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�Many-core processors

�Challenges  

�Motivation

�Obvious benefit: performance 

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

Outline
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Future Parallelism of HPC Architectures

�Multi-node ~ 1,000 nodes
�Distributed - MPI

�Multi-core ~ 10 cores
�SMP - OpenMP

�Many-core ~ 1,000 cores
�Stream, SIMD, SIMT - OpenCL

AMD64 Linux Cluster

AMD Opteron (Shanghai)

AMD Radeon HD 4870X2 
(2.4 TFLOPS single-precision)

� Challenges in productivity
� Very high level parallel languages

� Moderate challenges
� Not so different from SMP nodes

� New level of parallelism
� Significant Challenges
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Many-core: Massive Chip-Level Parallelism

� DoD DSRC major-center-scale Linux cluster 
� Scheduled operation through 2011
� 4,400 cores, 26.4 TFLOPS  (double precision) 
� Cost: multi-million dollar acquisition 

� GP-GPU Workstation “Supercomputer” (paper spec) 
� Can be built today w/existing COTS parts (for gamers)
� 11,200 cores, 16-20 TFLOPS (single-precision)
� cost: < $10,000 (plus effort and ingenuity)

� Many-core processors can provide as many cores per 
compute node as there are computer nodes

� Represents a complete inversion of the HPC paradigm
familiar to HPC software developers

GP-GPU Workstation

Linux Cluster
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Many-core (GPU) Architectures

� For years HPC asked for a chip with “lots of FP units”
� Who needs register renaming, out-of-order 

execution? ...
� Here they are – 800 FP units (example shown)
� Read the fine print:

� Most of the complexity of a “core” has been 
removed

� Highly constrained execution model
� Limited number of registers
� Constrained memory architecture
� Thread aggregation (SIMT model)

� Question: how dependent have HPC software 
developers become on the capabilities of a modern core 
architecture, e.g., Nehalem or Istanbul?

� ... port your code to a GPU and find out
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Many-core vs. Multi-core

• Many-core is not the logical evolution of multi-core

• Issue is not number of cores, rather the cores themselves

• Distinction is between ‘heavy-weight” cores and “light-weight”
cores

• Will likely generate debate similar to RISC vs. CISC

• Better to have 32 capable cores, or 1600 weak cores?

• Distinction is invariant, silicon has finite dimensions

• What about “medium-weight” cores (not-so-many-core)?

• These will be thrown into the debate also  
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Many-core Evolution
• GPU (ancient times)

• Non-IEEE compliant FP units

• OpenGL, DirectX, Shader languages, ...

• GP-GPU (now)

• IEEE compliant FP units (sort of) 

• RV790 (FireStream), GT200 (Tesla)

• CUDA, Brook

• Many-core (drop “graphics”, improve legitimacy) (ne ar future)

• RV870 (Evergreen), GT300, Larrabee(manycore or multi -core+vector?)

• OpenCL(?)

• Is HPC driving the evolution?  Of course not, HPC i s a post-roadmap add-on

• Consumer market is driving the technology

• “Data parallel” closest driver related to HPC

• Understanding this provides a guide for what to (no t) expect

• HPC community successfully exploited x86_64, same d eal
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The Many-core + Multi-core Problem

CPU CPUMemory

PCIe

•Co-processors are back, along with the unsolved pro blems, and entirely new problems

•Data and control must be orchestrated between distr ibuted resources – cores + memory

•Problem differs significantly from recent distribut ed HPC challenges

•Very serious latency and bandwidth constraints

•Problems: locking, memory consistency, asynchronous  operations, concurrency

•Doesn’t the operating system take care of this? ...  No, not anymore – see the OpenCL spec

Remember when this 
seemed complicated?

GPU GPU

Memory

GPU GPU

Memory

GPU GPU

Memory

GPU GPU

Memory6,400 cores

8 cores
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Challenges
• Software is the greatest challenge – always is

• Theoretical challenge – the programming model

• Many-core offers worse case of many long-standing problems

• Co-processors, distributed shared memory, thread synchronization, ...

• Many-core adds third tier to parallelism requiring new API

• What should/will the SDK look like? Automation or expression?

• A programming model is a contract with the programmer

• What are the likely terms for many-core?  agreeable?

• Practical challenges

• Quality of compilers and vendor-provided run-time

• Code portability, compliance, new compilation models

• Software developers will find the “many cores” primitive
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�Many-core processors

�Challenges: software (anyone surprised)  

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments 

(Outline)



11

Computational Challenges in the Use of Emerging 
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC.  All Rights Reserved.

• Objectives

• Evaluate representative computational kernels important  in HPC

• Grids, finite-differencing, overlap integrals, particle s

• Understand GPU architecture, performance and optimisat ions

• Understand how to design GPU-optimised stream applica tions 

• Approach

• Develop “clean” test codes, not full applications

• Easy to instrument and modify

• Exception is LAMMPS, a real production code from DOE/Sa ndia

• Exercise was to investigate treatment of a “real code ”

• Brings complexity, e.g., data structures not GPU-frien dly

Investigation of Application Kernels
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� Commercial applications for 
oil and gas exploration

� Military applications for detecting 
buried structures

� Seismic Simulation of Velocity-Stress Wave Propagat ion
� Important algorithm for seismic forward modeling te chniques
� Used for iterative refinement and validation of sub -surface geological models

Seismic: 3D VS-FDTD
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Update Velocity Field

Update Stress Field

Apply Excitation

Initialization

Finalization

Stream Read

Stream Write

Update Velocity Field

Update Stress Field

Apply Excitation

N_burst

N_step / N_burst

GPU Acceleration
Seismic: 3D VS-FDTD
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GPU vs. CPU: Time per Million Points

1

10

100

2 10 50 100 500 1000 5000

N_burst [steps]

T
im

e 
[m

se
c]

GPU-256x128x128
GPU-384x128x128
GPU-512x128x128
CPU-256x128x128
CPU-384x128x128
CPU-512x128x128

� Performing many iterations in between data transfer  mitigates PCIe bottleneck 
� 31x speedup for largest grid

Seismic: 3D VS-FDTD: Benchmarks
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� For a gaussian basis, evaluation of two-electron int egrals reduces to summation 
over closed-form expression (Boys, 1949)

� Features of expression required to be evaluated:

� Certain pair quantities can be factored and pre-cal culated

� Expression contains +, -, *, /, sqrt(), exp(), erf( )

� One of the most common approaches in 
quantum chemical modeling employs gaussian
basis sets to represent the electronic orbitals 
of the system

� A computationally costly component of these 
calculations involves the evaluation of two-
electron integrals

Quantum Chemistry: Two-Electron Integrals
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Pair Pre-Calc

Calc 2-e Integrals

Initialization

Finalization

Stream Read

Stream Write

Pair Pre-Calc

Calc 2-e Integrals

GPU Acceleration
Quantum Chemistry: Two-Electron Integrals
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Implementation Details

� Consider simple test case: 3D lattice of Hydrogen a toms using a STO-6G basis (1s only)

� Evaluation of two-electron integrals reduces to man y summations over 36 ••••36= 1296 terms

� Use of float4 SIMD ops requires inner loop of only 36••••9 iterations

� Use of double2 SIMD ops requires inner loop of only  36••••18 iterations

� Most difficult part of implementation involved the erf() for which no hardware instr exists

� Most CPU-based codes us a piecewise approximation d ue to Cody (1968?)

� Good for CPUs, reduces FLOPS at expense of branchin g

� Terrible for GPUs, branching is a performance kille r

� Used approximation by Hastings (1949?) valid for en tire domain (with a few tricks)

� Quality of the erf() approximation warrants further  investigation

� Benchmarks performed for various lattice dimensions  (Nx,Ny,Nz) leading to wide span in 
terms of number of integrals evaluated

Quantum Chemistry: Two-Electron Integrals
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GPU vs. CPU: Time per Million 2-e Integrals
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� Various implementations: 

� float(f)/double(d), Nested-Loop (NL), Fused-Loop (F L), Unrolled (U)

� Results are complex, reveal a lot about the archite cture and run-time API

� Best float implementation: fully unrolled loop (9 i terations)

� Best double implementation: fused-loop w/partial (2  iteration) unroll

Quantum Chemistry: Two-Electron Integrals
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GPU vs. CPU: Time per Million 2-e Integrals
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� Large numbers of integrals: latency and GPU setup t ime is completely amortized 

� Small numbers of integrals: repeating calculation ( s2) reveals GPU setup/compute time

� Entire calculation is repeated including complete d ata transfer

� s2 time more reflective of real codes (integrals re -evaluate repeatedly)

Quantum Chemistry: Two-Electron Integrals
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90.6 secAMD/175/GAMESS*
1.123 secNvidia/8800GTX/single*

80x72x
198.749 secAMD/9950(3GHz)/double

2.487 sec0.241 sec2.728 secATI/4870/double

814x244x
236.242 secAMD/9950(3GHz)/single

0.290 sec0.678 sec0.968 secATI/4870/single
GPU ComputeGPU SetupTotal

*Ufimtsev and Martinez

STO-6G(1s) 4x4x4

� Large number of integral limit (~10 million)
� SP: 814x speedup
� DP: 80x speedup

� CPU implementation definitely not optimized
� GPU performance/speedup will nevertheless be substa ntial

Quantum Chemistry: Two-Electron Integrals
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*Original work due to Paul Crozier and 
Mark Stevens at Sandia National Labs

Rhodopsin Protein

� Rhodopsin Protein Benchmark (most difficult)

� Details: All-atom rhodopsin protein in solvated 
lipid bilayer with CHARMM force field, long-
range Coulomb via PPPM, SHAKE constraints, 
system contains counter-ions and a reduced 
amount of water 

� Benchmark: 32,000 atoms for 100 timesteps

� Fundamental technique for molecular modeling
� Simulate motion of particles subject to inter-parti cle 
forces

� LAMMPS is open-source MD code from DOE/Sandia
� Dr. Steve Plimpton, http://lammps.sandia.gov

� Goal: accelerate inter-particle force calculation

Molecular Dynamics: LAMMPS
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Pair Potential

Initialization

Finalization

Stream Read pos,vel

Propagator

Pair Potential

Stream Write

NN Calc

N_step_nn

N_step / N_step_nn

GPU Acceleration

Note: Older results (July 2008) using FireStream 9170 
and ATI Stream SDK v1.1

Molecular Dynamics: LAMMPS
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� Only pair potential calculation moved to GPGPU ( ~>  80% run  time on CPU)

� Specifically: PairLJCharmmCoulLong::compute()

� Basic algorithm: “foreach atom-i calculate force fro m atom-j”

� Atom-i accessed in-order, atom-j accessed out-of-or der 

� Pairs defined by pre-calculated nearest-neighbor li st (updated periodically)

� CPU efficiency achieved by using “half list” such t hat j > i

� Eliminates redundant force calculations

� Cannot be done with GPU/Brook+ due to out-of-order writeback

� Must use “full list” on GPU (~ 2x penalty)

� LAMMPS neighbor list calculation modified to genera te “full list”

Implementation Details
Molecular Dynamics: LAMMPS
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� Host-side details: 
� Pair potential compute function intercepted with ca ll to special GPGPU function 

� Nearest-neighbor list re-packed and sent to board ( only if new) 

� Position/charge/type arrays repacked into GPGPU for mat and sent to board

� Per-particle kernel called

� Force array read back and unpacked into LAMMPS form at

� Energies and virial accumulated on CPU (reduce kerne l slower than CPU)

� GPU per-atom kernel details:
� Used 2D arrays accept for neighbor list

� Neighbor list used large 1D buffer(s) (no gain from  use of 2D array)

� Neighbor list padded modulo 8 (per-atom) to allow c oncurrent force updates 

� Calculated 4 force contributions per loop (no gain from 8)

� Neighbor list larger than max stream (float4 <41943 04>), broken up into 8 lists

� Force update performed using 8 successive kernel in vocations

Implementation (More) Details
Molecular Dynamics: LAMMPS
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�General:
�Single-core performance benchmarks
�GPGPU implementation single-precision
�32,000 atoms, 100 timesteps (standard LAMMPS benchma rk)

�Test #1: GPGPU 
�Pair Potential calc on GPGPU, full neighbor list, n ewton=off, no Coulomb table

�Test #2: CPU (“identical” algorithm, identical mode l)
�Pair Potential calc on CPU, full neighbor list, new ton=off, no Coulomb table

�Test #3: CPU (optimized algorithm, identical model)  
�Pair Potential calc on CPU, half neighbor list, new ton=off, no Coulomb table

�Test #4: CPU (optimized algorithm, optimized model)
�Pair Potential calc on CPU, half neighbor list, new ton=on, Coulomb table

�ASCI RED single-core performance (from LAMMPS websi te)
�Most likely a Test #4, included here for reference

Direct comparison (THEORY)

Architecture Optimized (REALITY)

Benchmark Tests
Molecular Dynamics: LAMMPS
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Rhodopsin Benchmark
Molecular Dynamics: LAMMPS
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�Many-core processors

�Challenges: software (anyone surprised)  

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments 

(Outline)



28

Computational Challenges in the Use of Emerging 
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC.  All Rights Reserved.

• What can be built today?
• COTS solution: 2U+4U - 16 RV770 GPUs - 16 TFLOPS - 2.5 KW

• Future assumptions
• Architecture: assume 3x performance increase 

• RV770 (55nm) - 800 cores - Today

• RV870 (40nm) – 2000(?) cores – 2009

• RV970 (32nm?) – 2400(?) cores - 2010

• Design: assume 2x performance increase 

• Dual-GPU boards available now, dual-slot form factor

• Dual-GPU boards, single-slot via lower power + liquid cooling 

• Power: assume power constrained 200W/per board(?)

• Result:
• 96 TFLOPS - 3.2 KW ~2 cu. ft. (2U+4U) by 2011

• What will the software look like?
• Programming model? Compilers? Runtime? Portability?

• Impact of deployable HPC for battlefield applications? 

100 TFLOPS, battlefield deployable, by 
2012?

Distribution Statement A.  Approved for Public Release.  Secondary Distribution Unlimited.
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• Ultra  Wide-Band Synchronous Impulse Reconstruction RADAR
– Obstacle avoidance and concealed target detection

– Under development by researchers at ARL/SEDD 

– Algorithms developed in MATLAB, being ported to C and GPUs

Battlefield Application: UWB SIRE RADAR 

Distribution Statement A.  Approved for Public Release.  Secondary Distribution Unlimited.
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Transform and Extraction

Compute Frame Data

Fix Moving Distortion and Filter

Interp1

Calc Rx and Tx

Update Image

Get Frame Data

Back Projection

GPU

...
float s_data<nas>;
float4 s_rx<na>;
float4 s_tx<na>;
float4 s_img<100,64>;

streamRead(s_data,data_all);
streamRead(s_rx,rx4);
streamRead(s_tx,tx4);

backprojection_gpu_kern(
(float)na, (float)ns,
(float)nrange2, 
(float)nxrange2, 
yref, xr_inc, r_inc, 
r_start, rdr,
coef1,coef2,coef3,
s_rx, s_tx,
s_data,s_img

);

streamWrite(s_img,img);
...

70% of computation

Host code using ATI Stream Brook+ compiler

GPU Acceleration of SIRE Back Projection 

Distribution Statement A.  Approved for Public Release.  Secondary Distribution Unlimited.
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�CPU baseline uses a single-core – opportunity for SSE and OpenMP optimization
�GPU implementations have opportunity for optimization as well
�Impact on real-time capability

�C/Xeon E5450: total time 45.5sec ⇒ 13 mph
�ATI/Radeon HD 4870: total time ⇒ 34 mph

�Amdahl’s Law appears: relative cost of Back Projection 70% →→→→ 23%
�Need to examine other parts of the overall algorithm

UWB SIRE RADAR Initial Benchmarks

Distribution Statement A.  Approved for Public Release.  Secondary Distribution Unlimited.
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�Many-core processors

�Challenges: software (anyone surprised)  

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

(Outline)
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OpenCL – What It Is, What It Is Not

• Industry standard for parallel programming of heter ogeneous computing platforms

• Substance: OpenCL = CAL + CUDA + Brook + OpenGL buff er sharing

• Two parts:

• OpenCL is NOT designed to make programming GPUs eas ier

• OpenCL is a very low-level standard designed to sup port platform independent 
software stack

Platform and runtime API

• Operating system moved into user-space

• Good news, programmer has control over

• Device discovery, registration, setup

• Creating work queues

• Memory consistency

• Bad news, programmer has responsibility 
for ...

Programming language

•C extensions for device programming

•Execution context is a kernel

•Familiar with Brook/CUDA, no 
surprises
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� Direct iterative solution of Maxwell’s 
Equations

� Important for modeling 
electromagnetic radiation from small 
devices to large-scale radar 
applications

� Grid-based finite-differencing

Electromagnetics: 3D FDTD

� Implemented using AMD OpenCL CPUBeta
� OpenCL implementation submitted for certification
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OpenCL By Example (1)

#include <CL/cl.h>

ctx = clCreateContextFromType(...);
clGetDeviceInfo(...);
cmdq = clCreateCommandQueue(...);

ee_buf = clCreateBuffer(...);
hh_buf = clCreateBuffer(...);

prg = clCreateProgramWithSource(...);
clBuildProgram(...);
cl_kernel hcomp_krn = clCreateKernel(...);
cl_kernel ecomp_krn = clCreateKernel(...);

� Device discovery, registration
� Create work queues

� Create buffers for data transfer

� Run-time/just-in-time (JIT) compilation



36

Computational Challenges in the Use of Emerging 
Many-Core Architectures for DoD Applications

Copyright © 2009 Brown Deer Technology, LLC.  All Rights Reserved.

OpenCL By Example (2)

for(step = 0; step < nstep; step += nburst ) {

clSetKernelArg(hcomp_krn,1,...);
clSetKernelArg(hcomp_krn,2,...); 
...

for(burst = 0; burst < nburst; burst++ ) {
clEnqueueNDRangeKernel(cmdq,hcomp_krn, ..., &kev[2*burst]);
clEnqueueNDRangeKernel(cmdq,ecomp_krn, ...,&kev[2*burst+1]);

}

for(i=0;i<2*nburst;i++) clWaitForEvents(1,&kev[i]);

clEnqueueReadBuffer(cmdq,ee_buf, ...);
clEnqueueReadBuffer(cmdq,hh_buf, ...);

clWaitForEvents(1,&ev[2]);
clWaitForEvents(1,&ev[3]);

}

“Push” arguments

Scheduler

Wait

Setup DMA

Wait
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OpenCL By Example (3)
__kernel void ecomp_kern(

float t, float omega,
uint nx, uint ny, uint nz, uint nb1, uint nt,
float ax, float ay, float az,
__global float* ee, __global float* hh,
__local float* eblock, __local float* hblock

)
{

uint gi000 = 4*nb*get_global_id(0);
uint gj000 = 4*nb*get_global_id(1);
uint gk000 = 4*nb*get_global_id(2);

for(ijk=0;ijk<nb3;ijk++) {
eblock[ci+EX] = ee[gci+EX];
...

}

barrier(CLK_LOCAL_MEM_FENCE);

for(ijk=0;ijk<nb3;ijk++) {
float ex000 = eblock[ci000+EX];
float hy000 = hblock[ci000+HY];
float hy001 = hblock[ci001+HY];
...
ex000 += az * (hy001 - hy000) + ...
float q = sin(t*omega);
ez000 = (gi == 4)? q : ez000;
ee[gci+EX] = ex000;
...

}
}

Get thread index

Memory consistency
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�Many-core processors

�Challenges: software (anyone surprised)  

�Motivation

�Obvious benefit: performance

�Not so obvious benefit: mobile HPC

�OpenCL: problem solved, more problems

�Future Developments

(Outline)
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� Mature – performs miracles with emitted machine code, nearl y 
perfect compilations

� Optimizing – recognizes basic opportunities for optimization

� Quality – sophisticated transformation from source to machin e 
code, avoids doing dumb things

� Semantic – handles any semantically correct language construc ts 
thrown against it, emits correct machine code

� Functional – reasonably reliable results, verbose messages when  
you ask too much, compiler knows what it cannot do

� Usable – can be used with great care, sometimes actually wo rks, 
easily confused, fails without warning or errors

icc_x86, gcc →→→→

icc_ia64 →→→→

brcc, nvcc →→→→

� Many-core compiler technology well behind industry- standard CPUs (x86_64)

� Trails lesser CPU compilers, e.g., Itanium

� Reality: requires (at least) decade to build up com plexity found in x86_64 compilers

� Both vendors (Nvidia and ATI) offer relatively immat ure compilers

� (I have personally broken both of them, source-leve l tests indicate they’re not optimizing)

� Hardware makes effort worthwhile, no more difficult  than SSE/OpenMP code opts

� Compilers are improving rapidly, market forces ($$$ ) will drive advances 

State of Compilers

clc →→→→
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LLVM (UIUC)

• What is it: compiler technology

• Importance for many-core: supports many features critical to 
OpenCL

• AMD OpenCL implementation based on LLVM

• Impact on compilation model (compilation is VERY cheap)

• Current model is entrenched, pragmatic, but also archaic

• Run-time/just-in-time (JIT) compilation

• Portable code changes from compile time to runtime issue

• This project has significant importance for future HPC 
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Building Upon OpenCL

•stdcl: POSIX-like extensions supporting OpenCL

•Embed (static link) CL code into ELF objects

•Initialize the most common use case by default

•Pre-load and compile CL kernels for identified devi ces

•stdcpu[0], stdcpu[1], ... stdgpu[0], stdgpu[2], ...

•Add additional convenience functions in spirit of stdio, stdlib

•Support dynamic/shared CL similar to dynamic librar ies

•clopen(), clsym(), clclose()

•No interference with direct OpenCL support

•coprthr: pthreads extensions for co-processing

•Integrate OpenCL with existing, proven APIs, e.g., O penMP

•OpenMP fork-join model represents typical many-core use case

•Other ideas?

•OpenCL is foundation, expect open-source community t o build software stack
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Conclusions

• Many-core creates an inversion of HPC parallelism

• Many challenges, mostly confronted by software developer

• OpenCL may provide a foundation for programming model

• Much will depend on vendor delivery of good compilers and 
runtime implementations

• Introduces new concepts of compilation and portability

• Reconciling OpenCL software stack within HPC? 


