electron Integrals
GPU vs. CPU: Time per Million 2-e Integrals

-+ GPU-fNL
—<>— GPU-fFL
- GPU-fU

—A— GPU-dU
-@®- GPU-dFLU2
—+— CPU-f
A—A || & CPU-d

Time [sec]

7.2E+04 6.9E+05 2.2E+06 6.4E+06 2.0E+07 3.2E+07

Number of Integrals

. Various implementations:
. float(f)/double(d), Nested-Loop (NL), Fused-Loop (F L), Unrolled (U)
. Results are complex, reveal a lot about the archite cture and run-time API
« Best float implementation: fully unrolled loop (9 i terations)
. Best double implementation: fused-loop w/partial (2 iteration) unroll

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Quantum Chemistry: Two-Electron Integrals
GPU vs. CPU: Time per Million 2-e Integrals

= GPU-fU

—— GPU-fU-s2

- GPU-dFLU2
—&— GPU-dFLU2-s2

1 [T —0= 1 - - CPU-f
—A— CPU-d

Time [sec]

01 AI\AIAI//%I/A\IAQQA

JARY
I I I I I I

7.2E+04 1.1E+06 6.4E+06 2.0E+07

Number of Integrals

. Large numbers of integrals: latency and GPU setupt ime is completely amortized

. Small numbers of integrals: repeating calculation (s2) reveals GPU setup/compute time
. Entire calculation is repeated including complete d ata transfer
. S2 time more reflective of real codes (integrals re -evaluate repeatedly)

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Quantum Chemistry: Two-Electron Integrals
STO-6G(1s) 4x4x4

Total GPU Setup GPU Compute
ATI1/4870/single 0.968 sec 0.678 sec 0.290 sec
AMD/9950(3GHz)/single 236.242 sec e
244x ((814x)«
N—"
ATI1/4870/double 2.728 sec 0.241 sec 2.487 sec
AMD/9950(3GHz)/double 198.749 sec A~
72x (_80x)e
N—"
Nvidia/8800GTX/single* 1.123 sec
AMD/175/GAMESS* 90.6 sec

*Ufimtsev and Martinez

. Large number of integral limit (~10 million)
« SP: 814X speedup
. DP: 80x speedup
« CPU implementation definitely not optimized
. GPU performance/speedup will nevertheless be substa ntial

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Molecular Dynamics: LAMMPS

Rhodopsin Protein

. Fundamental technique for molecular modeling
- Simulate motion of particles subject to inter-parti cle
forces

« LAMMPS is open-source MD code from DOE/Sandia
. Dr. Steve Plimpton, http://lammps.sandia.gov

« Goal: accelerate inter-particle force calculation

*QOriginal work due to Paul Crozier and
Mark Stevens at Sandia National Labs

« Rhodopsin Protein Benchmark (most difficult)

« Details: All-atom rhodopsin protein in solvated
lipid bilayer with CHARMM force field, long-
range Coulomb via PPPM, SHAKE constraints,
system contains counter-ions and a reduced
amount of water

« Benchmark: 32,000 atoms for 100 timesteps

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Molecular Dynamics: LAMMPS
GPU Acceleration

Initialization

N step/N step nn l

-Eﬁ_

N_step_nn l

v

Stream Read pos,vel

Pair Potential

Stream Write = R el

Propagator

_ Note: Older results (July 2008) using FireStream®1
Finalization and ATI Stream SDK v1.1

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Molecular Dynamics: LAMMPS
Implementation Details

« Only pair potential calculation moved to GPGPU (~> 80% run time on CPU)
« Specifically: PairLJCharmmCoulLong::compute()

. Basic algorithm: “foreach atom-i calculate force fro m atom-j”

. Atom-i accessed in-order, atom-j accessed out-of-or der

. Pairs defined by pre-calculated nearest-neighbor li st (updated periodically)

. CPU efficiency achieved by using “half list” such t hat|>i

. Eliminates redundant force calculations
. Cannot be done with GPU/Brook+ due to out-of-order writeback
« Must use “full list” on GPU (~ 2x penalty)

« LAMMPS neighbor list calculation modified to genera te “full list”

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

Brown Deer

Computational Challenges in the Use of Emerging

Technolo gy Many-Core Architectures for DoD Applications

Molecular Dynamics: LAMMPS
Implementation (More) Detalls

. Host-side detalls:

Pair potential compute function intercepted with ca Il to special GPGPU function
Nearest-neighbor list re-packed and sent to board (only if new)
Position/charge/type arrays repacked into GPGPU for = mat and sent to board
Per-particle kernel called

Force array read back and unpacked into LAMMPS form at

Energies and virial accumulated on CPU (reduce kerne | slower than CPU)

« GPU per-atom kernel details:

Used 2D arrays accept for neighbor list

Neighbor list used large 1D buffer(s) (no gain from use of 2D array)

Neighbor list padded modulo 8 (per-atom) to allow ¢ = oncurrent force updates
Calculated 4 force contributions per loop (no gain from 8)

Neighbor list larger than max stream (float4 <41943 04>), broken up into 8 lists

Force update performed using 8 successive kernel in vocations

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Molecular Dynamics: LAMMPS
Benchmark Tests

.General:
.Single-core performance benchmarks
+-GPGPU implementation single-precision
32,000 atoms, 100 timesteps (standard LAMMPS benchma k)

.fest #1: GPGPU <«
.Pair Potential calc on GPGPU, full neighbor list, n ewton=off, no Coulomb table

Direct comparison (THEORY)

.Test #2: CPU (“identical” algorithm, identical mode) <
.Pair Potential calc on CPU, full neighbor list, new ton=off, no Coulomb table

.Test #3: CPU (optimized algorithm, identical model)
.Pair Potential calc on CPU, half neighbor list, new ton=off, no Coulomb table

Architecture Optimized (REALITY)

.Test #4: CPU (optimized algorithm, optimized model) >
.Pair Potential calc on CPU, half neighbor list, new ton=on, Coulomb table

+ASCI RED single-core performance (from LAMMPS websi te)
-Most likely a Test #4, included here for reference

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI”DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Molecular Dynamics: LAMMPS
Rhodopsin Benchmark

E Other B Neighbor Calc B Potential Calc O Total

Firestream Athlon 64 Athlon 64 Athlon 64 ASCI RED
9170 Test X2 3.2GHz X2 3.2GHz X2 3.2GHz Xeon
H#1 Test #2 Test #3 Test #4 2.66GHz

Amadahl’'s Law: Pair Potential compared with total time: 35%(Test#1), 75%(Test#2), 83%(Test#4)

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

(Outline)

.Many-core processors
.Challenges: software (anyone surprised)
-Motivation

-Obvious benefit: performance

«Not so obvious benefit: mobile HPC
-OpenCL.: problem solved, more problems

.Future Developments

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Brown Deer MIRY £h:
Technology Wy

100 TFLOPS battlefield deployable, by

20127
. What can be built today?
. COTS solution2U+4U - 16 RV770 GPUs - 16 TFLOPS - 2.5 KW

. Future assumptions

. Architecture: assume 3x performance increase
. RV770 (55nm) - 800 cores - Today

- RV970 (32nm?) — 2400(?) cores - 2010
. Design: assume 2x performance increase
. Dual-GPU boards available now, dual-slot form facto

. Power: assume power constrairs&d\\V//per board(?)

. Result:
« 96 TFLOPS - 3.2 KW ~2 cu. ft. (2U+4U) by 2011
. What will the software look like?
. Programming model? Compilers? Runtime? Portability?
. Impact of deployable HPC for battlefield applications?

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Brown Deer MR €%
Technology n& i

Battlefield Application: UWB SIRE RADAR

o Ultra Wide-Band Synchronous Impulse ReconstrudR&mAR
— Obstacle avoidance and concealed target detection
— Under development by researchers at ARL/SEDD
— Algorithms developed in MATLAB, being ported to CcaGPUs

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

Brown Deer MIRY €%
Technology grar $m"

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

GPU Acceleration of SIRE Back Projection

Host code using ATl Stream Brook+ compiler

fl oat s_dat a<nas>;
float4 s _rx<na>;
float4 s _tx<na>;
float4 s _ing<l100, 64>;

Compute Frame Data

Transform and Extraction

Fix Moving Distortion and Filter

Get Frame Data

ull

Calc Rx and Tx
: 70% of computatiof Back Projection

Update Image

streanRead(s_data,data all);
streanRead(s_rx, rx4);
streanRead(s_tx, tx4);

backproj ecti on_gpu_ker n(

) ;

(float)na, (float)ns
(fl oat)nrange2,

(fl oat) nxrange2,
yref, xr_inc, r_inc,
r start, rdr,

coef 1, coef 2, coef 3,
S_rx, s_tx,

s _data,s_ing

streamWite(s_ing,ing);

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

Brown Deer
Technology

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

UWB SIRE RADAR Initial Benchmarks

Accumulated Back Projection Time (137 Frames)

B C/Xeon E5450 B CUDA/8800GTX B ATI/Radeon HD 4870

40 - 31.8
2 3%
= 25
£ 20
~ 10
5_
O_

+CPU baseline uses a single-core — opportunity for &5and OpenMP optimization
+GPU implementations have opportunity for optimization as well
.Impact on real-time capability
.C/Xeon E5450: total time 45.5seg 13 mph
+ATl/Radeon HD 4870: total time> 34 mph
-Amdahl’'s Law appears: relative cost of Back Projeabn 70% - 23%
-Need to examine other parts of the overall algorith

Distribution Statement A. Approved for Public Release. Secondary Distribution Unlimited.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

(Outline)

.Many-core processors
.Challenges: software (anyone surprised)
-Motivation

-Obvious benefit: performance

«Not so obvious benefit: mobile HPC
-OpenCL.: problem solved, more problems

.Future Developments

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

OpenCL — What It Is, What It Is Not

. Industry standard for parallel programming of heter ogeneous computing platforms

. Substance: OpenCL = CAL + CUDA + Brook + OpenGL buff er sharing

- Two parts:
Platform and runtime API Programming lanquage
- Operating system moved into user-space .C extensions for device programming
. Good news, programmer has control over Execution context is a kernel
Device discovery, registration, setup Eamiliar with Brook/CUDA. no
Creating work queues surprises

Memory consistency

. Bad news, programmer has responsibility
for ...

. OpenCL is NOT designed to make programming GPUs eas ier

- OpenCL is a very low-level standard designed to sup port platform independent
software stack

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

Brown Deer
Technology

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

Electromagnetics: 3D FDTD

« Direct iterative solution of Maxwell’'s

Equations |

_ w7

. Important for modeling -
electromagnetic radiation from small AXi - T
devu.:es.to large-scale radar I | 0.42607
appllcatlons 0.00000

« Grid-based finite-differencing

oH,

Ot

1

,UEJ-

_U‘Ek

at—
O X,

ij-

6E. 6H, O0H.
b J

—=0b{ .

—agE.)

o1 ox; 0x;
« Implemented using AMD OpenCL CPUBeta . ',H"
« OpenCL implementation submitted for certification ——

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI”DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

OpenCL By Example (1)

#i ncl ude <CL/cl . h>

ctx = cl CreateContextFromriype(...); }4 . Device discovery, registration

cl Get Devicelnfo(...);
cmdg = cl Creat eConmandQueue(. . .); - Create work queues

ee_buf
hh_buf

clGreateBuffer(... g } < . Create buffers for data transfer

cl CreateBuffer(..

prg = cl CreateProgramithSource(...);
cl Bui |l dProgran{...);
cl _kernel hconp_krn
cl _kernel econp_krn

cl Oreatekernel (...); [€ | « Run-time/just-in-time (JIT) compilation
cl CreateKernel (...);

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

Brown Deer
Technology

Computational Challenges in the Use of Emerging
Many-Core Architectures for DoD Applications

OpenCL By Example (2)

for(step = 0; step < nstep; step += nburst) {

cl Set Ker nel Arg(hconmp_krn, 1,...);]»4
cl Set Ker nel Arg(hconp_krn, 2,...);

for(burst = 0; burst < nburst; burst++) {
cl EnqueueNDRangeKer nel (cndq, hconp_kr n,

}

for(i=0;i<2*nburst;i++) clWitForEvents(1, &ev[i]);, €—

&kev[2*burst]);
cl EnqueueNDRangeKer nel (cndqg, econp_krn, ..., &ev[2*burst +1])

“Push” arguments

;}4— Scheduler

Wait

cl EnqueueReadBuf f er (cndq, ee_buf, . ;} <

cl EnqueueReadBuf f er (cndq, hh_buf,

Setup DMA

cl Wai t For Events(1, &vV[2]); _
cl Wai t For Event s(1, &ev|[3]) ;} <+— Watt

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

__kernel void econp_kern(

OpenCL By Example (3)

uint nx, uint ny, uint nz, uint nbl, uint nt,
float ax, float ay, float az,

__global float* ee, _ global float* hh,
__local float* eblock, _ local float* hblock
)
{
uint gi 000 = 4*nb*get gl obal _id(0); :
uint gj 000 = 4*nb*get_global _id(1); < Get thread index
uint gk000 = 4*nb*get gl obal _id(2);

for(ijk=0;ijk<nb3;ijk++) {
ebl ock[ci +EX] = ee[gci +EX] ;

}
barrier (CLK_LOCAL_MEM FENCE); < Memory consistency

for(ijk=0;ijk<nb3;ijk++) {

fl oat ex000 = ebl ock[ci 000+EX] ;
fl oat hy000 = hbl ock[ci 000+HY];
fl oat hy001 = hbl ock[ci 001+HY];

ex000 += az * (hy00l1l - hy000) + ...
float g = sin(t*onega);

ez000 = (gi == 4)? q : ez000;

ee[gci +EX] = ex000;

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

(Outline)

.Many-core processors
.Challenges: software (anyone surprised)
-Motivation

-Obvious benefit: performance

«Not so obvious benefit: mobile HPC
-OpenCL.: problem solved, more problems

.Future Developments

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

State of Compilers

Icc_x86, gcc - . Mature — performs miracles with emitted machine code, nearl vy

perfect compilations

. Optimizing - recognizes basic opportunities for optimization

icc_iab4 —
. Quality — sophisticated transformation from source to machin e
<@ code, avoids doing dumb things
. Semantic_ — handles any semantically correct language construc ts
brce, nvee - thrown against it, emits correct machine code

. Functional - reasonably reliable results, verbose messages when
you ask too much, compiler knows what it cannot do

. Usable — can be used with great care, sometimes actually wo rks,
easily confused, fails without warning or errors

Many-core compiler technology well behind industry- standard CPUs (x86_64)

. Trails lesser CPU compilers, e.g., Itanium
Reality: requires (at least) decade to build up com plexity found in x86 64 compilers
Both vendors (Nvidia and ATI) offer relatively immat ure compilers

« (I have personally broken both of them, source-leve | tests indicate they’re not optimizing)
Hardware makes effort worthwhile, no more difficult than SSE/OpenMP code opts
Compilers are improving rapidly, market forces ($$$) will drive advances

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

LLVM (UIUC)

. What is it: compiler technology

. Importance for many-core: supports many features critical to
OpenCL

. AMD OpenCL implementation based on LLVM

. Impact on compilation model (compilation is VERY cheap)
. Current model is entrenched, pragmatic, but also archaic
. Run-time/just-in-time (JIT) compilation

. Portable code changes from compile time to runtime issue

. This project has significant importance for future HPC

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Building Upon OpenCL

-stdcl: POSIX-like extensions supporting OpenCL
-Embed (static link) CL code into ELF objects
.Initialize the most common use case by default
-Pre-load and compile CL kernels for identified devi ces

.stdcpu[O], stdcpu[l], ... stdgpu[O], stdgpu[?],
-Add additional convenience functions in spirit of stdio, stdlib

-Support dynamic/shared CL similar to dynamic librar ies

.clopen(), clsym(), clclose()
-No interference with direct OpenCL support

.coprthr: pthreads extensions for co-processing
.Integrate OpenCL with existing, proven APIs, e.g., O penMP

-OpenMP fork-join model represents typical many-core use case
-Other ideas?

-OpenCL is foundation, expect open-source community t o build software stack

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

BI’DW n DEE r Computational Challenges in the Use of Emerging
Technolo gy Many-Core Architectures for DoD Applications

Conclusions

. Many-core creates an inversion of HPC parallelism
. Many challenges, mostly confronted by software developer

. OpenCL may provide a foundation for programming model

. Much will depend on vendor delivery of good compilers and
runtime implementations

. Introduces new concepts of compilation and portability

. Reconciling OpenCL software stack within HPC?

Copyright © 2009 Brown Deer Technology, LLC. AligRts Reserved.

