

Embedded Multicore:
An Introduction

EMBMCRM
Rev. 0

07/2009

Freescale, the Freescale logo, and StarCore and the Freescale logo are
trademarks or registered trademarks of Freescale Semiconductor, Inc. in
the U.S. and other countries. All other product or service names are the
property of their respective owners. The Power Architecture and Power.org
word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org. RapidIO is a
registered trademark of the RapidIO Trade Association.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Document Number: EMBMCRM
Rev. 0, 07/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor iii

Contents
Paragraph
Number Title

Page
Number

Contents

Chapter 1
Embedded Multicore, an Overview

1.1 Why Multicore? ... 1-2
1.2 Different Types of Multicore ... 1-3
1.3 Parallelism ... 1-5
1.3.1 Bit-Level Parallelism ... 1-6
1.3.2 Instruction-Level Parallelism... 1-6
1.3.3 Data Parallelism... 1-6
1.3.4 Task Parallelism... 1-6
1.4 System and Software Design ... 1-7
1.5 Conclusion ... 1-9

Chapter 2
Embedded Multicore from a Hardware Perspective

2.1 Multicore Devices.. 2-2
2.1.1 Power Savings.. 2-5
2.1.2 System-Level Stability and Security.. 2-5
2.2 From Coprocessors to Multiple Cores ... 2-6
2.2.1 Internal Access... 2-6
2.2.2 Memory Hierarchy... 2-8
2.2.3 Interfaces.. 2-9
2.2.4 Debugging and Profiling.. 2-9
2.3 Conclusion ... 2-10

Chapter 3
Embedded Multicore: Software Design

3.1 Amdahl’s Law.. 3-2
3.2 Gustafson’s Law .. 3-3
3.3 Parallelism ... 3-4
3.4 Symmetric and Asymmetric Multiprocessing ... 3-4
3.5 Processes and Threads ... 3-5
3.5.1 Task and Process Mapping .. 3-6
3.5.2 Run to Completion... 3-7
3.5.3 Interprocess Communication and Synchronization ... 3-8
3.5.4 Semaphores and Locks .. 3-8

Embedded Multicore: An Introduction, Rev. 0

iv Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 4
Embedded Multicore: SMP and Multithreading

4.1 Introduction to Symmetric Multiprocessing .. 4-2
4.2 Parallelized Application Designs... 4-3
4.3 Macro- and Microparallelization ... 4-3
4.3.1 POSIX Threads ... 4-4
4.3.2 OpenMP .. 4-6
4.4 Performance Constraints and Common Pitfalls ... 4-8
4.5 Summary .. 4-10

Chapter 5
Embedded Multicore: SMP Operating Systems

5.1 SMP Linux... 5-2
5.1.1 Task Schedulers and Load Balancing .. 5-2
5.1.2 Core Affinity.. 5-4
5.2 Enea’s OSE for Multicore.. 5-6
5.2.1 Architecture Overview... 5-7
5.2.2 Various Multicore Models ... 5-8
5.2.3 Enea OSE Advantages ... 5-8
5.3 Conclusion ... 5-11

Chapter 6
Virtualization and the Hypervisor

6.1 Virtualization—An Overview.. 6-2
6.2 Privilege Levels, Addressing and Exceptions.. 6-4
6.3 Hardware Features to Improve Virtualization.. 6-5
6.4 Security and Protection between VMs... 6-6
6.5 Messaging Between VMs .. 6-7
6.6 Debugging and Run Control .. 6-7
6.7 Conclusions.. 6-8

Chapter 7
Embedded Multicore: Virtual Platforms

7.1 Simulation of Computer Systems .. 7-2
7.2 Obtaining Hardware Early ... 7-3
7.3 Using a Virtual Platform for Debugging.. 7-3
7.4 Multiprocessor Software Debugging ... 7-5

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor v

Contents
Paragraph
Number Title

Page
Number

7.5 Using Virtual Platforms for Hardware Design... 7-6
7.5.1 Execution Speed .. 7-7
7.6 Conclusion ... 7-8

About the Authors

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor vi

Figures
Figure
Number Title

Page
Number

Figures

1-1 Improved Power Consumption as an Incentive for Multicore (MPC8641)............................ 1-2
1-2 Heterogeneous and Homogeneous.. 1-4
1-3 Memory Designs in Multiple CPU Systems ... 1-5
1-4 MPC7120 GPON Block Diagram... 1-8
1-5 Mix and Match .. 1-8
2-1 P4080 Block Diagram... 2-2
2-2 MSC8144 Block Diagram... 2-3
2-3 e500mc Block Diagram .. 2-4
2-4 Single Bus vs. Switch Fabric .. 2-6
2-5 Cache Stashing .. 2-8
2-6 Debug Interface... 2-10
3-1 Amdahl’s Law: Speedup as a Function of Number of Cores.. 3-2
3-2 Gustafson’s Law.. 3-3
3-3 Block Diagram of Router Application .. 3-4
3-4 Processes and Threads .. 3-6
3-5 Using Semaphores to Protect a Critical Section ... 3-9
3-6 Network Routing Application... 3-10
4-1 Scheduling of Parallel Loops under OpenMP... 4-6
5-1 Schedulers (Using a Red–Black Tree Structure)... 5-3
5-2 Micro-kernel Architecture... 5-7
5-3 OSE5 Multicore Output Simulation.. 5-10
6-1 Relationships among VMs, the Native Hypervisor, and Underlying Hardware on an Embedded

Multicore Device.. 6-3
6-2 TLB Miss Handler .. 6-4
6-3 Abstraction Of Peripherals Using Queues .. 6-6
6-4 QorIQ Processor Family ... 6-8
7-1 Virtual Platform Running the Same Software as the Physical Hardware 7-2
7-2 Virtual Platforms Make the Hardware Available Sooner.. 7-3
7-3 Reverse Execution... 7-5
7-4 Example Output from a Multicore Run on a Virtual Platform .. 7-6

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 1-1

Chapter 1
Embedded Multicore, an Overview

—Jonas Svennebring

The computer industry is driven by pursuit of ever increasing performance.
From high-end customized special-purpose computing in networking,
telecommunications, and avionics to low-power embedded computing in
desktop computing, portable computing and video games, customers expect
faster, more efficient, and more powerful products. However, single core
products are showing a diminishing ability to increase product performance
at pace with consumer desire. Multicore processing is recognized as a key
component for continued performance improvements.

The industry is on a clear path towards an increasing number of cores. Dual-
and quad-core devices have been established for several years, and they are
just the beginning of the explosion in the number of cores per device.

However, this kind of expansion creates a challenge, not only for the
semiconductor industry, but also for the system and software designers who
put them to work. Writing applications that execute in parallel is seldom
easy; sometimes it is not even possible. So why is the industry moving this
way? What are the problems, and how can we smoothly work around them?

Those questions are answered in the following sections:

• “Section 1.1, “Why Multicore?” provides an overview of the reasons
behind a migration to multicore, the difficulties in raising clock
frequency further and, as a result, improving performance.

• “Section 1.2, “Different Types of Multicore” describes the basic
topologies across the array of computational environments, including
homogenous systems where all cores are identical and heterogeneous
multicore systems where these cores differ, including the three
predominant approaches to memory designs: distributed, shared, and
hybrid.

• “Section 1.3, “Parallelism” outlines the difficulties of managing a
system with multiple cores running in parallel and describes the four
common forms of parallelism: bit level, instruction, data, and task.

• “Section 1.4, “System and Software Design” compares the advantages
and disadvantages of the two approaches to multiprocessing:

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

1-2 Freescale Semiconductor

asymmetric multiprocessing (AMP), in which each core runs
standalone, and symmetric multiprocessing (SMP), in which the many
cores act as one through the operating system.

Subsequent chapters focus on hardware, software architecture (such as
AMP and SMP systems), changes to operating systems and why system
simulation will play a more important role in the development process.

1.1 Why Multicore?
The migration to multicore devices requires complex changes to system and software to obtain optimal
performance. It is reasonable to question whether multicore is worth this additional work, or whether it is
possible to continue gaining improvements through single-core devices

Before the advent of multicore, most efforts in improving performance increase were straightforward:
Crank up the frequency! But it has become all too apparent that pushing the frequency came at a price.
Frequency improvements penalize power consumption, which in turn generates heat that requires more
advanced cooling, decreases reliability, and shortens the longevity of the device. So, solving the additional
problems that come with increasing frequency costs more money.

A rule of thumb is that doubling the frequency causes a fourfold increase in power consumption. Power
consumption itself is only proportional to frequency, but higher frequencies need increased voltage
because processors with higher speed transistors leak more than slow ones. Equation 1-1 explains the
relationship.

power = capacitance × voltage2 × frequency Eqn. 1-1

Figure 1-1 compares single- and dual-core implementations of the MPC8641. In a single-core
configuration, raising the frequency by 50% roughly doubles power consumption; however, dual-core
increases power by only 30%.

Figure 1-1. Improved Power Consumption as an Incentive for Multicore (MPC8641)

35

30

25

20

15

10

5

0
Core Frequency Core Frequency
1.5 GHz, 1.1 V 1.0 GHz, 0.95 V

P
ow

er
 (

W
)

Dual
Core

Single
Core

Single
Core

Dual
Core

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 1-3

It is well understood that simply doubling the core frequency does not double performance. Techniques
such as parallelizing instructions, speculative execution, and pipelining cannot generally scale with the
frequency. For example, some stages in an instruction pipeline have internal timing requirements that
cannot be met if the processor clock frequency is increased. Therefore, the instruction latency of many
instructions cannot scale proportionately and additional pipeline stages are necessary. This naturally
increases the number of cycles required for execution and penalizes branches. Although doubling the core
frequency may still allow such instructions to execute faster than they would on a core running at a
slower-frequency, lengthening the pipeline means that this improvement is less than double.

Of particular significance is the so-called “memory wall” that has materialized as the increase in the
on-core speed is not matched by the speed of off-core and off-chip memory and IO subsystems. A
high-frequency core matched with a lower-frequency bus will frequently stall as the core waits for data.
To some extent such disparities have been compensated by implementing large, fast, on-chip caches, but
increasing the size and numbers of on-chip caches subsequently increases both silicon size and power
consumption.

Power conservation is especially critical for embedded systems. In a conventional system implementation,
the standard upper ceiling of around 20–40 W requires a heat sink and either a fan or substantial air flow
for cooling. Ensuring that hot spots are distributed effectively complicates both board layout and the layout
of boards within a larger system. This may be acceptable for high-end devices, but not when power
requirements drop below approximately 7 W.

When the core runs at about 7 W, the fan can be removed and there is less need for sophisticated
management of hot spots. This, in turn, saves money, simplifies board design, and offers more flexibility
for placing high-end processors in computing environments where low power is a critical necessity. There
are low-power multicore devices that consume only around 2 W, such as the e300-based MPC5121 with
integrated graphics and a signal-processing accelerator. For most applications, these devices can be
implemented without a heat sink.

Through a great deal of effort and cost, the performance race for desktop and embedded systems has
overcome the issues that arise with increasing the frequency. However, innovative workarounds are
coming to an end. To continue delivering higher performance with improved power consumption, a new
path must be taken. In fact, that trail has been blazed by ultra-high-end systems, such as supercomputers,
in which even tens of thousands of CPUs are increasingly common.

1.2 Different Types of Multicore
Given the growing importance of multiprocessing across the computing spectrum and that high-end
systems, such as telecom infrastructure, servers, and supercomputers, have long used multiple-core
designs as the standard, is natural that the gains of high-end computing be applied to embedded computing
systems. These systems have much to offer on how to design and develop software, which is the focus of
later chapters.

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

1-4 Freescale Semiconductor

Multicore devices have been around for many years in different forms. For
example, Freescale’s PowerQUICC™ devices implement cores built on
Power Architecture™ technology, such as the e500 cores used in
PowerQUICC III devices and the single or dual RISC cores in the
QUICC Engine™ communication unit. Figure 1-2 shows the different types
of multicore environments. A device that contains multiple cores with
different types of instruction sets is referred to as heterogeneous. In contrast,
homogeneous multicore devices implement multiple identical cores, as seen
in the MPC8641 and P2020. The current trend is to create homogeneous
multicore devices, but a significant performance advantage can be obtained by using specialized cores and
accelerators to offload the main cores.

Figure 1-2. Heterogeneous and Homogeneous

homogenous
Describes a multicore
environment in which cores
are identical and execute the
same instruction set.

heterogeneous
Describes a multicore
environment in which cores
are not identical and
implement different instruction
sets

e500 Core

General Tasks

e500 Core

General Tasks

QUICC Engine™ RISC

Data Processing

e500 Core e500 Coree500 Core

Heterogeneous

Homogeneous

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 1-5

Figure 1-3 shows basic core memory topologies.

• In distributed memory designs, each CPU typically has a private memory and communication
between CPUs is performed over a high-speed network

• In a shared memory design, there is a public memory that is shared by multiple cores.

• In a hybrid design, there is a shared memory resource, but each core has private memory as well.
This allows each CPU/core to have a private memory that can smoothly be shared on a public
memory.

Figure 1-3. Memory Designs in Multiple CPU Systems

As process technology shrinks below 45 nm, devices can be implemented with not just two and four cores,
but many tens of cores, an approach commonly referred to as manycore rather than multicore. It is there
that the biggest challenges for system and software design lie. A dual-core device can typically provide
performance increase without any changes because the operating system can dedicate one core for the
main application and the other for special tasks such as interrupt handling. However, in a manycore device
applications must be redesigned to make use of all cores to take optimal advantage of the processing power
available.

1.3 Parallelism
Parallelization is the central challenge of developing a multicore environment. Of course, parallel
execution is nothing new. However, implementing a system in which work can be done in parallel in a
computing environment in which order must be maintained at all costs poses problems. Why can’t this be
solved in the hardware, or by the compiler or operating system? The answer is that parallelization has
already been implemented in these areas.

Private Memory

Core

Core

Private Memory

Private Memory

Core

Core

Private Memory

Private Memory

SC3850 Core

SC3850 Core

Private Memory

Private Memory

SC3850 Core

SC3850 Core

Private Memory

Distributed Memory

Shared Memory

Hybrid, MSC8156

e500 Core e500 Core

Shared Memory

Shared Memory, P2020

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

1-6 Freescale Semiconductor

Parallelism can be thought of as taking four basic forms—bit level, instruction, data, and task. These forms
are discussed in the subsequent sections.

1.3.1 Bit-Level Parallelism

Bit-level parallelism extends the hardware architecture to operate simultaneously on larger data. For
example, on an 8-bit core, performing computation on a 16-bit data object requires two instructions.
However, by extending the word length (the native data length that a core works with) from 8 to 16, the
operation can now be executed by a single instruction. Thus as the computer industry has matured, word
length has doubled from 4-bit cores through 8-, 16-, 32-, and 64-bit cores.

1.3.2 Instruction-Level Parallelism

Instruction-level parallelism (ILP) is the technique for identifying instructions that do not depend on each
other, such as working with different variables and executing them at the same time. Because programs
are typically sequential in structure, this is not an easy task. Certain applications, such as signal processing
for voice and video, can function efficiently. A DSP, for example, and the Freescale StarCore™
architecture can execute 6 instructions per cycle per core or double this rate when working with video
processing. ILP is commonly implemented in the compiler. Other common techniques in this area are
speculative and out-of-order execution, features supported by the RISC-based Power ISA, and are
implemented in the e500 and the legacy PowerPC cores, such as the e300 and e600.

1.3.3 Data Parallelism

Data parallelism allows multiple units to process the data concurrently. One such technique implemented
in hardware is SIMD (single instruction/multiple data), which is implemented in the 128-bit vector
instructions defined by the AltiVec instruction set and the 64-bit vector instructions defined by the
signal-processing engine (SPE) instruction set.

Data parallelism is also where multicore plays a significant role. Performance improvement depends on
many cores being able to work on the data at the same time. When the algorithm is sequential in nature,
difficulties arise. Crypto protocols, such as 3DES (triple data encryption standard) and AES (advanced
encryption standard), are often sequential and therefore difficult to parallelize whereas matrix operations
are generally easier to parallelize because the data is interlinked to a lesser degree. In general, it is not
possible to automate data parallelism in hardware or through a compiler because a reliable, robust
algorithm is difficult to assemble. Another difficulty is identifying which parts of the software should be
parallelized as not all functions benefit from parallel execution. Both of these are problems that you will
face when doing it by hand.

1.3.4 Task Parallelism

Task parallelism distributes different applications, processes, or threads to
different units. This can be done either manually or with the help of the
operating system. The difficulty with task parallelism is not with how to
distribute the threads, but with how to divide the application into multiple
threads. For systems with many small units, such as a computer game, this can be easy. However, when

thread
A flow of instructions that runs
on a CPU independently from
other flows

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 1-7

there is only one heavy and well-integrated task, this division can be very difficult and often faces the same
problems associated with data parallelism.

1.4 System and Software Design
Of the four types of parallelism, multicore focuses most on data and task parallelism. Accordingly, this is
where the system and software design matters. This section provides a brief overview, different design
approaches for handling tasks, and data management in parallel.

The simplest way to progress from single-core to multicore computing is to
run each core independently. This approach is called asymmetric
multiprocessing (AMP or ASMP) in contrast to symmetric multiprocessing
(SMP), in which all of the cores act as one through the operating system.

In an AMP design, each core runs by itself and often is dedicated to a single
task, such as decoding incoming data or handling a specific step in data
processing. This can be done in a general-purpose core or in a
custom-designed core that has a dedicated security unit for performing
encryption and decryption, such as Freescale’s P2020.

An AMP system can be designed in which a set of cores can perform all of the tasks required for the
complete processing of a particular task so that the same process can be performed on multiple cores
running in parallel. Alternatively, a system can be defined in such a way that each core specializes on a
single step in a multiple-step process where results are passed like serial stages in a pipeline.

With either AMP approach, it is important that the hardware distributes the work among the cores. In the
case of Ethernet traffic, for example, this can be done by filtering MAC or IP addresses to specific cores.
However, with an SMP design, the operating system distributes the work. SMP requires homogeneous
cores that share memory such that any thread or process can be assigned to any core at any time. Assuming
that an application is divided into multiple threads, this is a very convenient approach because the
operating system does most of the work. However, there are performance losses because all cores compete
for the same memory with SMP. Currently, this memory bottleneck sets a practical upper limit of about
eight cores, although there are ideas for how this can be extended further. These ideas are discussed in
subsequent chapters.

Combinations of SMP and AMP yield good results in scenarios in which the main system runs on a few
cores that use SMP and are helped by cores running AMP modes as software accelerators. For example,
in applications such as telecom 3G/LTE, one or more such accelerators process layer 1 and hand off the
processed data to layer 2, which is running with SMP. One core may run a real-time OS and the other Linux
(see Figure 1-5).

When multiple operating systems run on the same device, they need to share
common resources. For memory, the MMU can easily do this, but for
interfaces it is more complicated. The general solution to this problem lies a
level below the operating system and is called a hypervisor. The hypervisor
provides system-level resources that allow operating systems to interface. It

asymmetric processing (AMP or
ASMP)

An approach to multicore
design in which cores operate
independently and perform
dedicated tasks.

symmetric processing (SMP)
An approach to multicore
design in which all cores share
the same memory, operating
systems, and other resources

hypervisor
System-level software that
allows multiple operating
systems to access common
peripherals and memory
resources and provides a
communication mechanism
among the cores.

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

1-8 Freescale Semiconductor

is through the hypervisor that operating systems communicate with each other and with the shared
hardware.

Figure 1-4. MPC7120 GPON Block Diagram

Multilayer systems can benefit from a heterogeneous device with cores dedicated to the specific tasks.
Figure 1-4 shows the MSC7120, one such example for GPON (gigabit parallel optical networks, i.e., fiber
to the home). It features an accelerator block for the physical layer, a Starcore SC1400 core for signal
processing, and an e300 core built on Power Architecture technology for higher layers of processing.

Figure 1-5. Mix and Match

PON Subsystem

To POTS
External

Peripherals SDRAM CODEC/SLIC

16-Kbyte
D-Cache

e300 Core

16-Kbyte
I-Cache

DDR1/DDR2
Memory

Controller

StarCore™
SC1400 Core

Local Bus
Interface

S
ys

te
m

C
on

tr
ol

le
r

DUART
SPI
I2C

Timers
GPIO

Interrupts
JTAG

Ethernet
PHY

Ethernet
PHY

10/100/1000
Ethernet

MAC

10/100/1000
Ethernet

MAC

Hardware
Bridge

O
pt

ic
al

Tr
an

sc
ei

ve
r

G
E

M
S

A
R

PON
TC/

MAC

PLL

FEC CDR OMI

Power

D-Cache I-Cache

Architecture™
Core

Power

D-Cache I-Cache

Architecture™
Core

Power

D-Cache I-Cache

Architecture™
Core

Power

D-Cache I-Cache

Architecture™
Core

Power

D-Cache I-Cache

Architecture™
Core

Power

D-Cache I-Cache

Architecture™
Core

Power

D-Cache I-Cache

Architecture™
Core

Power

D-Cache I-Cache

Architecture™
Core

L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache

SMP OS
AMP OS

(Shared Code) AMP OS AMP OS

Control Plane Data Plane Other Services

Switch Fabric

Embedded Multicore, an Overview

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 1-9

Virtualization is a technique that allows one unit to act as multiple units or
vice versa. For the embedded market, virtualization can be used to move a
legacy system into a device, such as merging multiple single-core systems
into one multicore device.

Full virtualization features a complete simulation of the underlying hardware
so that any software that can run on the real hardware can also run on the
virtual machine. The drawback to this approach is the performance overhead.
Paravirtualization can reduce the overhead. In this scenario, the software
needs to be aware of the virtualization and therefore has to be ported. For
more information about virtualization, see Chapter 6, “Virtualization and the Hypervisor.”

1.5 Conclusion
Multicore devices provide a path forward for increased performance. This path requires comprehensive
and pervasive system and software changes as well as new, innovative hardware designs to ensure that the
software can take advantage of the increased computational power. Freescale has years of experience with
many types of embedded multicore devices and thus can ensure that all necessary components are present
to ease the software burden and to avoid having an inefficient core. This balance is key for multicore
applications.

virtualization
A computing concept in which
an OS runs on a software
implementation of a machine,
that is, a virtual machine (VM).

paravirtualization
A virtualization technique that
presents a software interface
to virtual machines that is
similar, but not identical, to that
of the underlying hardware.

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 2-1

Chapter 2
Embedded Multicore from a Hardware Perspective

—Jonas Svennebring

As the computer industry transitions into multicore computing, the
hardware must change shape accordingly. The change must happen not only
in the number of cores and how the software uses them, but also in the
supporting functionality. Memory and communication interfaces
(Ethernet/PCI Express®/Serial RapidIO) and accelerators for crypto, deep
packet inspection, and communication stacks that have traditionally resided
outside the chip are moved onboard for higher integration purposes and to
optimize and balance the loads shared by the cores.

This chapter examines the hardware aspects of multicore computing more
deeply by looking at two Freescale homogenous multicore device solutions:
general-purpose processors (GPP) and digital signal processors (DSP). It
contains the following main sections:

• Section 2.1, “Multicore Devices,” discusses a representative GPP
device and a representative DSP device. It also discusses power savings,
system-level stability, and security.

• Section 2.2, “From Coprocessors to Multiple Cores,” discusses the
evolution of devices to multicore and the attendant technological issues.

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

2-2 Freescale Semiconductor

2.1 Multicore Devices
We begin by focusing on homogeneous cores: devices that require more re-architecting than a simple
addition of cores to the silicon. As examples, we use two Freescale multicore solutions from the two main
device groups: general-purpose processors (GPP) and digital signal processors (DSP).

Figure 2-1 shows an example of a GPP: the QorIQ™ (pronounced like “core IQ”) communication
processor P4080 based on Power Architecture technology.

Figure 2-1. P4080 Block Diagram

P4080

Perf
Monitor

CoreNet
Trace

Watchpoint
Cross
Trigger

Real Time Debug

Aurora

18-Lane 5 GHz SERDES

sRIO

1GE

1GE

10GE

Frame Manager

1GE

1GE

1GE

1GE

10GE

Frame Manager

1GE

1GE

PCIe sRIOPCIe

sRIO
Message

Unit

PCIe

DMA

Test
Port/
SAP

Security
4.0

Pattern
Match
Engine

2.0

Queue
Mgr

Buffer
Mgr

eOpenPIC

Internal

Power Mgmt

SD/MMC

SPI

DUART

2 x I2C

Clocks/Reset

GPIO

CCSR

BootROM

2 x
USB 2.0/ULPI

Security
Monitor

PreBoot
Loader

1024-Kbyte
Frontside
L3 Cache

1024-Kbyte
Frontside
L3 Cache

64-bit
DDR2/DDR3

Memory Controller

64-bit
DDR2/DDR3

Memory Controller

CoreNet™
Coherency Fabric

PAMU PAMUPAMU PAMU PAMU Peripheral
Access Mgmt Unit

Buffer

Parse, Classify,
Distribute

Buffer

Parse, Classify,
Distribute

eLBIU

M2SB

128-Kbyte
Backside
L2 Cache

Power Architecture™
e500mc Core

32-Kbyte
D-Cache

32-Kbyte
I-Cache

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 2-3

Figure 2-2 shows the MSC8144 Starcore® DSP.

Figure 2-2. MSC8144 Block Diagram

In a homogeneous environment, relatively little in the basic core functionality of instruction execution
directly changes. As a reference, Figure 2-3 shows the Freescale e500mc core. Like other cores in the e500
family, the e500mc uses superscalar dispatch, a seven-stage pipeline, and an ability to dispatch and retire
two instructions per cycle. The e500mc’s five execution units, the branch, floating-point, load/store, and
two integer units, allow out-of-order execution to minimize resource and memory stalls and features a
completion queue that ensures in-order completion.

Each of the P4080’s eight cores run standalone, with the principal goal of having each core run as
independently of each other as possible, thus avoiding stalls due to core collisions from attempts to access
the same peripherals or memory. This, in combination with high performance and a relatively small die
size, makes the e500mc core a good base for multicore devices.

JTAG

OCeaN

10/
100/

1000
Mbps

10/
100/

1000
Mbps

16-bit
Port

1 x
1.25 Gbps 32-bit

66 MHz2048 Ch

Packet Processor

Other Device
Modules
CCSRs

32/16-bit
PortMSC8144 Memory Die MSC8144 Main Die

RapidIO

Titanium
Subsystem

TDMDMA

L2
Instruction

Cache
128-Kbyte

M
es

sa
ge

U
ni

t

sR
IO

E
th

er
ne

t

E
th

er
ne

t

U
T

O
P

IA PCI
Controller

M2

CLASS – 64/128-bit Non-Blocking Switching Fabric

SRAM Memory
512-Kbyte

(ECC Protected)

M3
Memory

Controller

DDR
Memory

Controller

M3
Memory
10-Mbyte

(ECC Protected)

UART

I2C

Virtual
Interrupts

Clocks

Timers

Reset

Semaphores

BootROM

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

2-4 Freescale Semiconductor

Figure 2-3. e500mc Block Diagram

R
es

er
va

tio
n

S
ta

tio
n

F
et

ch
 S

ta
ge

s

B
ra

nc
h

P
re

di
ct

io
n

U
ni

t

B
T

B
51

2
E

nt
ry

C
T

R

LR

In
st

ru
ct

io
n

U
ni

t In
st

ru
ct

io
n

Q
ue

ue
(1

2
in

st
ru

ct
io

ns
)

In
st

ru
ct

io
ns

 p
as

s

R
es

B
ra

nc
h

U
ni

t

G
P

R
 F

ile
LS

U

L2
 M

M
U

s

C
R

F

12
8-

B
it

G
en

er
al

 Is
su

e
Q

ue
ue

 (
G

IQ
)

B
ra

nc
h

Is
su

e
Q

ue
ue

 (
B

IQ
)

U
ni

fie
d

Tw
o

In
st

ru
ct

io
n

D
is

pa
tc

h
(1

 B
IQ

, 2
 G

IQ
, 1

 F
IQ

)

C
or

e
In

te
rf

ac
e

U
ni

t

L1
 In

st
ru

ct
io

n
M

M
U

64
-e

nt
ry

I-

L1
T

LB
4K

8-
en

tr
y

I-
L1

V
S

P32
-K

by
te

 I
C

ac
he

S
ta

tio
n

M
em

or
y

U
ni

t

(4
 In

st
ru

ct
io

ns
)

Ta
gs

Ta
gs

32
-K

by
te

 D
 C

ac
he

M
ax

im
um

 T
w

o
In

st
ru

ct
io

ns

M
A

S
R

eg
is

te
rs

In
st

ru
ct

io
n

bu
ffe

r

R
en

am
es

(1
4)

R
en

am
es

(1
4)

G
P

R
 B

us

C
om

pl
et

io
n

B
us

C
R

F
 B

us

C
or

eN
et

 In
te

rfa
ce

O
ne

 in
st

ru
ct

io
n

pe
r

un
it/

pe
r

cy
cl

e.

R
es

S
ta

tio
n

F
P

U
(6

4
bi

t)

F
P

U
 Is

su
e

Q
ue

ue
 (

F
IQ

)

F
P

R
 F

ile

R
en

am
es

(1
4)

St
at

io
n

Si
m

pl
e

Un
it

s

R
es

S
ta

tio
n

M
ul

tip
le

U

ni
t

R
es

S
ta

tio
ns

S
im

pl
e

U
ni

ts
(2

)

C
om

pl
et

io
n

Q
ue

ue

F
P

R
 B

us

(1
4

E
nt

ry
)

R
et

ire
 p

er
 C

yc
le

 fr
om

 IQ
 to

 th
e

C
Q

 a
t d

is
pa

tc
h.

L1
 D

at
a

M
M

U

64
-e

nt
ry

D

-L
1T

LB
4K

8-
en

tr
y

D
-L

1V
S

P

T
LB

 a
rr

ay
64

-e
nt

ry

(T
LB

0)
T

LB
 a

rr
ay

(T
LB

1)

51
2-

en
tr

y

C
R

 F
ile

Lo
ad

/S
to

re

Q
ue

ue
 &

B
uf

fe
rs

12
8-

K
B

yt
e

U
ni

fie
d

B
ac

ks
id

e
L2

 C
ac

he

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 2-5

Coupling the need to synchronize software on the different cores with the
need to minimize the number of wasted cycles makes core-to-core
communication a critical priority. Starcore devices employ virtual interrupts
so that each core can get another’s attention quickly. With the e500mc, a
similar approach is adopted by the Message Send and Message Clear instructions, msgsnd and msgclr.
These two new instructions, now part of the Power Architecture, are used to allow one core to signal a
doorbell interrupt to another.

2.1.1 Power Savings

Another goal of hardware design is to maximize the power consumption made possible by migrating to
multicore. Devices typically implement modes that halt execution and power down the device to different
degrees—for example, nap, doze, and sleep. However these modes can be difficult to enable in the
software, and the wake-up can be time consuming, especially if the PLLs (phase-lock loops) require
resynchronization. To simplify this, the e500mc core introduces a wait [for interrupt] instruction that halts
execution on a specific core until an interrupt occurs. While the processor waits, instruction fetching stops,
and the execution pipeline idles.

To further reduce power, the P4080 has separate power rails with different voltages, including complete
shutdown (static and dynamic) of all or a subset of cores and multiple PLLs to allow some cores to run at
lower, less power-consuming clock frequencies.

2.1.2 System-Level Stability and Security

In a traditional single-processor, single-operating system environment, there is a need for only two
privilege levels, one for the operating system (supervisor) and one for the user applications (user or
problem-state). But in a multiple-core, multiple-operating system system, it is necessary to add a layer of
privilege to coordinate all of the competing domains within the system. Freescale’s instruction set
architects have extended the Power ISA (instruction set architecture) to include instructions, registers,
interrupts, and memory management resources that this additional executive-level software uses to protect
memory resources and to provide a virtual interface to peripheral resources that can be shared across all
of the computing domains in multicore devices such as the P4080.

This new layer of architecture creates a new privilege level, the hypervisor level. Hypervisor operation is
discussed in detail in Chapter 6, “Virtualization and the Hypervisor.”

When comparing devices, one should be careful not to look just at the raw core performance, but at how
efficiently the surrounding parts can feed the execution units with data, how system bottlenecks are
managed and minimized, and how the load can be distributed among the cores. In the Freescale Power
Architecture and StarCore devices, the programmable interrupt controller (PIC) can be used to configure
how hardware interrupts are prioritized and how they are directed towards specific cores. For example, Tx
(transmit) of a device can go to one core and Rx (receive) can go toward another. Another system design
approach is to use a fully symmetric interrupt scheme that will ensure that all cores get triggered by an
interrupt.

virtual interrupt
A software-triggered interrupt
from one core to another.

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

2-6 Freescale Semiconductor

2.2 From Coprocessors to Multiple Cores
The roots of multicore can be traced to the earliest days of microelectronics
and the evolutionary trend for more and more logic to move off the board and
onto the same chip as the core. Transistors were combined to form small
integrated devices and those devices evolved into processors that were given
on-chip caches. The continuous improvements in process technology made
it practical to integrate special-purpose functionality, such as interrupt
controllers and DMA into the processors. The next step was to move high-speed communications, video
controllers, and peripheral controllers, such as PCI and Ethernet into the devices, this to lower cost and
increase performance. It was only natural to call them Systems on a Chip, or SoCs.

With SoCs evolving into multicore devices the ability to process data increases significantly. Data must be
communicated to and from the device at a much higher rate. This in turn raises a need for specific hardware
acceleration. The Freescale PowerQUICC processor family handles communication processing, for
example routing and prioritizing incoming packages, by microcode executed in the QUICC Engine

communication unit. With higher data rates, such as the dual 10-Gigabyte Ethernet interfaces on the
P4080, this processing has to be implemented directly in the hardware but with flexible configurations.

Other accelerators commonly seen are for encryption and decryption of various protocols, table lookup,
and deep packet inspection. At high data rates, these things are difficult to do in software and can offload
the cores for other operations; that is, the cores are offloaded to the accelerators so they can do other tasks.

2.2.1 Internal Access

Devices typically use a bus-based approach for internal communication. Buses are simple to design, and
they give high throughput with low latency as long as there are few masters that initiate data transfers. This
is the case with single-core devices, where typically only the core and some advanced peripherals can
function as bus masters.

However, the use of buses in multicore devices faces two considerable obstacles: As shown in Figure 2-4,
as the number of units increases, so must the physical length of the bus chain. The fixed-signal speed
(electron mobility related to the physical properties of the silicon) within the device necessitates an
increase in handshake time which in turn limits the clock frequency, reducing bandwidth and increasing
latency.

Figure 2-4. Single Bus vs. Switch Fabric

1989 First Multicore
Freescale’s first multicore
device, M68302, was
launched 1989. It was a
heterogeneous devices
pairing a 68000 core with the
CPM.

• • •

Address Bus

Data Bus

Cores

Peripherals

• • •

Cores

Peripherals

Switch Fabric

• • • • • •

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 2-7

Ironically, although microprocessors can perform almost instantly the sorts of complex complications that
decades ago institutions spent millions on and built rooms for, the step into multicore processing has
brought a simple problem to light: Because the total bandwidth must be divided among the bus masters,
more cores means less bandwidth per core.

Also, with increased bus traffic, the risk of collisions increases and this lowers bandwidth even further. In
short, a bus does not scale well above four cores.

The solution, shown in Figure 2-4, is a switch fabric, which allows for
multiple simultaneous accesses. With such an approach, as one core
communicates with the Serial RapidIO interface, another can access
memory, a third can use the Ethernet interface, and so on. The advantages of
having dual DDR interfaces can now be fully realized because two sets of
cores can work with separate interfaces. To reduce collisions, in addition to
on-chip caches, the cores can be spread over the two interfaces. This
approach of having multiple access points in the memory can also be seen
with the M2 memory on the MSC8144. Because the cores are expected to
work directly with the M2 memory, it has four interfaces, one for each core.
The general drawback with switch fabrics is increased latency. Freescale has minimized this, not only to
make the fabric itself efficient, but also to pair the cores with nearby cache memory.

Because it is more complex than a bus, there is a desire to optimize a switch fabric, both for the cores that
use it and for the applications running on the cores. Freescale uses two different switch fabrics, the CLASS
in the Starcore DSPs and CoreNet™ technology in the QorIQ communication processors. The software
complexity of general-purpose processors increases greatly with multiple cores placed into highly
integrated devices, but providing a more sophisticated communication fabric, such as CoreNet, reduces
that additional demand on software. To accomplish this, the CoreNet fabric implements advanced
functionalities such as cache coherency across all cache layers. CoreNet fabric also supports software
semaphores by extending the bit-test to guarantee atomic access between cores. The CLASS is better
suited for DSPs as they tend to use less complex operating systems and the application software is more
in control. For example, after using a software cache coherency, the switch fabric complexity can be
reduced and silicon area can be saved.

In a multitasking system, in addition to translating the effective addresses
used in software to the physical addresses used by the memory subsystem, a
memory management unit (MMU) must protect applications from interfering
with each other. Although the MMU provides protection for each core in a
multicore system, other masters, such as peripheral DMAs, can corrupt the
memory. Unlike with single-core devices, a multicore system often uses many operating systems which
opens the risk of incorrectly configuring other masters so that memory accesses interfere with one another.
To prevent this, a new concept of peripheral access management units (PAMU) is introduced into QorIQ
devices. Much like an MMU, the PAMU is located at the connection of non-core masters and the CoreNet
fabric, as seen in Figure 2-1. The PAMU can be configured to map memory and to limit access windows
thereby increasing system stability.

switch fabric
Interconnect architecture that
allows data coming in on one
of its ports to be redirected out
to another of its ports. All
inputs are connected to all
possible outputs.

memory layer 2 (M2)
A second-level internal
memory, similar to an L2
cache.

 peripheral access management
unit (PAMU)

Similar to an MMU, a PAMU is
located at the connection of
non-core masters and the
CoreNet fabric

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

2-8 Freescale Semiconductor

2.2.2 Memory Hierarchy

The advancement of multicore implementations has been facilitated greatly by continued improvements
in process technology. With the introduction of 45-nm technology, core logic forms a relatively small part
of the device. In addition, caches are very costly, both in terms of power consumption and size. As the
core-to-memory interfaces speed differential increases, it is necessary to increase cache size. As core
frequency stabilizes and as caches are shared among cores more efficiently, the demand for cache
resources has been reduced.

Looking again at Figure 2-1, we can see that each core has its own Harvard L1 caches, one for data and
one for instructions. The caches are very fast and the core can work directly with them by using the core
pipeline for prefetch and write-back queues. The unified L2 caches are private to the core but are shared
between data and instructions. Medium-sized private caches reduce the risk of resource competition,
reducing wasteful cache thrashing between the cores, and give a minimum guaranteed storage area for
each core. In other instances, where the core is configured as a software accelerator, the L1 and L2 caches
can accommodate all code with plenty of room for data. One can also configure, on a per way basis, the
cache as SRAM and address it as normal, store variables, etc.

Backside caches, as in this implementation, are considerably faster than front-side caches and fit well as
fast private caches. To maximize usage and minimize core stalls, one can use a feature called cache
stashing. Data received from the interfaces are placed in memory and the core is then informed through an
interrupt. As the core retrieves the data from memory it instantly suffers from memory stalls since the data
has to be transferred from external memory which can be on the order of hundreds of core cycles.
However, by using stashing, as seen in Figure 2-5, the data is placed in L1/L2 cache at the same time as it
is sent to memory. When the interrupt is triggered the data is conveniently available and the core is fully
utilized.

Figure 2-5. Cache Stashing

For most applications, one large code base is either shared by all cores or, if some cores are specialized
and running their code in the L1 and L2 caches, is used by a controlling subset of these cores to run this
code. Commonly, this type of code is executed randomly with areas of more intense execution. For
example, a complex computation or frequently occurring code such as the operating system kernel. The
intense and frequent parts will end up in the L2 caches. Having a large, shared L3 cache also captures the
less-used parts of the code, which also comprises the largest part of the code footprint. On the P4080 this
cache is in line, with the two DDR2/3 memory interfaces.

Core

Cache

DDR2/DDR3

Switch Fabric

External Interface

Core

Cache

DDR2/DDR3

Switch Fabric

External Interface

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 2-9

2.2.3 Interfaces

With architectures built for strong computational performance and data throughput, only one piece of the
solution remains—external interfaces to pump the huge volumes of incoming and outgoing data.
Freescale’s approach has been to go with a high degree of integration of common devices. Both the Power
Architecture and Starcore devices can be seen with high-speed interfaces, such as Gigabit Ethernet, Serial
RapidIO, PCI Express and general buses. Common low- and medium-speed interfaces, such as UART,
SPI, I2C and USB, are handled easily by any core, but for the enormous flow of data associated with 10-Gb
Ethernet interfaces, the work must be divided up between the cores.

With the QorIQ family, Freescale introduces the concept of hardware off-loading through the frame,
queue, and buffer managers, shown in Figure 2-1. The frame manager is the central part that connects
directly with the Ethernet interfaces. Packets are then brought into a parser and classifier unit that inspects
the packet headers, including higher layer protocols up to L4, both standard and user defined as well as
user tunneled. Based on pre-configured settings the packets are then sent to different queues, forwarded
for decryption, sent out on a different interface, thrown away etc. This is all done at line rate even with a
load above 10 Gbps per frame manager. For example, we may decide to assign each core a unique IP
address but have all TCP packets to port 80 (HTTP) and port 22 (secure shell) sent to core 0. All UDP
packets spread evenly between cores 4-7 and ARP traffic to core 1. As the data gets classified and divided
up, the buffer and queue managers (Bman and Qman) take over. Because the buffers are already handled
by the hardware, this concept changes and simplifies the way that the drivers in an operating system work.
The focus can instead shift to data-path configuration.

2.2.4 Debugging and Profiling

With ever-increasing system complexity, the demand for deeper insight into what happens in the chip is
needed to find bugs and optimize performance through profiling. Freescale high-end DSPs and GPPs have
long had JTAG-based interfaces to support run-time control and debugging as well as for reading out trace
buffers and profiling counters to see how the program executed, what took time, how many cycles were
wasted on stalls, and what the reason was. Although this is slightly intrusive, this data can also be read out
by running software and operating systems, thereby allowing for transmission over standard high-speed
interfaces.

The on-chip debug functionality is now expanded to allow for insight into the switch fabric, data managers,
and core interaction. The P4080 has, along with the JTAG connector, also a Nexus port directly to memory
or over an Aurora interface. This interface has Gigabit bandwidth and can be used to send not only
information on program execution but also information on what data is processed. With a powerful
external acquisition unit this data can be recorded and as bugs appear, the user one can go through the
execution history and identify the root cause. Figure 2-6 depicts the possibilities and shows both the JTAG

Embedded Multicore from a Hardware Perspective

Embedded Multicore: An Introduction, Rev. 0

2-10 Freescale Semiconductor

emulator as well as the trace probe. These in turn interface with the CodeWarrior® development tools on
an ordinary PC.

Figure 2-6. Debug Interface

2.3 Conclusion
The transition to multicore devices involves much more than simply adding cores. The glue between the
cores has to change from a bus architecture to switch fabrics that allow many to many parallel connections.
New approaches to core designs, such as Freescale’s cores based on SC3400 Starcore and e500 cores, are
needed that adjust for those changes, and those adjustments are facilitated by modern and flexible
architectures the provide new functionality that simplifies core-to-core communications. One key
problems is how to divide the incoming data among the cores, especially with the high-bandwidth
interfaces. One possible solution is the introduction of hardware managers. Hardware and software are
being codeveloped to address the new challenges and to leverage the many new possibilities, that will
advance overall computational performance.

e500mc

JTAG to
Run Control
Probe

Events

Events Events

Trace

Scan

Trace

SERDES
to Trace Probe

Trace

Trace

Transactions

Trace

Transactions

SoC
Peripherals

e500mc

Performance
Monitors

TAP Nexus

Nexus
Performance

Trace

Performance

Nexus Port
Controller

Trace Buffer

CoreNet
Trace

Analyzer

PCIe/sRIO

Memory
Controllers

Aurora

Trace

Watchpoints

Monitors CoreNet
Fabric

TLM TAP/SAP

e500mc

can

TLM TAP/SAP

SoC
Peripherals

e500mc

Performance
Monitors

TAP Nexus

Nexus
Performance

Trace

Performance

Nexus Port
Controller

Trace Buffer

CoreNet
Trace

Analyzer

PCIe/sRIO

Memory
Controllers

Aurora

Watchpoints

Monitors CoreNet
Fabric

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 3-1

Chapter 3
Embedded Multicore: Software Design

—John Logan and Jonas Svennebring

Designing software for embedded multicore devices raises new questions
compared to designing for a single-core processor. How do I partition the
tasks in my application to achieve the most from the hardware? Should I
choose an SMP or AMP software architecture? Which communication and
synchronization issues should I consider between tasks?

This chapter explores software design and asymmetric multiprocessing. It
includes the following sections:

• Section 3.1, “Amdahl’s Law,” and Section 3.2, “Gustafson’s Law,”
examine the two concepts that are useful for evaluating parallel
algorithms—Amdahl’s Law and Gustafson’s Law.

• Section 3.3, “Parallelism,” examines task and data parallelism.

• Section 3.4, “Symmetric and Asymmetric Multiprocessing,” introduces
the concepts of symmetric and asymmetric multiprocessing, which are
discussed in greater detail in Chapter 4, “Embedded Multicore: SMP
and Multithreading.”

• Section 3.5, “Processes and Threads,” discusses the use of processes,
threads, and locks in embedded multicore systems.

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

3-2 Freescale Semiconductor

3.1 Amdahl’s Law
The basic aim of a multicore processor is to increase application performance by allowing multiple tasks
to run in parallel. This can involve running multiple independent tasks in parallel, multithreading one
application so that it runs across multiple cores, or some mixture of both.

For a typical application, there is a portion that cannot be parallelized (called the serial portion) and a
portion that can. Ideally, the serial portion is very small. In the 1960s, a computer architect at IBM named
Gene Amdahl formulated the equation shown in Equation 3-1, which is referred to as Amdahl’s Law. This
equation is used to predict the maximum speedup that can be expected in a typical application.

Where: S is the portion of algorithm running serialized code
 N is the number of processors running parallelized code

Amdahl’s Law Eqn. 3-1

For example, consider an image-processing algorithm running on a four-core device (N = 4). Sixty percent
of the application can be parallelized across all four cores, and 40% (S = 4) cannot be. With N = 4 and
S = 0.4, the expected speedup is as shown in Equation 3-2

Example Speedup for a 60% Parallelizable Application in a Four-Core System Eqn. 3-2

An algorithm that took 10 seconds, now completes in 5.49 seconds.

According to Amdahl’s Law, the maximum possible speedup is limited by the proportion of the serial
portion (S) of the application. As more processors are added to the parallelized portion (that is, as N
increases), the rate of speedup decreases. See Figure 3-1, which shows curves for Amdahl’s Law with
varying number of cores and varying sizes of serial portion. As more cores are added, the speedup tends
towards 1/S, as shown in Figure 3-1.

Figure 3-1. Amdahl’s Law: Speedup as a Function of Number of Cores

Speedup 1 S 1 S–() N⁄+()⁄=

Speedup 1 0.4 1 0.4–() 4()⁄+()⁄() 1.82==

14

12

10

8

6

4

2

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of Cores

S
pe

ed
up

S = 0.05

S = 0.1

S = 0.3

S = 0.2

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 3-3

Amdahl’s law seems to impose a fundamental limit on the performance boost achievable with multicore
processing; however it makes a fundamental assumption about the application. Amdahl’s Law assumes the
problem size is fixed, that is, the ratio between the serial and parallel portions does not change. For
example, in our image-processing example, this would mean you process only a fixed size or number of
images. Otherwise, the complete algorithm (serial portion + parallelized portion) must be rerun on each
run. In many applications, a fixed problem size model is not appropriate.

3.2 Gustafson’s Law
There are many examples of applications that do not have a fixed problem size. For example, in a network
routing application, there may be an initial configuration phase that cannot be parallelized, followed by the
main task of routing and processing data packets. The number of packets is usually unknown; indeed the
design goal may be to handle as many packets as possible. In such a system, it’s easy to see how adding
more cores could boost performance—each core can receive a new packet to process when it has
completed processing the last packet. Adding more cores means more packets processed in parallel.

In such a system, the relative size of the serial portion decreases over time and the parallelized portion
grows. Gustafson’s Law, named after John L. Gustafson, states that the speedup for such a system—known
as scaled speedup—is as follows:

Where: S is the serial portion of algorithm running parallelized
 N is the number of processors

Gustafson’s Law Eqn. 3-3

Gustafson’s Law shows that for a system where the problem size is not fixed, performance increases can
continue to grow by adding more processors. Figure 3-2 shows curves for Gustafson’s Law with different
values for the serial portion and number of processors. Notice how speed continues to increase with more
cores.

Figure 3-2. Gustafson’s Law

Scaledspeedup N 1 N–() S×+=

35

30

25

20

15

10

5

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of Cores

S
pe

ed
up

S = 0.05

S = 0.1

S = 0.3

S = 0.2

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

3-4 Freescale Semiconductor

3.3 Parallelism
We now have some simple formulae for evaluating the effects of running an application on a multicore
processor. Let’s look at different types of parallelism and how an application can be spread across multiple
cores.

• Task parallelism occurs when each core executes a different task. For example, imagine a word
processor application. It can run multiple tasks in parallel on the same data file, such as updating
the display, spooling information to a printer, or performing a word count.

• Data parallelism occurs when multiple cores execute the same task on different data sets, such as
running the same algorithm on different sections of an array or running the same algorithm on
different data packets.

For example, consider an IP-network router application that receives data packets on a number of network
interfaces and that must route the data from the correct ingress port to the correct egress port. The router
receives IP packets containing different types of data flows. It needs to identify each data flow type, apply
the appropriate processing and route the flow to the correct destination. An algorithm could be written to
perform this task. An instance of this algorithm could be run on multiple cores of a multicore device to
allow it to handle multiple data flows in parallel. This would be an example of data parallelism.

In addition to handling packets for the data flows, which compose the data plane of the router, the router
application must also handle control and configuration tasks, which compose the control plane. The
control plane contains a diverse range of tasks, such as routing table updates, making statistical
measurements, and handling error conditions. Therefore, it needs to run different tasks in parallel—task
parallelism.

The high-level block diagram in Figure 3-3 illustrates how the router application can be implemented on
an 8-core device, such as the Freescale QorIQ™ P4080 family of communication platforms, with data path
and control path spread across the cores.

Figure 3-3. Block Diagram of Router Application

3.4 Symmetric and Asymmetric Multiprocessing
Multiprocessing has historically been designed for heterogeneous devices such as math, audio, graphics,
or communication co-processors. The latter has been very successful for Freescale due to the devices based

Control Data—ARP, RTSCP, etc.Data Flows—TCP, UDP, RTP, etc.

Each core running identical Packet Processing Loop
Pool of cores running the control plane.
Multiple control tasks can be executed

in parallel. OS load balances cores.

Task ParallelismData Parallelism

CPU
Running
Packet

Processing
Loop

CPU
Running
Packet

Processing
Loop

CPU
Running
Packet

Processing
Loop

CPU
Running
Packet

Processing
Loop

CPU
Running
Packet

Processing
Loop

CPU CPU CPU

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 3-5

on QUICC Engine™ technology. This type of multiprocessing is called asymmetric (AMP or ASMP)
because the cores are different or have different system views and hence cannot share the burden of one
task between them.

Due to the inability to increase core frequency, multiprocessing has recently been used to increase the
computational performance of the device itself, which requires devices with multiple identical cores. By
having identical, equal powered cores with full access to the memory we get a symmetric hardware.
Symmetric multiprocessing (SMP) has many advantages for simplifying software design. We will explore
these advantages in Chapter 4, “Embedded Multicore: SMP and Multithreading.” Although symmetric
hardware allows for SMP software, it does not have to be used that way. Each core could be dedicated for
a specific task just as easily. For example, one core could have industrial control with real-time
functionality, and the other could have user interaction.

The next chapter will focus on SMP software design and operating system functionality.

3.5 Processes and Threads
Processes and threads are the two mechanisms that allow an operating system
(OS) to provide parallel processing. The term ‘process’ describes an instance
of a program being executed. It has an associated address space and a process
control block, which contains attributes and state information about the
process.

Each process contains one or more threads of execution, or threads. A thread is a basic unit of program
execution consisting of a flow of instructions that run on a CPU independently from other flows. Threads
within a process share the address space and resources. An SMP operating system schedules threads for
execution on the available cores on a device. On a single-core device, threads are time-sliced to give the
illusion of multiple tasks running simultaneously. On a multicore device, threads can be truly run in
parallel.

For an operating system, switching between processes is a relatively heavyweight task. Typically, context
and state information has to be saved for the old process and loaded for the new one, and changes must be
made to memory mapping. Swapping between threads in a process is a more lightweight task because the

thread
A flow of instructions running
on a CPU independently from
other flows

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

3-6 Freescale Semiconductor

address space and resources are common. Figure 3-4 shows the relationship between processes and
threads.

Figure 3-4. Processes and Threads

To illustrate the difference between processes and threads, we conducted a test on a Freescale MPC8548
running Linux 2.6.23 in which we looped a create and destroy cycle 500,000 times. As a process, this took
115.82 seconds, but as a thread, it took only 40.81 seconds. These results are architecture dependent, but
the comparison roughly characterizes the complexity differences between a process and a thread.

3.5.1 Task and Process Mapping

In a desktop PC, the operating system takes care of scheduling and running processes and threads. Most
desktops run using an SMP operating system—one OS running across all cores—where processes or
threads can be mapped to any core. In most cases, the operating system attempts to run threads on the same
cores each time they execute. This boosts performance when caches are already loaded with the required
data from previous runs.

Process 1

Thread 1 Thread 2 Thread 3

Process 2 Process 1

Heavyweight Swap Lightweight Swap

Time

Process 1

Thread 1 Thread 2 Thread 3

Process 2 Process 1

Time

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 3-7

This linking of threads to specific cores is called processor affinity. Processor
affinity has two forms: soft affinity and hard affinity. Soft affinity exists when
the OS prefers to link a process/thread to a specific core, but can choose
another if needed. Hard affinity exists when the user/programmer specifies
exactly where the process/thread should run. The OS also performs load
balancing—spreading the required tasks across cores to minimize waiting.

In an embedded application, it may not be desirable for an OS to completely
control mapping of the tasks using soft affinity. Returning to the IP router
application example, there are two classes of tasks to be done: data plane and
control plane. Data plane tasks handle packets and data flow, such as VOIP,
video streams, and network gaming. These typically require low latency, and
the system designer must guarantee some Quality of Service or throughput
figures for the design. If the data path can be mapped to a specific subset of
cores using hard affinity, it is much easier to design and test for these
requirements. The control plane is less sensitive to latency and has a large mix
of different tasks. It is desirable to map these tasks to another subset of cores and allow the OS to schedule
them as appropriate.

Within these two subsets, users may wish to further constrain tasks to particular cores. For example, on the
data plane, it may be possible to have one task per core running a very fast algorithm to process data flows.
If each task has a single thread, the OS scheduling overhead would be removed. Indeed, if this were
possible, it could be possible to run the parallel data plane algorithms without a full OS.

3.5.2 Run to Completion

In the early days of computing, users used polling to check for events such as received data on the serial
port and key presses on the keyboard. However, for applications with many such possible events, checks
with nothing to report wasted time. Moreover, if the event was a burst of data, the first data could have
been overwritten by data arriving later by the time polling detected the event.

To address this, interrupts were introduced. Just as it sounds, interrupts permit the event to interrupt the
core, which responds by handling the condition associated with the event. When finished handling the
interrupt, the core returns to its previous work. The advantages to interrupts are many, but disadvantages
also arise when there are large numbers of incoming interrupts. Interrupts have an overhead latency
required of jumping to and from the event with registers, stack, privilege level etc., to be shifted out when
the interrupt is called for and back in again when it returns. Hence the interrupts are taking core cycles
away from the regular applications.

Multiple cores have the flexibility to allocate interrupts among themselves. As described in Chapter 5,
“Embedded Multicore: SMP Operating Systems,” users can clear out a core and use it only to
batch-process data. This principle of run to completion is similar to polling, but in this case, other cores
use interrupts to handle events. Polling for more data is only required after a set is processed.

processor affinity
Modification of the native
central queue scheduling
algorithm. Each queued task
has a tag indicating its
preferred/kin processor. At
allocation time, each task is
allocated to its kin processor in
preference to others.

soft (or natural) affinity
The tendency of a scheduler to
keep processes on the same
CPU as long as possible

hard affinity
Provided by a system call.
Processes must adhere to a
specified hard affinity. A
processor bound to a
particular CPU can run only on
that CPU.

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

3-8 Freescale Semiconductor

Such an approach yields higher core utilization and also less complex
software as it can run with a very limited OS or even on bare metal. Freescale
refers to this as an LWE (lightweight executive) and supports it with a rich set
of library functions. The LWE contains standard functionality, such as
memory management, as well as device drivers and protocols to interact with
operating systems running on the other cores.

3.5.3 Interprocess Communication and Synchronization

In a system with multiple threads and processes, some communication
between processes is needed to pass information or status. Most operating
systems provide a set of functions to allow inter process communications
(IPC) and to enforce synchronization. Pipes, sockets, message queues, and
signals are common constructs used to provide communication. This
document does not look at communication mechanisms in detail; OS documentation should contain full
details of the resources it provides.

Synchronization is required between threads to prevent them from working on the same data or on shared
resources at the same time, which causes data corruption. This can be achieved by adding functions to
protect the application’s critical sections, which are the sections of code that manipulate shared data. Most
operating systems allow a range of synchronization functions based on two types—semaphores and mutex
(mutually exclusive) locks.

3.5.4 Semaphores and Locks

A semaphore allows or blocks access to a section of code. It consists of two
operations—a test function and an increment function—which use an integer
variable. As shown in Example 3-1, there are two functions: P (proeberen,
test) and V (verhogen, increment). Both operate on the semaphore variable s.

Example 3-1. Semaphores

P(s)
{
s = s-1; /*This must be an atomic operation*/
wait until s >= 0 {}
}
V(s)
{
s = s+1; /* This must be an atomic operation */
}

Imagine a scenario where A and B are two threads that engage in the following sequence of actions.

1. Thread A and Thread B try to access the same critical section of code; s is initially set to 1.

2. Thread A enters P function and decrements s (s = 0).

3. Thread A can continue to execute the critical section. Meanwhile, Thread B also enters P and
decrements s (s now = –1). Thread B must wait while s is less than 0.

4. Thread A runs the critical section and enters the V function, incrementing s to 0.

bare metal
Bare metal (or bare board) is
application software running
directly on the hardware, i.e.
running without an underlying
operating system.

pipes
Software connections
between programs. e.g., in
Linux command line “ls *.c >
grep main”

proeberen and verhogen
Proeberen is Dutch for ‘Try’,
Verhogen is Dutch for
‘Increment’—so named by
Edsger Dijkstra, the Dutch
computer scientist who
defined the functions.

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 3-9

5. Thread B can stop waiting and execute the critical section.

6. Thread B finishes and runs the V function, incrementing s (s = 1).

The increment and decrement functions can be implemented in software, but are commonly implemented
with a special bit test and set atomic instruction to ensure that there is no task switch between test and set.
In Freescale’s QorIQ family, the CoreNet switch fabric also has functionality that ensures exclusive access
between the cores such that only one core has access to the lock-bit at any given cycle. The Starcore family
can do similar operations with cache configurations; they also have special hardware semaphores. Such
techniques simplify software design.

In the above example, a thread waiting for the semaphore prevents a core from executing any other code;
the core sits in a loop waiting. Most operating systems add wait queues to prevent this from happening.
When a thread is waiting for a semaphore, it is put on a wait queue. The OS can then schedule another
thread to run on the core. When the semaphore become available (s > 0), the thread is taken off the wait
queue and can resume operation. Semaphores can have values greater than 1, allowing more than one
thread to share the resource at the same time. This is also useful for sharing resources that can support
multiple clients.

Figure 3-5 depicts a critical section of code containing a shared data structure, in this case array a[].

Figure 3-5. Using Semaphores to Protect a Critical Section

Mutex locks, or locks, are similar to semaphores, but a lock can only allow one thread access to a critical
section. Typically, a lock has acquire and release functions. Chapter 4, “Embedded Multicore: SMP and
Multithreading,” addresses this topic further, explaining common issues and how to optimize lock usage.

Program Code

.

.

s=1

P(s)

for(I =0; i < 1000; i++)

{

a[i] = b + c*i;

 }

.

.

P(s)

Acquire semaphore/lock

Critical section
(Array ‘a’ is a shared
data structure)

Release semaphore/lock

Embedded Multicore: Software Design

Embedded Multicore: An Introduction, Rev. 0

3-10 Freescale Semiconductor

Conclusion

At this stage, we have some ideas about how to partition a system. Figure 3-6 shows a block diagram of
the application partitioning, providing an example of implementation on a real machine. The control plane
processing is done in a single SMP configuration running, for example, Linux. The data plane is
implemented using cores running AMP mode with an identical packet processing loop. Each of these could
run an RTOS (real-time operating system) such as Enea’s OSE® or as an LWE. Within each of the two
planes—data and control—there is room to further parallelize specific parts of each task’s algorithm. Tools
such as Amdahl’s and Gustafson’s laws can be used to estimate the performance with particular
algorithms, allowing one to make a judgement on the best solution.

Figure 3-6. Network Routing Application

Virtual
Machine

RTOS/LWE

Packet
Processing

Loop

Virtual
Machine

RTOS/LWE

Packet
Processing

Loop

Virtual
Machine

RTOS/LWE

Packet
Processing

Loop

Virtual
Machine

RTOS/LWE

CPU

Memory

I/O

Packet
Processing

Loop

Shared
Cache

Interrupt
Controller

I/O

CPU

Memory

I/O

CPUCPU

I/O

Virtual
Machine

Control
Applications

SMP Linux

Hypervisor

Multicore
System
Shared

Hardware
CPU

Memory

I/O

CPU

Memory

I/O

CPU

Memory

I/O

Virtual
Machine

RTOS/LWE

Packet
Processing

Loop

CPU

Memory

I/O

Memory

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 4-1

Chapter 4
Embedded Multicore: SMP and Multithreading

—Jonas Svennebring

As discussed in the previous chapters, multicore processing overcomes
many barriers found in single-core computing, particularly in terms of
performance and power management. Symmetric multiprocessing (SMP)
simplifies the changes required to reap the full benefits of migrating to
multicore. However, in order for the operating system to balance an
application over the cores, software must be retooled to take advantage of
parallelization.

This chapter describes different techniques for parallelization and explains
how to implement them. It includes the following sections:

• Section 4.1, “Introduction to Symmetric Multiprocessing,” summarizes
advantages and disadvantages of symmetric multiprocessing.

• Section 4.2, “Parallelized Application Designs,” describes the three
primary design approaches to parallelization: master/worker, peer, and
pipeline.

• Section 4.3, “Macro- and Microparallelization,” describes different
levels of parallelization and the support provided by the POSIX and
OpenMP multiprocessing standards.

• Section 4.4, “Performance Constraints and Common Pitfalls,” describes
special concerns for working in a multiprocessor environment, and how
to address them through the use of various locking strategies.

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

4-2 Freescale Semiconductor

4.1 Introduction to Symmetric Multiprocessing
Symmetric multiprocessing (SMP) is a system with multiple processors or a device with multiple
integrated cores in which all computational units share the same memory. This chapter focuses on the
latter. With the support of an SMP-aware operating system, each core can be load-balanced to ensure that
the workload is evenly distributed across the system for maximum overall performance. Because the
memory is shared, any core can handle any task at any time. The operating system scheduler assigns a task
for each core rather than selecting one task at a time to run system wide.

An advantage of SMP systems is their relative ease of implementation; they work similarly to a single-core
system, but with maximum performance proportionate to the number of cores, as described by Section 3.2,
“Gustafson’s Law.” The focus shifts to the application and how to partition it into different tasks, as is
described in the following sections.

The disadvantage of SMP is scalability. Commonly, 8 to 16 computational units are believed to be the
maximum number of cores that improve performance. This is due in part to Section 3.1, “Amdahl’s Law,”
which shows that even a small amount of sequential code reduces scalability. It is therefore important that
the operating system functionality allows a high degree of parallelization and that system calls from one
task do not stall another. On the hardware side, the memory structure also limits scaling of SMP. Because
each core needs to access the shared memory, increasing the number of cores increases the number of
access stalls.

Both of these limitations can be addressed as the number of cores on devices approaches the scaling limit.
With respect to software, the kernel and libraries can be reworked to better allow multiple simultaneous
calls, limit semaphore locking, or other needs. The hardware architectures can replace the bus connection
with more scalable switch fabrics, multiple memory interfaces, and advanced hardware coherent caches,
as described in Chapter 2, “Embedded Multicore from a Hardware Perspective.”

Another solution is to break the SMP guideline of attaching all cores to a common shared memory. A
nonuniform memory architecture (NUMA) provides separate memory resources that are only available to
a single core or subset of cores. Then, through a slower connection, one group of cores can access the other
group’s memory and the scaling can continue. However, NUMA complicates task scheduling for the
operating system because a particular task cannot be scheduled freely to any other core at any time without
incurring an initial penalty in transferring the data to a different memory block. To some degree this extra
complexity is already there, inasmuch as cache usage gives a penalty if tasks are transferred between cores.
Most SMP systems have processor affinity awareness and take the hardware design into account when
scheduling. Chapter 5, “Embedded Multicore: SMP Operating Systems,” discusses this in the context of
Linux.

For future SMP development, device performance is not simply a multiplication of the number of cores by
their individual raw performance. True performance with multicore devices is not equal to number of cores
times their performance. Freescale is pushing for fewer but stronger cores, rather than taking the approach
of competitors who have many weak cores, which in the end, results in poorer performance because of the
inability to scale well. If the surrounding software support and hardware glue is not good enough, the
outcome could be very low system performance.

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 4-3

4.2 Parallelized Application Designs
A parallelized application typically has one of the following designs:

Master/worker One master thread executes the code in sequence until it reaches an area that can
be parallelized. It then triggers a number of worker threads to perform the
computational intensive work. Once finished, the worker threads turn the result
back to the master and become dormant.

Peer Like the master/worker design except that the master also functions as a peer
(worker) sharing the intensive computational work, which saves a thread. Both
approaches target applications that have a sequential portion that is difficult to
remove, requiring a combination of concurrent and sequential execution.

Pipelined A pipelining approach can be be applied to application design. By dividing the
applications into a series of smaller, independent stages—where the output of one
stage is the input to the next—each stage can be placed on a different core,
forming a series of decoupled stages in a pipeline. These parts might be such
things as different protocol stack layers or specific functions such as
encryption/decryption. Pipelining can be very powerful if the degree of
parallelization is high, but it may take some effort to generate a constant
throughput: pipeline stages should have the same execution latency and they must
be tuned such that one stage does not become a bottleneck or, worse, that failure
at one stage crashes the system.

4.3 Macro- and Microparallelization
The concept of multitasking was introduced to account for one task wasting a disproportionate amount of
time waiting for IO, with the actual computational load composing a small fraction of the overall execution
time. Through multitasking, one core can handle multiple tasks, each having almost the same performance
as running by itself. However, the driving factor for multicore multitasking is different: to maximize the
load on each core. The portions that should be parallelized and distributed among the cores are those
portions that are computationally most intensive.

The traditional way of parallelizing tasks is referred to as
macroparallelization, where a user or application assigns a larger portion of
work to one task, which is then implemented by a process or a thread. This
can be a user or a group of users in a client-based application such as a
database or web server. It can also be a specific type of work such as the user
interface to an application. In such cases, the parallelized task “lives its own
life” in that it makes complex decisions, such as error handling, and also
executes for a longer time. Because the tasks spend a lot of time waiting for IO, to maximize core
utilization, the number of macrotasks should be greater than the number of cores.

To maximize performance in a multicore device, and thereby keep each core
busy with work, computationally intense parts of an individual macrotask can
be parallelized into microtasks—small segments such as a loop or a
independent function calls that the microtasks divide up among themselves.
Each microtask performs a narrowly defined amount of computational work

macroparallelization
A task, process, or thread is
assigned a large portion of
work. The code is largely
autonomous and capable of
making complex decisions.
Macrotasks should outnumber
cores.

microparallelization
Larger tasks are broken into
smaller code segments that
are performed under the
control of the main task.

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

4-4 Freescale Semiconductor

and then provides the results to the main task. Unlike macrotasks, the number of microtasks should not
exceed the number of cores, or they compete individually and add switch overhead.

Example 1 shows how a loop is divided into three parts using OpenMP, which is discussed in the
Section 4.3.2, “OpenMP” section.

Example 1. Microtask Example

Microtasks and macrotasks can be combined, in which case the operating system must handle how threads
should be scheduled and balanced among the cores.

4.3.1 POSIX Threads

POSIX threads, or Pthreads, is a thread API that is part of the POSIX standard
for portable operating systems. Initially, the POSIX standard targeted
UNIX-like systems, but since its release in 1998, it has grown. Today, it is a
standard commodity that provides a dependable foundation for multicore
applications.

The API is limited in its complexity, containing roughly 60 functions that are
grouped into three function classes. Thread management contains basic
functionality for creating and terminating threads, handling change status,
and configuring general attributes. There is also a class for mutex locks, used
for synchronizing threads and resource usage. Lastly there is a class for
conditional variables, which allows communication among threads that share
a mutex.

Because threads run on a shared memory, they do not need a specific memory-sharing functionality. A
global variable is visible to all threads. However, it is important to use the mutexes to ensure that no other
thread is updating a variable at the same time. There are also other parts of the POSIX standard, such as
message passing, that deal with surrounding functionality.

void Main()

{

 int bufferSize;

 byte buffer[];

 while(LifeIsGood() == true){

 bufferSize = GetNewData(buffer);

#pragma omp parallel for

 for (i=0; i < bufferSize; i++){

Core 0 Core 1 Core 2

0–499 500–999 1000–1499

POSIX (portable operating
system interface)

A family of related standards
specified by the IEEE to define
the API.

POSIX threads (Pthreads)
A thread API for portable
operating systems.

mutex (mutual exclusion)
algorithms used in concurrent
programming to avoid the
simultaneous use of a
common resource, such as a
global variable, by sections of
critical code.

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 4-5

Example 2 shows a small program that creates two new threads while the main thread continues to execute.
Support for Pthread is widely available; for example, the CodeWarrior debugger spawns a new debug
window for each additional thread and allows separate control. Compilers also commonly support
Pthreads, and in this example we have used the GCC compiler: gcc -lpthread test.c

Example 2. Pthreads

#include <stdio.h>

#include <pthread.h>

void Thread_Main(void *threadid)

{

 int *tid=(int *)threadid;

 printf("Worker Thread %d\n",tid[0]);

 for(;;);

}

int main(int argc, char *argv[])

{

 pthread_t threads[2];

 int id[2]={1,2};

 pthread_create(&threads[0], NULL, (void *)Thread_Main,(void *)&id[0]);

 pthread_create(&threads[1], NULL, (void *)Thread_Main,(void *)&id[1]);

 printf("Main Thread\n");

 for(;;);

}

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

4-6 Freescale Semiconductor

4.3.2 OpenMP

OpenMP is a multiprocessing standard that was first released in 1997.
OpenMP facilitates adding thread functionality to C/C++ programs
usingpragmas, which are an instruction to the compiler. In OpenMP,
pragmas, which start with omp…, are translated into a function or library call.
OpenMP is built on top of Pthreads, but requires a special compiler and
libraries for support, as well as a multithreaded operating system. OpenMP
has been growing rapidly and has been included with GCC since Version 4.2.
You can compile your program easily by using gcc -fopenmp test.c

Whereas Pthreads can be used to create both macro- and microtasks
(although the latter can be tedious), OpenMP mainly targets
microparallelization, as shown in Example 3. After a master thread is
started, work-sharing commands such as FOR and SECTION cause it to fork and execute in multiple
threads. A loop can be divided statically so that each thread has an equal amount of work. However, in
many cases the operating system does not balance each core equally with other tasks, and the loop does
not return to the master until the last thread completes. Therefore, more complex schedulers should be used
for load balancing among specific application’s threads.

Example 3 shows how a data array can be divided among the threads so that each core obtains a new chunk
of data upon completion of the previous chunk. In this example, core 1 is the fastest and core 3 is the
slowest, which affects how the work is distributed. For dynamic scheduling, the chunk size is equal to or
smaller than 1 ÷ n, where n equals the number of cores. For guided scheduling, the chunk size decreases
incrementally to minimize the amount of time that the last core is executing by itself.

Figure 4-1. Scheduling of Parallel Loops under OpenMP

OpenMP (open multiprocessing)
An API that supports
multiplatform shared memory
multiprocessing programming
in C/C++ and Fortran on many
architectures.
Mainly targets
microparallelization

pragma (pragmatic information)
General compiler-specific
compiler directive in C/C++;
pragmas are generally not
standardized. For example, a
pragma can instruct the
compiler to align instructions or
data in memory. Another might
set optimization level.

Core
0
1
2
3

Core
0
1
2
3

Core
0
1
2
3

Static Scheduling

Dynamic Scheduling

Guided Scheduling

data[SIZE]

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 4-7

Example 3. Work Sharing

Thread synchronization is a key element to ensure that the threads move along as planned and that there
are no conflicts among threads attempting to work with the same data at the same time. A barrier ensures
that all threads reach a point before they can continue; a barrier is typically implicit after a work-sharing
clause when worker threads join up with the master. Implicit barriers can be removed, which is beneficial
for multiple independent loops in a single parallel region. Critical and atomic are standard functionalities
that ensure data in critical sections can be accessed by only one thread at a time; typically this is
implemented using a Pthread mutex.

OpenMP supports barriers and critical sections as shown in Example 4.

for → split up operation among threads.

section→ assign independent code blocks to different threads.

single→ block is executed by one thread

master→ lock executed by master, no implicit barrier at the end

int main()

{

 int i, buffer[1000];

 #pragma omp parallel for

 for (i=0;i<1000;i++)

 buffer[i]= i+1;

 return 0;

}

int main()

{

 #pragma omp parallel sections

 {

 #pragma omp section

 calculateA();

 #pragma omp section

 calculateB();

 #pragma omp section

 calculateC();

 }

}

Example 4. Synchronization Clauses under OpenMP

barrier—all threads wait at this point until the last thread gets here.

nowait—removes implicit barriers.

critical—mutual exclusion, only one thread will be in this section at a time.

atomic—similar to critical, advice compiler to use special hardware if possible.

ordered—the structure block is executed in same order as if it was a sequential program.

int foo()

{

 do_init();

 #pragma omp parallel

 printf(“Hello%d\n”,omp_get_thread_num());

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

4-8 Freescale Semiconductor

In a parallel section, such as a loop, each thread has its own copy of the index variable. By default, all other
variables that are not defined within the parallel section are shared. However, it is possible to change this,
as Example 5 shows.

Example 5 also shows that is is possible to copy larger sets of shared data into a private set as well as to
broadcast private data. Typically, the computational work in a loop is to update a shared dataset with new
information or the opposite, to calculate a single value such as a checksum from a dataset. By using
reduction and specifying an operator, users can merge each thread’s individual result into a final result in
the master thread.

OpenMP also contains an API for run-time functions, environment variables, and other functionalities for
data and task parallelization. For more information, see www.openmp.org.

4.4 Performance Constraints and Common Pitfalls
By its nature, parallel software works on a shared dataset. At the same time, the dataset must be updated
in a structured way, or the software can suffer from race conditions (read–modify–write). The solution is
to use different types of locks to guarantee that only one thread at a time can enter into a critical region to

 #pragma omp barrier

if(omp_get_thread_num()==0)

 printf(“We have %d threads\n”,omp_get_num_threads());

 return 0;

}

Example 5. OpenMP Data Scope

shared—Visible to all threads

private—All threads have their own copy

firstprivate—private but init value taken from master thread

lastprivate—private but exit value from last iteration/section

reduction(op:var)→ merge results from multiple iterations

op: + - * & && | || ^

x[N];
main()
{
int i, j, k;
#pragma omp parallel for reduction(+:j) lastprivate (k)
for(i=0; i<N; i++)
{

k = j%10;
j += x[i] + k;

}
}

Example 4. Synchronization Clauses under OpenMP (continued)

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 4-9

update the data (see Chapter 3, “Embedded Multicore: Software Design,” for more information). These
locks can also be expanded further, for example, as conditional variables to trigger on a memory region or
barriers that ensure that all threads are synchronized at a given point in the program before they continue
execution.

The use of locks is not new to multicore software design, and the implications are similar to those
introduced with multitasking. But when a program runs on truly parallel hardware, the effects of software
bugs are both more obvious and frequently encountered compared to a semiparallel single-core device. In
a single-core system, the operating system apportions time slices to each thread, and the probability is low
that a read–modify–write operation will be split by a time slice such that another thread updates the
specific data in between the operation. Programs on parallel hardware devices are more vulnerable to such
errors.

The following are some of the common pitfalls to be aware of when working with multithreaded software:

• Race conditions

Multiple threads access the same resource at the same time generating an incorrect result. For
example, Thread A reads out the balance of a bank account, adds $100, and writes the result back.
Parallel thread B reads out the same bank account, subtracts $200, and writes its result back.
Because both updates are done before any thread writes the result back, only one of them affects
the account balance.

• Deadlocks

Although locks are the solution to securing access to data structures, locks can also create
problems. A deadlock situation occurs when two threads need multiple resources to complete an
operation, but each secures only a portion of them. This can lead to both threads waiting for each
other to free up a resource. A time-out or lock sequence prevents deadlocks.

• Livelocks

A livelock occurs when a deadlock is detected by both threads; both back down; and then both try
again at the same time, triggering a loop of new deadlocks. Randomizing the allocation algorithm,
for example by waiting a random time before trying again, can remove livelocks.

• Priority inversion

This occurs when a high-priority thread waits for a resource that is locked for a low-priority thread.
With threads also running at normal priority, there can be considerable delay before the
low-priority thread executes. A common solution to this is to temporarily raise the low-priority
thread to the same level as the high-priority thread until the resource is freed.

Synchronization is essential to concurrent programs, but the efficiency with which this is implemented has
considerable impact on performance. As was shown in Section 3.1, “Amdahl’s Law,” software running
with 95% parallelization on a 10-core device yields only a 7× performance boost. Below are strategies to
consider for optimization:

• Lock granularity

If possible, place locks only around commonly used fields and not entire structures. Make all
possible pre- and postcalculations outside of the critical section. This minimizes time spent in a
critical section.

Embedded Multicore: SMP and Multithreading

Embedded Multicore: An Introduction, Rev. 0

4-10 Freescale Semiconductor

• Lock frequency

Use locks only when needed and minimize synchronization overhead. Lock frequency and lock
granularity must be balanced; lower granularity can require higher frequency. Users must evaluate
the advantages and disadvantages of locking multiple fields with one lock.

• Lock ordering

Make sure that locks are taken in the same order to prevent deadlock situations. In POSIX-based
systems, there is a trylock() that allows the program to continue execution to handle an
unsuccessful lock. Use this when needed and unlock() resources when all of the locks cannot be
obtained.

• Scheduling

Different scheduling algorithms can affect performance and response time. There are typically a
number of schedulers in the system, with the operating system’s process/thread scheduler as the
most important. But a specific process can also have its own thread implementation and scheduler.
Another example is OpenMP, with different schedulers for distributing load between the
threads/cores. The scheduler should be tuned to the desired behavior, such as maximizing
throughput, core utilization, fairness, or response time.

• Worker thread pool

When using a peer or master/worker design, users should not create new threads on the fly, but
should have them stopped when they are not being used. Creating and freeing processes and
threads is expensive. The penalty caused by the associated overhead may be larger than the benefit
of running the work in parallel.

• Thread count

Ensure there are enough threads to keep all cores fully utilized, but remember that too many threads
can degrade performance as they compete for the cores. This increases the time required for tasks
such as thread switching and synchronization. OpenMP defaults to spawn one thread per core,
which can be too many if multiple OpenMP applications are running simultaneously.

4.5 Summary
Symmetric multiprocessing has matured into a stable technology that maps well to multicore devices
supporting shared memory. SMP allows multiple cores to smoothly share the workload of an application
if it, in turn, has been parallelized into multiple processes or threads. POSIX threads offer a reliable base,
with OpenMP built on top. Multiprocessing works much the same on multiple- and single-core devices.
However, true parallelization intensifies the need to properly synchronize for maximum performance and
to use locks for avoiding race conditions.

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 5-1

Chapter 5
Embedded Multicore: SMP Operating Systems

—Jonas Svennebring and Patrik Strömblad

By leveraging the concept of symmetric multiprocessing, an operating
system in a multicore device with a shared memory architecture is able to
allocate core resources and load balance tasks or threads between them. The
result is simplified software development. This chapter evaluates the
following SMP operating systems:

• Section 5.1, “SMP Linux,” evaluates Linux, a general purpose system
with a broad application base and runs on very large number of hardware
platforms.

• Section 5.2, “Enea’s OSE for Multicore,” evaluates Enea OSE®, a
message-passing based real-time system optimized for data plane
processing with tougher requirements on stability, determinism, and low
kernel overhead.

These two operating systems target different use cases and complement
each other in a way that shows the advantages of SMP across a spectrum of
OS environments.

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

5-2 Freescale Semiconductor

5.1 SMP Linux
Linux is a popular desktop OS, and Freescale has broad, well-established support for it on a range of
embedded devices, such as Power Architecture and ColdFire. Linux is tightly integrated with development
at multiple stages. Freescale has its own release, Linux target image builder (LTIB), and is focused on work
with supporting partners such as MontaVista and WindRiver.

The SMP support in Linux was introduced initially to handle multiprocessing, with many devices tied to
the same memory, but it suits multicore just as well. The original SMP patch was added in 1995 to kernel
version 1.3.42, but it was not considered stable until the 2.0 release in 1996. As a result, this
implementation is now mature and very reliable.

One disadvantage of the Linux kernel for SMP is the requirement for
reentrant kernel calls and fine granularity locks, which is a considerable
portion of the legacy code that still relies on big kernel lock (BKL, that is,
calls to lock_kernel()). The original 2.0 release used BKL to lock the kernel
to one CPU for system calls as a way of ensuring safe concurrency. This
locking would represent a drawback with respect to parallelization, and
therefore to performance, when scaling to a larger number of cores. The
solution is to split the BKL into fine-grained locks, but this poses a delicate
problem because often it is hard to foresee the impacts of such a change when
other code locks and uses the protected data. An incorrect change could be
difficult to detect and could lower stability. Much work was done for version
2.2 and 2.4 to free up the locks, but in kernel version 2.6.6, there were still
over 500 BKLs. However, many were in older, deprecated parts that will
eventually go away, such as old device drivers. In general, focusing on this problem and on kernel
parallelization ensures an increased SMP scalability as devices with more cores are introduced.

5.1.1 Task Schedulers and Load Balancing

The OS scheduler assigns tasks to cores by assessing a number of parameters, such as task priority, how
much time the task has had, and how long it was since last run. Linux 2.6 has used an O(1) scheduler up
to 2.6.23 when the CFS (completely fair scheduler) was introduced as the default choice. We will look first
at the O(1) scheduler, then at how the CFS differs from it, and finally at how load balancing works among
the cores.

The O(1) scheduler gets its name from the Ordo notation and indicates that
the scheduling time is constant over the number of tasks to schedule among.
(Constant scaling is good but does not by itself imply that it is fast, just
predictable.)

The implementation, shown in Figure 5-1, is based on two run queues. The
first queue (active) contains the tasks that are waiting to run. The second
queue (expired) contains the tasks that have recently run and therefore must

BKL (big kernel lock)
A lock needed for SMP
support to implement
concurrency control in the
kernel.
A single, global lock is held
when the thread enters the
kernel space, for example,
after a system call, and
released when thread returns
to user space. User-space
threads can run concurrently
in individual cores. Only one
can run in the kernel space;
threads in other cores must
wait to access kernel space.
This lock eliminates all
concurrency in kernel space.

Ordo (big O) notation
Notation used to describe the
complexity level of an
algorithm as it scales (for
example, O(1) refers to a
constant value; O(n) refers to a
linear scaling; O(n^2) is
quadratic;
O(n!) refers to factorial).

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 5-3

wait for the other queue to be empty. Note that these lists of schedulable tasks do not include tasks that are
waiting for IO.

Figure 5-1. Schedulers (Using a Red–Black Tree Structure)

Each of the two queues contains 140 priority levels (lower numbers indicate higher priority); the top 40
are for normal user tasks and the lower 100 are allocated for real-time tasks. The scheduler picks the first
task in the active queue of the lowest priority level and lets it run. As soon as the allocated execution time
is used up the task is placed in the expired queue. When all tasks at the lowest priority level have run, the
expired and active queues at that priority level switch places. If all the tasks are completed (for example,
waiting for IO), the scheduler picks tasks from the second lowest priority level and so on. The tasks to be
scheduled are always placed last in their priority levels queue.

The O(1) scheduler keeps one such run-queue pair per core with individual locks on them. When a core
needs to reschedule, it looks only in its own private run queue and can quickly decide which task should
execute next. Load balancing among the cores occurs every 200 ms as a higher level scheduler analyzes
the run queues to choose which task should move from one core to another.

Priority 0

Priority 1

Priority 2
...
Priority 100

Priority 101
...
Priority 139

Active runqueue Expired runqueue

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

5-4 Freescale Semiconductor

Instead of run queues, the CFS scheduler, shown in Figure 5-1, uses a
red-black tree data structure (which is a derivative of the binary-tree
structure) to form a future execution path of tasks. A red-black tree is roughly
balanced, and has good deterministic properties such as insert and search is
O(log n) to the number of elements (that is, tasks). Picking the next task to run
is constant. The CFS is based on the concept of fair queuing in which no user
should get more CPU time just because they run more tasks. For example, two
users in a system running one task each get 50% of the CPU time. When
user A starts a second task, they still get 50% of the CPU time, so their two
tasks must now share that time, and, as a result, get 25% each. If an additional
third user turns up, all users must share the CPU time equally and get 33%
each with user A having 16.5% per task. The goal with CFS is to reach better
core utilization in combination with interactive performance.

Both O(1) and CFS make use of sleeper fairness, in which computation-intensive tasks are penalized
relative to an IO intensive task that can execute only infrequently. This ensures it is given a small
advantage because an IO-intensive task (sleeper task) needs the core infrequently.

5.1.2 Core Affinity

Although SMP systems have shared memory, which should allow any core to pick up any task at any time,
there are still hardware factors that make some cores more or less well-suited than others for various tasks.
For example, private caches have a natural affinity for a task to a specific core because the caches and
branch tables are warm. This soft affinity prevents the task from being scheduled on another core unless
there is a stronger force that pushes it there, such as an imbalance between the cores

It is also possible to manually set a hard affinity that forces a task to execute on a subset of cores. For each
process there is a bitmask with one bit per core that determines which core the process can run on. A set
bit for a given core indicates that the program is allowed to run on it, and a cleared bit indicates that it
cannot. The Kernel API has two basic functions to access the mask: sched_setaffinity() and
sched_getaffinity(), which are supported by a number of macros to create and decipher the mask (for
example, CPU_SET(), CPU_CLR(), CPU_ZERO() and CPU_SETSIZE()). Example 5-1 shows a
sample program that makes use of these macros to assign a hard affinity and then read it out. On an
eight-core device on which the process can run on all but core 3, the output of this program would be
“Process 35324 is allowed to run on core: 0 1 2 4 5 6 7.”

Example 5-1. Process Identity

#include <stdio.h>
#include <stdlib.h>
#define __USE_GNU
#include <sched.h>
#define MAX_CORES 8

int main()
{

cpu_set_t mask;
int core;

/*** Write Affinity ***/

red-black tree
A binary search tree where
each node has a red or black
attribute that meets the
following requirements:
1. A node is either red or

black.

2. The root is typically black.

3. All leaves are black.

4. Both children of every red
node are black.

5. Every simple path from a
node to a descendant leaf
contains the same
number of black nodes.

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 5-5

CPU_ZERO(&mask);

for(core=0; i < MAX_CORES; core++)CPU_SET(core, &mask);
CPU_CLR(3,&mask);
sched_setaffinity(0, sizeof(mask), &mask);

/*** Read Affinity */
sched_getaffinity(0, sizeof(mask), &mask);

printf("Process %d is allowed to run on core: ",getpid());
for(core=0; i < MAX_CORES; core++){
 if(CPU_ISSET(core, &mask) == 1)printf("%d ",core);
}

return 0;
}

From the command line, the user can also make use of the taskset command to display, alter, or start a
process with a specific affinity. The user should be careful about using hard affinity to control task
allocation because it limits portability and can lower performance in unexpected system situations. The
scheduler often makes a better decision itself using the built-in soft affinity. However, it can be beneficial
to give an application a private core to improve real-time behavior or to test how an application scales.

Interrupt request (IRQ) can also be assigned to specific cores. By default, all interrupts trigger core 0, but
with large loads, this affects the core’s ability to execute other applications. The affinity can be used to
distribute the load among the cores just as with processes; for example, the Tx interrupts can be placed on
one core and Rx on the other.

Example 5-2 provides a list of which interrupts are connected to which respective IRQs as well as how
many times they have been triggered on each core by listing /proc/interrupt. It uses the Freescale QorIQ
P4080, an eight-core machine. Now the serial interface should be altered and it is IRQ36.

Continue to /proc/irq/36/ and list smp_affinity and see that it currently has the hexadecimal value 0xFF
(0b1111_1111). This is again a bit mask, and as with processes, a 1 indicates that it can trigger on that core.
The state can be changed by writing to smp_affinity by using, for example, the echo command. However,
it is not possible to turn off an IRQ by writing all zeros to the mask; this setting is ignored.

Example 5-2. Interrupt–Core Assignments

/ # more /proc/interrupts

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

36: 1390 0 0 0 0 0 0 0 OpenPIC Level serial

38: 10 3 0 0 0 0 0 0 OpenPIC Level i2c-mpc

39: 8 0 0 0 0 0 0 0 OpenPIC Level i2c-mpc

87: 5735 0 0 0 0 0 0 0 OpenPIC Level enet_tx

88: 0 0 5722 0 0 0 0 0 OpenPIC Level enet_rx

89: 0 0 0 8298 0 0 0 0 OpenPIC Level enet_error

251: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI0 (call function)

252: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI1 (reschedule)

253: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI2 (unused)

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

5-6 Freescale Semiconductor

5.2 Enea’s OSE for Multicore
Enea OSE® is a real-time operating system aimed at high-performance data plane applications, such as
processing of user data packets and control signaling within both telecom- and datacom area. OSE is a
truly distributed operating system that uses a message-based programming model that provides application
location transparency.

This section discusses the Enea OSE architecture and its advantages over other multicore models.

254: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI3 (debugger break) BAD

/ #

/ #

/ #

/ # more /proc/irq/36/smp_affinity

ff

/ #

/ #

/ # echo 80 > /proc/irq/36/smp_affinity

/ #

/ #

/ #

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

36: 1390 0 0 0 0 0 0 18 OpenPIC Level serial

38: 10 3 0 0 0 0 0 0 OpenPIC Level i2c-mpc

39: 8 0 0 0 0 0 0 0 OpenPIC Level i2c-mpc

87: 5735 0 0 0 0 0 0 0 OpenPIC Level enet_tx

88: 0 0 5722 0 0 0 0 0 OpenPIC Level enet_rx

89: 0 0 0 8298 0 0 0 0 OpenPIC Level enet_error

251: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI0 (call function)

252: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI1 (reschedule)

253: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI2 (unused)

254: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI3 (debugger break) BAD

/ #

/ #

/ # more /proc/interrupts

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 5-7

5.2.1 Architecture Overview

Enea OSE is based on a micro-kernel architecture; see Figure 5-2.

Figure 5-2. Micro-kernel Architecture

The OSE kernel is designed around the exchange of messages between
processes, which in OSE is the equivalent to POSIX threads. This mechanism
for inter-process communication (IPC) is the foundation of the OSE
programming model, and it is implemented as a simple API that provides the
ability to send messages between processes/threads in a distributed system
running on a single, or several, processor nodes. OSE also provides an
addressing model that enables application scalability, making it possible to let
a system run on a single processor node or several nodes in a distributed
cluster without changing the programming code.

When processors are physically on different devices, OSE kernels use the IPC
protocol Enea® LINX for passing messages. LINX is a kernel concept used for the implementation of a
message passing back plane that is adaptable for different media.

Services in OSE are mainly implemented according to the client-server model, providing a distributed
C/C++ run-time library where parts of the POSIX API are included. Examples of such services are the File
System Managers and the IP stacks. These services run on a single processor node, while the API is
available to client applications on all processors via a C/C++ run-time function library that uses message
passing to reach the operating system servers. An example of this is the call to fread() that use internal
message passing toward the file system server process, which can be located anywhere in the system even
when the system is spread geographically.

The OSE programming model encourages an object-oriented, parallel design of applications where each
process uses its own private memory. In the OSE model the message passing is the main mechanism for
exchanging data and for synchronization. Using the message passing programming model as the

OSE Application OSE Application OSE Application

Kernel
Memory Management, IPC, Scheduler

Hardware Abstraction Layers

File System
Services

IP Network
Services

C/C++
POSIX

Program
Management

Device Driver
Management

File Manager IP Stack
Load

Balancer
Distributed IPC

(LINX)
Run-Time

Loader

Tools

Core
Extensions

Core Basic
Services

Kernel
Services

message passing
The hypervisor components of
the Power Architecture define
many messaging resources to
provide communication from
core-to-core and across
hypervisor and
guest-supervisor layers of the
operating system. These are
described in EREF: A
Programmer’s Reference
Manual for Freescale
Embedded Processors.

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

5-8 Freescale Semiconductor

foundation for parallelization and synchronization makes the transition to the multicore technology
significantly easier for the customers. An application that uses this model is already designed for
distributed scalability, and therefore the migration to multicore devices becomes a straightforward task.
This makes the software architecture of the customer systems future-proof in regards to the paradigm shift
caused by the multicore technology; the applications can be reused without expensive software
investments when the customer wants to use new hardware architectures.

5.2.2 Various Multicore Models
Designing an operating system for multicore processors can be carried out using a number of different
approaches. When it comes to OSE, the most interesting models for multicore are the SMP model, AMP
model, and the bare metal model.

SMP model The symmetric multi-processing (SMP) model is the classic model for designing
multicore operating systems, such as Linux, where data is shared to a large extent
and where a number of different locking mechanisms and atomic operations are
used frequently for synchronization. The SMP model is a very simple model from
the application perspective, but its implementation is complex and difficult to
make correct at the operating system level. Moreover, it does not scale very well
to more than 4–8 cores, especially not on an application level.

AMP model The asymmetric multi-processing (AMP) model uses an approach where each
core runs its own isolated software system. These may even use different RTOSes.
The advantages of an AMP system are that high performance is achieved locally
and that it scales well. The trade off is that the system becomes difficult to manage
and can become fairly static.

Bare-metal model The bare-metal model is an approach for running a regular operating system on
one or several cores and letting the rest of the cores execute a single thread without
support from any operating system. Its advantage is that maximum performance
is achieved when running without an operating system, but its disadvantage is that
the software becomes hardware-specific, forcing a redesign of any applications
when upgrading the hardware. The code running without an operating system
must also be very simple because it does not have any OS-like programming or
debug environment. The lack of visibility and debug ability therefore transforms
the bare metal application into a black box.

5.2.3 Enea OSE Advantages

The Enea OSE®: Multicore Real-Time Operating System (RTOS) combines
all the advantages of the above mentioned models without having to deal with
the disadvantages.

OSE Multicore RTOS is similar to SMP in terms of simplicity, flexibility,
application transparency, and error tracing, and it is similar to AMP in terms
of scalability and the lack of an extra load due to using several cores with shared memory. In other words,
the performance level on each core is the same as on a unicore. Furthermore, an OSE application can be
implemented in supervisor mode and therefore has similarities with the bare metal model in that the

Enea OSE: Multicore
Real-Time Operating System
(RTOS)
More information about this
product can be found on the
Enea webpages at
www.enea.com

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 5-9

hardware can be accessed without involving the operating system at all except for interrupt handling. All
together this allows for maximizing CPU resources for the application level and minimizing OS overhead.

The micro-kernel architecture and the message passing model allows common operating system services
such as loaders, memory managers, IP stacks, and file systems to be located on different cores.
Applications can then access these services regardless of location in the system, which gives a seamlessly
shared resource model like in the SMP model.

The OSE kernel instantiates a scheduler on each core with associated data
structures, achieving similarities with the AMP model. One important design
goal with the separated kernel scheduler instances is to avoid the need for
kernel-internal synchronous transactions from a thread running on one core
towards the data structures that belongs to the scheduler on another core. This
occurs typically when a thread executes a system call that needs to modify the
state of another thread. Instead, a concept called “kernel event,” which is a
low-level, light-weight-kernel, internal IPC, has been invented. It is used to
perform various kinds of asynchronous, cross-core scheduler transactions.
The goals are to do the following:

• Avoid using spinlocks for synchronization in system calls that need to
modify the scheduler data structures or process the control block.
Instead, the much cheaper interrupt locking mechanism is used to
synchronize the scheduler and interrupt handling locally on a core.

• Centralize the use of an optimized lock-free algorithm used to allocate
and free message buffers from the global, shared pool.

• Avoid the effect of “cache-line bouncing” between L2 caches; it is
kept on a minimum because system calls do not operate on other
cores’ data structures except in rare cases.

• Avoid internal “false sharing” of data cache lines when accessing
kernel data structures inside the RTOS.

• Optimize for low overhead in inter-core messaging by using
asynchronous intercore kernel event queues. This ensures high
application throughput performance.

• Use hardware support to implement the intercore kernel event queues where possible. For example,
Freescale’s P4080 provides a programmable queue manager that can be used for this purpose.

• Provide full OS API (all OS calls and debug features) to applications on all cores. From the
programming view and debug view, the operating system still looks like an SMP operating system.
All threads on all cores are visible to the debugger. For example, it is possible to debug all threads
on all cores using the Enea® Optima Tool.

• Achieve linear scalability to many cores, which is possible due to the asynchronous design.

cache line bouncing
Describes what happens
when threads on different
cores frequently modifies the
same data cache line. Every
time data is written, the master
data is moved exclusively to
the L2 of the actual core and
all other core’s corresponding
L1/L2 cache line is invalidated
according to the MESI
protocol. This data can then
exclusively bounce across the
system and steal memory
bandwidth and thus decrease
performance. If the data the
different threads want to
modify is located within the
same cache line, an even
worse bouncing occurs, which
is called false sharing. The
hypervisor components of the
Power Architecture define
many messaging resources to
provide communication from
core-to-core and across
hypervisor and
guest-supervisor layers of the
operating system. These are
described in EREF: A
Programmer’s Reference
Manual for Freescale
Embedded Processors.

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

5-10 Freescale Semiconductor

A system with OSE5 Multicore Edition based on a Freescale eight-core P4080 might look like Figure 5-3.

Figure 5-3. OSE5 Multicore Output Simulation

In the system in Figure 5-3, the scheduler on core 0 runs OS services such as File System or IP stack, and
all other cores run the data plane application that is designed as a flow, or a “pipe,” between processes on
different cores. Potentially cores 1–3 can terminate the gigabit Ethernet devices and pass the data on to a
flow of IP processing either by zero-copy LINX messages or by using the hardware support for data
transport. Cores 4–7 are running busy-looping processes/threads that consume data buffers, perform deep
packet inspection, encryption, or decryption, and then pass the buffers on to the next process in the flow.
Finally, a buffer is sent to one of the outgoing processes responsible for sending the packet out on a
Ethernet device.

The sequence of a message send in Figure 5-3 contains the following steps:

1. A process/thread allocates a message buffer from the global message buffer pool.

2. The process performs the system call send specifying a destination address (PID) and a message
buffer.

3. The send call reads the destination core from the destination address, and “posts” a kernel event
containing the message buffer pointer and the destination address to the destination core. (Kernel
event may use hardware accelerators to transport the event)

4. The destination core either takes an ISR to get the event or polls it in. This thread of execution then
performs the core-internal transaction towards its scheduler data structure, which involves queuing
the message buffer and the proper state transition. This transaction only uses the much cheaper
interrupt lock synchronization for the reason described above.

5. The destination process/thread is then eventually scheduled, and consumes in the message buffer
using the receive system call. It then either frees the message or resends it.

Note that all processes/threads in such an OSE Multicore Edition system can still make full use of the
operating system services regardless of which core the process runs on. Because each scheduler is isolated,

Driver
layer
Interrupt
handling

Hypervisor
layer
HW devices

O&M/SMP
services
FS, IP, etc

Message Buffer pool

OS call API

HW acceleration

Driver
layer
Interrupt
handling

Hypervisor
layer
HW devices

O&M/SMP
services
FS, IP, etc

Message Buffer poolMessage Buffer pool

OS call API

HW acceleration

core 0 core 1 core 2 core 3 core 4 core 5 core 6 core 7

Embedded Multicore: SMP Operating Systems

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 5-11

just like in an AMP system, most system calls can be designed without using spinlocks or atomic
transactions that uses global shared data. In non-frequent cases a system call need to perform operations
on global data structures global locking must be done using a BKL (Big Kernel Lock). An example is when
a process is moved from one core to another.

5.3 Conclusion
Various software models have been discussed by the industry in order to address the multicore challenge,
and all of them have benefits and drawbacks. Enea OSE5 Multicore Edition, having a kernel design based
on an innovative combined SMP/AMP/“bare metal” technology, attempts to combine the advantages of
them using the message passing programming paradigm both on an RTOS level and on an application
level. Legacy applications that use this model of programming and parallelization have been proven to be
easy to migrate to new multicore devices such as for example MPC8641D.

Enea OSE 5 Multicore Edition clearly challenges the industry-perceived difficulty to get linear scalability
equal to AMP system performance and still be perceived as an SMP RTOS on the application level. When
used on processors like Freescale P4080, the OSE kernel can also utilize hardware support to accelerate
the inter-core transactions, which maximizes application performance. The Enea OSE 5 Multicore Edition
architecture primarily targets the data plane application domain, including both user data processing and
control signaling.

The Enea OSE 5.4 product, released in the end of 2008, contains initial multicore support according to the
SMP model for Freescale’s MPC8641D and P2020. The release of Enea® OSE5 Multicore Edition, which
will be released in Q2 of 2009, will be designed completely according to the architecture described above.
This not only provides even higher performance for two cores, but also more or less offers linear
performance scalability to devices with 8 cores or more, such as the P4080.

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 6-1

Chapter 6
Virtualization and the Hypervisor

—John Logan

This chapter explores the concept of virtualization and describes a software
component, the hypervisor, which is used to enable virtualization on a
processor. It also examines how embedded processor hardware has been
developed to support virtualization.

It contains the following sections:

• Section 6.1, “Virtualization—An Overview,” provides an introduction
to virtualization, particularly its advantages for embedded multicore
systems.

• Section 6.2, “Privilege Levels, Addressing and Exceptions,” discusses
the hypervisor level introduced in multicore devices.

• Section 6.3, “Hardware Features to Improve Virtualization,” discusses
hardware features that improve virtualization.

• Section 6.4, “Security and Protection between VMs,” discusses
strategies for limiting the damage caused by software bugs.

• Section 6.5, “Messaging Between VMs,” discusses the different
techniques for sending messages between virtual machines.

• Section 6.6, “Debugging and Run Control,” discusses debug and run
control in the context of embedded multicore systems, with a section on
how to use the hypervisor for debug.

Virtualization and the Hypervisor

Embedded Multicore: An Introduction, Rev. 0

6-2 Freescale Semiconductor

6.1 Virtualization—An Overview
In a system with a single SMP operating system, the OS has control of all cores, memories, and peripherals
in the system. It provides all of the necessary scheduling, messaging, synchronization, memory
management, and other services required to implement the complete system. However, in many embedded
applications, especially with newer multicore processors, it is desirable to run multiple operating systems.

For example, in a network router application it can be advantageous to use a real-time operating system
(RTOS) for the data plane processing—packet encryption/decryption, classification, forwarding—where
low latency and predictable operation is required, and a general purpose OS, such as Linux, for the control
plane processing—higher level protocols, such as ARP (address resolution protocol, a standard low-level
protocol used to sync local IP addresses with Ethernet addresses), for which latency and timing are not so
critical, but where a wide range of diverse tasks must be handled. A subset of the device’s cores and
memory can be assigned to each OS. But running multiple operating systems in a system raises new issues
to address and new problems to solve. For example, how do the operating systems share the resources
available on the chip (memory, peripherals, etc.)? Is it possible to communicate between operating
systems?

Virtualization can be used to solve these problems. Virtualization is a computing concept in which an OS
runs on a software implementation of a machine—that is, a virtual machine (VM). This VM does not have
to have the same characteristics or features as the underlying hardware. Multiple VMs can run on a single
hardware device, allowing multiple operating systems to coexist. The VMs are managed by a virtual
machine manager, also called a hypervisor layer, which provides abstraction between the underlying
physical hardware and the VMs. It can also provide communications between VMs if required as well as
security and reliability (for example, one VM could crash but without affecting the rest of the system).

VMs and hypervisors have become common in network server consolidation. Rather than having separate
units for a web server, file server, email server, etc., all running at low utilization, server suppliers are now
looking at running servers within VMs and consolidating many systems on to a single multicore device.
This reduces capital expenditure and running costs. Using VMs allows legacy code running under older
operating systems to coexist with newer operating systems, removing the need to redesign code.

There are two types of virtual machine monitor, or hypervisor, as follows:

• hosted—the hypervisor runs as a program within an operating system. VMWare is a popular
example. This tool allows a user with a Windows PC to run other operating systems (Linux, QNX
Neutrino, etc.) within secure virtual machines without requiring complex dual-boot setups or
multiple machines.

• native—the hypervisor runs directly on the processor. In an embedded application, a native
hypervisor is preferred.

Figure 6-1 shows the relationship between VMs, the native hypervisor, and underlying hardware on an
embedded multicore device. In this example, three VMs are running on a four-core device. Each VM has
access to a subset of the devices’ cores, memory and I/O. Each VM also has its own address space. The

Virtualization and the Hypervisor

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 6-3

hypervisor layer provides the link between the real hardware and the VMs. All VMs can access some
shared resources—cache, interrupt controller, and shared I/O—via the hypervisor.

Figure 6-1. Relationships among VMs, the Native Hypervisor, and Underlying Hardware on an Embedded
Multicore Device

Note that in this example, the VMs map to real hardware on the device: the VM with two cores uses two
real cores on the device. It is possible for the VM to have a completely different architecture than the
underlying hardware; for example, one could create a VM that thinks it is running on a four-core device
when in reality there is only a single physical core. It is also possible to run multiple VMs on a single core.
However, both of these options incur software overhead and are typically not seen in embedded
applications.

A native hypervisor for an embedded application can provide the following features:

• VM management—creating, removing, starting, and stopping VMs

• Security among VMs

• Messaging among VMs

• System-level event handling—memory mapping, interrupt routing, etc

• Debug support

Before examining these features, we need to look at some hardware concepts required for efficient
virtualization in an embedded system.

Multicore
System
Shared

Hardware

CPUCPU CPU CPU

Linux

App
App

RTOS

App
App

Linux

App
App

Memory

Virtual
Machine

Virtual
Machine

Virtual
Machine

Hypervisor

Memory Memory Memory

Shared
Cache

I/O

Interrupt
Controller

I/O I/O I/O
I/O

Virtualization and the Hypervisor

Embedded Multicore: An Introduction, Rev. 0

6-4 Freescale Semiconductor

6.2 Privilege Levels, Addressing and Exceptions
On a typical single- or dual-core processor there are two privilege states: user and supervisor. Applications
run in user state whereas the operating system runs in supervisor state. System-level events, such as
handling interrupts and memory mapping, are handled by the OS and require the processor to be in
supervisor state. This is to prevent individual applications from compromising system integrity and
crashing the entire system by, for example, code runaway corrupting the memory map of other
applications.

A multicore device running a hypervisor needs three privilege levels, the user
or problem state for applications, supervisor state for an operating system
within a virtual machine, and hypervisor state, a higher third-level for the
hypervisor. System-level changes, such as memory mapping and allocation of
dedicated peripherals, occur at the hypervisor state.

For example, imagine a user program running under a Linux OS within a VM. Such a system requires three
address spaces—one for the user program, one for the VM (and the Linux OS), and one for the physical
memory map of the device.

The user program, running in user mode, attempts to write data to a memory
location. When this happens, the processor checks for the requested memory
address in its translation lookaside buffers (TLBs). The TLB converts this
memory address from the user program’s address space to the VMs address
space. The first time this memory location is requested, the processor does not have an entry for it in the
TLBs. This generates a TLB miss exception (a supervisor-level exception), which is handled by the Linux
OS. See Figure 6-2.

Figure 6-2. TLB Miss Handler

The Linux OS, running in supervisor mode, handles the exception and runs the routines to update the
processor TLBs to point to the memory location. The Linux OS also determines which TLB entry can be
used for the update, figures out the address translation between the VM address space and the user
program’s address space, and performs the TLB update, usually by executing opcode (for example, the
TLB Write Entry (tlbwe) on a Power Architecture processor).

At this point, the original request has still not been mapped to a physical address, which must be done by
the hypervisor. To make this happen, the tlbwe instruction generates another exception (hypervisor-level
exception) that is handled by the hypervisor. Because the hypervisor has a higher privilege level, it begins
processing this exception before the TLB exception completes. The hypervisor can do the final translation

privilege levels
These are set by the OS for
applications and by the
hypervisor for OSes. Changes
in the privilege level typically
occurs at interrupts.

TLB
Translation lookaside buffers.
Used to speed up virtual
memory systems.

…

…

…

…

…

…Write 0xff to
0x100000

Application
(User Mode)

Hypervisor
TLB miss
handler

(Hypervisor
Mode)

OS
TLB miss
handler

(Supervisor
Mode)

start normal tlb miss
processing

tlbwe

Finish tlb processing

Return from exception

Validate physical address

Update tlb

Return from exception

TLB
miss

exceptio
n tlbwe

exception

Virtualization and the Hypervisor

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 6-5

from the VM’s address space to the physical address space of the device, put these values in the processor’s
TLB, and then return control to the VM.

This process can be done in such a way that Linux is completely unaware of the hypervisor update. This
means that users can easily take a Linux OS and applications running on an SMP system today and run it
in a VM on a multicore, multiple-VM system without needing to change the operating system’s
memory-mapping routines.

This principle of using exceptions to jump to the hypervisor to handle system-level events can be extended
to external interrupts, too, which reduces the amount of recoding needed when moving to a multiple-VM
environment.

6.3 Hardware Features to Improve Virtualization
For efficiency, the hypervisor software layer should be as thin as possible. Typically, it runs code when a
VM needs to access a resource that could be shared with another VM—memory, peripherals, debug ports,
etc. Each time the hypervisor runs, it adds software overhead. Hardware support can reduce this overhead.

For example, if the device has multiple memory controllers, each VM can have its own. Each VM can also
have dedicated (that is, non-shared) peripherals. For resources dedicated to a virtual machine (that is, that
machine has sole access to them), there is no need for the hypervisor to be called.

Another approach is to provide a level of abstraction between the cores and peripherals. One way to
achieve this abstraction is with queuing mechanisms. Rather than each VM trying to write directly to each
peripheral, each VM can access send and receive queues. The queue contents are routed to and from
peripherals using dedicated hardware.

Figure 6-3 shows an example. Each VM has an associated queue that can be accessed with a driver. The
interface to the queue can be a memory-mapped portal where data can be written to or read from the queue.
Data can be sent to/from any I/O block connected to the queuing hardware to/from any VM with a
connection. The queuing management hardware takes care of any contention issues. With this kind of

Virtualization and the Hypervisor

Embedded Multicore: An Introduction, Rev. 0

6-6 Freescale Semiconductor

platform, it is possible to develop families of devices with varying numbers of cores and peripherals and
make software that easily ports across the whole family.

Figure 6-3. Abstraction Of Peripherals Using Queues

Freescale’s P4080 eight-core device is an example of a device implementing such a scheme (see Figure 2-1
for a block diagram of the P4080 processor). It has sophisticated hardware queue and buffer management
that handles all data traffic to/from its Ethernet ports. It also has parsing and classification hardware to
allow the Ethernet ports to examine incoming packets and route them to the appropriate virtual machine.

6.4 Security and Protection between VMs
Bugs are a fact of life for any embedded developer. In a single-core multithreaded environment, an OS
provides some protection against bugs in one application causing a crash in another. For example, the OS
typically provides each user application with its own virtual address space, provides memory
allocation/deallocation functions, prevents user programs from directly manipulating device registers
(forcing the use of drivers/API instead), provides scheduling so that one program does not block others
from running, and more. Of course, the determined (or inexperienced) programmer can find flaws in these
setups.

In multicore systems running multiple VMs, the hypervisor can provide similar protection between
different VMs to prevent a crash in one VM from causing a crash in another. For example, imagine writing
a Linux driver that runs in supervisor mode. A bug is in the code, and the driver starts writing values to
memory randomly. It tries to write to a physical memory location that is assigned to another VM. The
hypervisor can detect these writes and take appropriate action to prevent them, as discussed in the
virtualization example above. With this kind of protection, an entire VM can crash, but it is prevented from
corrupting the memory space of another VM due to erroneous writes from the processor cores.

Multicore
System
Shared

Hardware

Linux

App
App

RTOS

App
App

Linux

App
App

Virtual
Machine

Virtual
Machine

Virtual
Machine

I/O I/O I/O I/O

Queue (and buffer) management hardware

Queue
driver

Queue
driver

Queue
driver

Virtualization and the Hypervisor

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 6-7

In an embedded processor, however, cores are not the only blocks capable of corrupting memory. Many
integrated peripherals can act as bus masters and move data around the memory map, such as DMA
controllers and Ethernet and RapidIO network interfaces. A bug in the software can set up one of these
peripherals to write to memory assigned to a different VM. This can be prevented in hardware by making
peripherals aware of the particular memory ranges they can access. For example, the Freescale P4080
processor has a feature called peripheral access management unit (PAMU), which allows peripherals to be
assigned different access rights to programmable ranges in memory. This is similar in concept to the
memory management unit (MMU) in a core.

6.5 Messaging Between VMs
In a system with multiple VMs, there is often a need to send information between VMs, for example to
synchronize events or signal a problem. This can be done using various methods, depending on the device
design. On devices with network connections such as Ethernet controllers, users can send messages using
the network as the path. On devices with hardware abstraction features, such as the queuing mechanisms
on the Freescale P4080, users can use the queues as a message path. The hypervisor can also provide
messaging. Cores can have dedicated instructions allowing data to be passed from core to core using the
cores internal registers. In the case of the Freescale P4080 device, each core can make a request to the
hypervisor to send a message. The hypervisor uses Message Send, msgsnd, and Message Clear, msgclr,
instructions to send messages between cores. These instructions can be executed only at the hypervisor
privilege level to prevent their use by malicious software.

6.6 Debugging and Run Control
There are several standard ways to debug a single-core or single-OS-based
system. The user might use a hardware debug cable that connects to a debug
port (typically a JTAG based port) on the processor, or on a target device, the
user might run a debug monitor program that transfers debug info on a serial
port or network connection. There is also usually a need for a simple console
or a command-line interface for simple debugging and system configuration. For example, in embedded
Linux applications, the classic interface is a simple UART connected to a terminal emulator

In a multicore, multiple-VM environment, each VM requires debug support. This can be achieved by
replicating debug hardware in each core, so that each core has some basic run control, breakpoint, and
tracing functionality. Providing a means to access this debug functionality without requiring a separate set
of debug pins per core is desirable—imagine how many pins would be needed on a 128-core device!

In JTAG-type debug setups, each device core can be seen as an individual unit on a single JTAG chain and
can be debugged separately. The device does not need to have an individual JTAG connector for each core;
they can all be accessed through one port.

Similarly for software debug setups, each VM could send/receive debug info on a network interface, for
example an Ethernet interface. Each VM could use an unique IP address for debug and would require only
one physical Ethernet controller.

JTAG
Joint Test Action Group. An
interface initially developed to
test PCBs, but now commonly
used for low-level debugging
devices.

Virtualization and the Hypervisor

Embedded Multicore: An Introduction, Rev. 0

6-8 Freescale Semiconductor

Some debug connections are not so easy to multiplex, such as the classic UART connection. This is where
the hypervisor can help by providing virtual serial ports for each VM and multiplexing this information to
a single physical serial port.

All of the above options imply having a separate debug session or connection to each VM. Another option
is to have a single debug session that connects to the hypervisor. It receives all debug commands for all
VMs and passes them to the correct VM. Because the hypervisor runs at a higher privilege level than the
VMs, it can access their debug functionality directly.

Freescale’s embedded hypervisor for the QorIQ family of processors provides all of the debug
functionality mentioned above and also additional hardware to allow streaming of debug data by means of
a high-speed SerDes interface. Figure 6-4 shows a block diagram of the QorIQ processor family concept.

Figure 6-4. QorIQ Processor Family

6.7 Conclusions
In this chapter, we discussed the concept of virtualization and how a hypervisor software layer coupled
with some hardware features can support it efficiently. As multicore devices become more prevalent in
embedded designs, software developers will increasingly use virtualization to help them partition
applications across these complex devices. Additionally, device manufacturers will develop new hardware
features and architectures to keep pace.

Freescale Multi-core Platform

Power ArchitectureTM Cores

On-Demand Acceleration

QUICC
EngineTM

Ethernet
eTSEC

PCI Express
RapidIO etc.

Connectivity

L3 Cache

CoreNet™ Fabric

Pattern Matching

Decompression /
Compression

Crypto Security

Table Lookups

Data Path Resource
Management

e500-mc
Core

L2 Cache

e500-mc
Core

L2 Cache

e500-mc
Core

L2 Cache

e500-mc
Core

L2 Cache

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 7-1

Chapter 7
Embedded Multicore: Virtual Platforms

—Jakob Engblom

The shift to multicore processors and multiprocessor software systems calls
for new software tools to help developers transform their code into parallel
applications. Traditional debugging techniques and debugging tools do not
work very well on an inherently nondeterministic system. Virtual platform
technology reintroduces control and determinism to the software debug and
analysis process, even for multicore processors. Virtual platforms also make
it possible to develop software before the physical hardware becomes
available, and they are an important tool for very early performance
assessment and analysis of the hardware design.

This chapter describes how a virtual platform is essentially a simulation of
a computer system, and the ways in which such a system provides
opportunities for modeling, design, and debug in the context of multicore
computer systems.

• Section 7.1, “Simulation of Computer Systems,” describes the historical
role of simulation in scientific and technological advancement and the
increasingly important role of simulation in complex multicore
environments.

• Section 7.2, “Obtaining Hardware Early,” describes how virtual
processor simulations provide an environment for designing with
complex multicore processor devices long before the integrated device
is physically available.

• Section 7.3, “Using a Virtual Platform for Debugging,” describes the
advantages that a virtual platform brings to debugging and presents a
real-life example.

• Section 7.4, “Multiprocessor Software Debugging,” describes the
different types of simulation, their purposes and scope, and how they are
used in the design, development, and system-level integration of cores
and SoCs.

• Section 7.5, “Using Virtual Platforms for Hardware Design,” describes
different types of simulation, their purpose and scope, and how they are
used in the design, development, and system-level integration of cores
and SoCs.

Embedded Multicore: Virtual Platforms

Embedded Multicore: An Introduction, Rev. 0

7-2 Freescale Semiconductor

7.1 Simulation of Computer Systems
Simulation has been used as a tool since ancient times in many areas of science and technology. Weather
prediction, virtual car crash tests, aerodynamic modeling, and other physical system simulations use
computers to model and understand the behavior of the physical world.

Simulation is used whenever trying things in the physical world would be inconvenient, expensive,
impractical, or impossible. It allows experimenters to try things with more control over input data and
parameters and to gain better insight into the results and system states on the way to those results. It
reduces the cost of experiments and enables work with systems that do not yet exist in physical form. It
cuts lead times and improves product quality. In a sense, we use simulation because reality is no fun.

For many of the same reasons, computers also can be used to simulate other
computers. In the embedded systems space, such simulations are known as
virtual platforms and are used to develop and test software independently of
hardware availability.

Figure 7-1 shows what we want to achieve from a virtual platform: a piece of
software that mimics the hardware so that the target software can run. This is not just an academic exercise
in hardware–software equivalence, but rather a very useful tool for software developers, hardware
designers, and system integrators. Virtual platforms provide the same benefits as simulation of physical
systems do, making it possible to develop systems faster and with higher quality. As the complexity of
embedded systems increases, virtual platforms are increasingly important as a system development tool.

Figure 7-1. Virtual Platform Running the Same Software as the Physical Hardware

Using a virtual platform to develop the target software for a system requires a very fast simulator that can
execute programs approximately as fast as a physical machine would. No user would wait hours for an
operating system boot that takes seconds on a physical machine. The trick is to gain execution speed and
reduce simulator implementation time by reducing the level of detail in the simulator to the bare minimum

User program for target
Identical software

stack

User program for target

Target operating system Target operating system

Physical target hardware Running on
physical or
simulated
hardware

Simulated target hardware

Simulation tool

Host operating system

Host hardware

virtual platform
Simulated computing
environment used to develop
and test software
independently of hardware
availability

Embedded Multicore: Virtual Platforms

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 7-3

needed to run the software. We will return to the topics of simulation speed and abstraction levels. First,
let us look over the benefits that virtual platforms can bring to software and systems development.

7.2 Obtaining Hardware Early
The most obvious benefit of a virtual platform is that it is available for software developers much earlier
than the physical hardware. As Figure 7-2 shows, creating a virtual platform of hardware allows starting
software development tasks earlier, which shortens time-to-market.

Figure 7-2. Virtual Platforms Make the Hardware Available Sooner

A second benefit is that virtual platform availability is not affected by unexpected delays in physical
hardware availability. This reduces the risk that hardware delays will affect the final product’s shipping
date. It is the experience of Virtutech and others within the industry that between three months and
eighteen months are typically saved in time-to-market when virtual platforms are used to provide early
access to new hardware generations.

Furthermore, software development can ramp faster because hardware availability is no longer a constraint
on the development process. Every engineer can have a hardware board very early, at their desk, inside
their PC. Usually, the virtual platform remains in use as a virtual hardware system, long after hardware
physical prototypes start to appear, because they are more convenient to use, offer better insight than the
physical hardware, and are easier to configure.

7.3 Using a Virtual Platform for Debugging
A primary benefit of a virtual platform is that it provides superior debug and analysis features compared
to the physical hardware. Anyone who has ever developed code for an embedded board can appreciate the
convenience of a virtual environment: it provides a system that is not randomly flaky and that offers better
control over the target, faster communication, and conveniences such as unlimited numbers of hardware
breakpoints, deterministic repeatability of execution runs, and reverse execution and debugging. If the
target freezes completely, you can stop it and check what happened. You can change system parameters,

HW Prototype
ProductionHW Design Hardware/Software

Integration & Test

Hardware-Dependent
Software Development

Application Software
Development

HW Design HW Prototype
Production

Virtual Model
‘Production’

Hardware/Software
Integration & Test

Hardware-Dependent
Software Development

Application Software
Development

Time
Saved

Embedded Multicore: Virtual Platforms

Embedded Multicore: An Introduction, Rev. 0

7-4 Freescale Semiconductor

such as clock speeds and memory size, as well as network setups, with complete freedom and ease. For an
idea for how this works in practice, here is a real-world example of debugging a multiprocessor system
with Virtutech Simics:

A virtual platform based on Simics was used to port a popular real-time operating system to the
Freescale MPC8641D multicore processor. In one test, the clock frequency of the target system
was changed from 800 to 833 MHz, and suddenly the system froze early in the boot process. The
system was completely unresponsive, with no input or output.

A preliminary investigation revealed that the problem occurred only between 829.9 and
833.3 MHz. Thus, it had not been seen before, because the clock frequency had been 800 MHz.

Thanks to the repeatability of a virtual platform, the bug was trivial to reproduce. Each time the
virtual platform was booted with one of the bad clock frequencies, the same crash happened at the
same time. Unlike the real world, where all we would have had was an unresponsive brick, the
virtual platform made it possible to examine the state of the processor, memory, and software at the
point where the processor froze.

To home in on the problem, we used reverse execution and interrupt tracing on the serial port, the interrupt
controller, and the processor cores. With this, we could pin down the exact cycle in which the problem
occurred and the sequence of events that lead up to it. We did stack back traces at the critical point to
determine the locations in the operating system where the freeze occurred.

In the end, it was determined that the problem was caused when an interrupt service routine attempted to
lock a kernel spinlock before re-enabling interrupts. In the case that froze, the lock had already been taken
when the service routine was entered, and with no interrupts enabled, there was no way for any other code
to run to release it.

The bug was found only because the virtual platform ran the complete real software stack, including
interrupt handlers and hardware drivers. It was triggered by changing the system configuration,
demonstrating the value of configurability of a virtual platform. Because of the repeatability of the virtual
platform, bug reproduction was trivial whereas in a physical system, it would have happened only
occasionally. The ability to trace and inspect any part of the state was crucial to understanding what
happened and in which order. With reverse execution (see Figure 7-3), we simply backed across the freeze

Embedded Multicore: Virtual Platforms

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 7-5

to inspect the path that the system took to get there and were also able to move back and forth over the
execution path to investigate it.

Figure 7-3. Reverse Execution

Note that we used a fast virtual platform and still triggered and solved a race-condition bug. This is the
general case. Most multiprocessor software bugs are due to logic errors in the code, and they do not require
timing to be identical to physical hardware to trigger. Indeed, the key to finding bugs is not to faithfully
reproduce the actual behavior of a particular configuration of a physical machine, but rather to explore a
large range of potential behaviors. This requires configurability and execution speed, rather than a high
level of detail.

7.4 Multiprocessor Software Debugging
Especially for multicore and multiprocessor systems, virtual platforms provide a much needed boost to
inspection and debug power.

The main problem in identifying and fixing software bugs in parallel software is the lack of determinism
in the execution of the software system. Each run of a program exhibits a different order of events in the
program, and even very small timing changes to the system state or timing result in very different program
execution. This complicates debugging, as the very act of debugging a parallel program makes
timing-sensitive bugs such as race conditions disappear or appear in a different place.

A virtual platform provides determinism and repeatability. The simulator has explicit control over the
execution of instructions and propagation of information between processors, and can thus impose a
repeatable behavior on the software running on a multicore processor. Determinism does not mean that the
behavior of a software program is always identical; it means that when running the same software from
the same initial state with the same sequence of asynchronous inputs, the same execution sequence is seen.
If anything changes, a different behavior is seen.

Nonreproducible
system execution:
Only some runs hit
the same error.

Rerun many times
to investigate.

Reversible execution:
When error hits, stop
and backup.

Backup

Go Forward

Embedded Multicore: Virtual Platforms

Embedded Multicore: An Introduction, Rev. 0

7-6 Freescale Semiconductor

Figure 7-4 shows an example of this change, where the same intentionally buggy program is run several
times on a simulated multiprocessor. Each run produces a different result because they are run from
different initial states. The simulator can go back and reproduce each run, which is not possible on physical
hardware.

Figure 7-4. Example Output from a Multicore Run on a Virtual Platform

Another benefit of a virtual platform for multicore debugging is that the simulator can stop the execution
of the entire system at any point, making it possible to single-step code where processors communicate
with each other without changing the behavior of the code. Code running on other processors cannot
swamp a stopped processor with data to process.

7.5 Using Virtual Platforms for Hardware Design
Virtual platforms and the simulation of key components is an important tool for computer hardware
designers, both for processor cores and entire system-on-chip (SoC) designs.

In processor design, detailed simulation models of the pipeline and memory system of a processor core
have been the mainstay architecture tool for many years. Every microarchitectural idea is first evaluated
with the help of a detailed simulator before being used in an actual design. When creating new cores or
new variants of cores (like the Freescale e500mc core), the design teams use their own detailed simulators
to assess performance, power consumption, and other metrics.

Moving from processor cores to complete SoC designs, virtual platforms are used to evaluate interconnect
architectures, required bus widths, and other performance factors. They are also used to verify that the
design works as intended when isolated devices and processors are combined to form a whole system. For
multicore designs in particular, users must validate cache-coherency protocols and check that systems
scale to the number of cores desired.

The simulation models used for hardware design are very detailed because they need to depict the precise
cycle-by-cycle execution at a system level. The models take time to write and to run, but in return users

Simics Control

File Edit Run Debug Tools Window Help

System:

Processors:

Memory:

Ethernet:

Storage:

P2020E example system

2 PowerPC e500, 1188 MHz

1 GiB

1 of 5 connected

No disks

P2020e-simple - Linux 2.6.20-vt (IP 10.10.0.100)

15.971 s Using recorded input

Serial Console on uart1 (stopped)

Race condition detected!
~ # ./race_cond_test.elf 2 1000000 n
Starting race condition example application.
This is the incorrect variant of the program, without synchronization,

thus susceptible to race conditions.
Using 2 threads, each counting to 1000000
Starting thread 0
Starting thread 1
Waiting for thread 0
Waiting for thread 1
Sum: 1802120, expected: 2000000
Race condition detected!
~ # ./race_cond_test.elf 2 1000000 n
Starting race condition example application.
This is the incorrect variant of the program, without synchronization,

thus susceptible to race conditions.
Using 2 threads, each counting to 1000000
Starting thread 0
Starting thread 1
Waiting for thread 0
Waiting for thread 1
Sum: 1885292, expected: 2000000
Race condition detected!
~ #

Embedded Multicore: Virtual Platforms

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 7-7

obtain a tool that lets them collect data that would be impossible to collect on physical hardware and that
provides modeling opportunities for architectural experiments.

Usually, computer architecture simulators are internal engineering tools.
However, for the Freescale QorIQ P4080, Virtutech and Freescale have
collaborated to package the clock-cycle level internal simulators into a
user-accessible simulation system. This hybrid system combines the fast
functional simulators and the slow but detailed clock-cycle level simulators
to give end users access to the detailed target timing. The fast virtual platform
is used to boot operating systems and position workloads in interesting
locations, and then the simulation can be switched over to the clock-cycle
level models to allow detailed studies of software and system performance. In
essence, the resulting combined solution lets users zoom in on performance
details when and where they need to without compromising on the ability to
run large workloads.

7.5.1 Execution Speed

Because detailed performance models obviously provide more information, one might ask why they are
not the norm. There are two main reasons: It takes much longer to build a detailed model than a fast model,
and detailed models are too slow to run large workloads. The latter problem of execution speed is the most
important reason. Table 7-1 shows execution speeds at different levels of timing detail. Note that virtual
platforms can be faster than physical hardware.

Table 7-2 shows statistics that provide an idea of the workload sizes. Workloads very quickly get into
billions of instructions, even when we are looking at single processors. For multiple processors in a
multicore device, these numbers have to be multiplied accordingly.

Table 7-1. Simulation Speeds

Simulation Detail Level Typical Slowdown Indicative Speed In MIPs Time To Simulate One Real-world Minute

Gate-level simulation 1000000 0.002 2 years

Clock-cycle level 10000 0.2 7 days

Virtual prototypes 5 400 5 minutes

Table 7-2. Workload Sizes

Workload Number of Instructions

Booting Linux 2.4 on a simple StrongARM machine 50 million

Booting a streamlined but full-featured real-time operating system on a PowerPC 440GP SoC 100 million

Booting Linux 2.6 on a single-core MPC8548 processor 1,000 million

Booting Linux 2.6 on a dual-core MPC8641D processor 3,600 million

Running 10 million Dhrystone iterations on a single-processor UltraSPARC machine 4,000 million

Running one second of execution in a rack containing 10 boards with one 1-GHz processor each. 10,000 million

fast functional model

Simulation model used for
functional testing and
verification

cycle accurate model

A slower, more detailed
simulation that can collect
performance data

hybrid system
Allows for a switch between
cycle accurate and functional
models to obtain performance
data as needed

Embedded Multicore: Virtual Platforms

Embedded Multicore: An Introduction, Rev. 0

7-8 Freescale Semiconductor

Thus, for modern multicore chips, we need virtual platforms to be as fast as possible in order to run the
complete software in reasonable time. To accomplish this, we make the trade off of reducing the detail
level of the virtual platform model. It is better to cover the whole problem in some detail than a tiny part
of the problem in great detail. The vast majority of software development can be performed on a fast virtual
platform with approximate timing, and with a hybrid model, clock-cycle level timing can be applied when
and where it is needed.

7.6 Conclusion
Simulation is an established methodology in many fields of engineering, one that should also be applied
to software and systems engineering for embedded systems. With the shift to multicore processing,
simulation technology in the form of virtual platforms offers very attractive capabilities for software
development, testing, debug, and optimization. Virtual platforms can run the real software stacks, well in
advance of the physical hardware availability and through the entire system life cycle, being a useful tool
all the way to full-scale system development and maintenance.

Embedded Multicore, Rev. 0

Freescale Semiconductor i

About the Authors

Jonas Svennebring is a Software Field Applications Engineer at Freescale in Stockholm, Sweden. He
holds a Master of Science in Physics from University of Stockholm and has written academic and technical
papers in the field of mobile robotics as well as embedded systems. Jonas’ focus is on applications within
the wireless infrastructure domain, both using general purpose as well as signal processing devices.

John Logan is an Applications Engineer for Freescale Semiconductor’s Networking and Multimedia
Division, based in East Kilbride, Scotland. John supports Freescale’s EMEA netcomms customers with a
special focus on PowerQUICC and QorIQ coimmunication processors.

Jakob Engblom holds a Ph.D. in computer systems from Uppsala university and is currently a technical
marketing manager at Virtutech in Stockholm. Jakob’s professional interests include embedded systems,
embedded software development, multiprocessors, simulation technology, computer architecture, and
compiler technology. He has authored more than 40 papers in the field of real-time and embedded systems,
and is regularly presenting at embedded trade shows and conferences.

Patrik Strömblad is the Chief Architect for the OSE5 product line at Enea in Stockholm, Sweden. He
has been designing distributed real-time operating system kernels for 20 years, mainly focusing on the
telecom application domain, both within the infrastructure and the mobile market.

	Embedded Multicore: An Introduction
	Contents
	Figures
	Chapter 1 Embedded Multicore, an Overview
	1.1 Why Multicore?
	Figure 1-1. Improved Power Consumption as an Incentive for Multicore (MPC8641)

	1.2 Different Types of Multicore
	Figure 1-2. Heterogeneous and Homogeneous
	Figure 1-3. Memory Designs in Multiple CPU Systems

	1.3 Parallelism
	1.3.1 Bit-Level Parallelism
	1.3.2 Instruction-Level Parallelism
	1.3.3 Data Parallelism
	1.3.4 Task Parallelism

	1.4 System and Software Design
	Figure 1-4. MPC7120 GPON Block Diagram
	Figure 1-5. Mix and Match

	1.5 Conclusion

	Chapter 2 Embedded Multicore from a Hardware Perspective
	2.1 Multicore Devices
	Figure 2-1. P4080 Block Diagram
	Figure 2-2. MSC8144 Block Diagram
	Figure 2-3. e500mc Block Diagram
	2.1.1 Power Savings
	2.1.2 System-Level Stability and Security

	2.2 From Coprocessors to Multiple Cores
	2.2.1 Internal Access
	Figure 2-4. Single Bus vs. Switch Fabric

	2.2.2 Memory Hierarchy
	Figure 2-5. Cache Stashing

	2.2.3 Interfaces
	2.2.4 Debugging and Profiling
	Figure 2-6. Debug Interface

	2.3 Conclusion

	Chapter 3 Embedded Multicore: Software Design
	3.1 Amdahl’s Law
	Figure 3-1. Amdahl’s Law: Speedup as a Function of Number of Cores

	3.2 Gustafson’s Law
	Figure 3-2. Gustafson’s Law

	3.3 Parallelism
	Figure 3-3. Block Diagram of Router Application

	3.4 Symmetric and Asymmetric Multiprocessing
	3.5 Processes and Threads
	Figure 3-4. Processes and Threads
	3.5.1 Task and Process Mapping
	3.5.2 Run to Completion
	3.5.3 Interprocess Communication and Synchronization
	3.5.4 Semaphores and Locks
	Figure 3-5. Using Semaphores to Protect a Critical Section
	Figure 3-6. Network Routing Application

	Chapter 4 Embedded Multicore: SMP and Multithreading
	4.1 Introduction to Symmetric Multiprocessing
	4.2 Parallelized Application Designs
	4.3 Macro- and Microparallelization
	4.3.1 POSIX Threads
	4.3.2 OpenMP
	Figure 4-1. Scheduling of Parallel Loops under OpenMP

	4.4 Performance Constraints and Common Pitfalls
	4.5 Summary

	Chapter 5 Embedded Multicore: SMP Operating Systems
	5.1 SMP Linux
	5.1.1 Task Schedulers and Load Balancing
	Figure 5-1. Schedulers (Using a Red-Black Tree Structure)

	5.1.2 Core Affinity

	5.2 Enea’s OSE for Multicore
	5.2.1 Architecture Overview
	Figure 5-2. Micro-kernel Architecture

	5.2.2 Various Multicore Models
	5.2.3 Enea OSE Advantages
	Figure 5-3. OSE5 Multicore Output Simulation

	5.3 Conclusion

	Chapter 6 Virtualization and the Hypervisor
	6.1 Virtualization-An Overview
	Figure 6-1. Relationships among VMs, the Native Hypervisor, and Underlying Hardware on an Embedded Multicore Device

	6.2 Privilege Levels, Addressing and Exceptions
	Figure 6-2. TLB Miss Handler

	6.3 Hardware Features to Improve Virtualization
	Figure 6-3. Abstraction Of Peripherals Using Queues

	6.4 Security and Protection between VMs
	6.5 Messaging Between VMs
	6.6 Debugging and Run Control
	Figure 6-4. QorIQ Processor Family

	6.7 Conclusions

	Chapter 7 Embedded Multicore: Virtual Platforms
	7.1 Simulation of Computer Systems
	Figure 7-1. Virtual Platform Running the Same Software as the Physical Hardware

	7.2 Obtaining Hardware Early
	Figure 7-2. Virtual Platforms Make the Hardware Available Sooner

	7.3 Using a Virtual Platform for Debugging
	Figure 7-3. Reverse Execution

	7.4 Multiprocessor Software Debugging
	Figure 7-4. Example Output from a Multicore Run on a Virtual Platform

	7.5 Using Virtual Platforms for Hardware Design
	7.5.1 Execution Speed
	Table 7-1. Simulation Speeds
	Table 7-2. Workload Sizes

	7.6 Conclusion

	About the Authors

