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Chapter 1
Embedded Multicore, an Overview

—Jonas Svennebring

The computer industry is driven by pursuit of ever increasing performance.
From high-end customized special -purpose computing in networking,
telecommunications, and avionics to low-power embedded computing in
desktop computing, portable computing and video games, customers expect
faster, more efficient, and more powerful products. However, single core
products are showing adiminishing ability to increase product performance
at pace with consumer desire. Multicore processing is recognized as a key
component for continued performance improvements.

Theindustry ison aclear path towards an increasing number of cores. Dual-
and gquad-core devices have been established for several years, and they are
just the beginning of the explosion in the number of cores per device.

However, thiskind of expansion creates a challenge, not only for the
semiconductor industry, but also for the system and software designers who
put them to work. Writing applications that executein parallel is seldom
easy; sometimesit is not even possible. So why is the industry moving this
way? What are the problems, and how can we smoothly work around them?

Those questions are answered in the following sections:

“Section 1.1, “Why Multicore?’ provides an overview of the reasons
behind a migration to multicore, the difficultiesin raising clock
frequency further and, as aresult, improving performance.

» “Section 1.2, “Different Types of Multicore” describes the basic
topologies across the array of computational environments, including
homogenous systems where all cores are identical and heterogeneous
multicore systems where these cores differ, including the three
predominant approaches to memory designs: distributed, shared, and
hybrid.

» “Section 1.3, “Parallelism” outlines the difficulties of managing a
system with multiple cores running in parallel and describes the four
common forms of parallelism: bit level, instruction, data, and task.

» “Section 1.4, “ System and Software Design” compares the advantages
and disadvantages of the two approaches to multiprocessing:

Embedded Multicore: An Introduction, Rev. 0
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Embedded Multicore, an Overview

asymmetric multiprocessing (AMP), in which each core runs
standal one, and symmetric multiprocessing (SMP), in which the many
cores act as one through the operating system.

Subsequent chapters focus on hardware, software architecture (such as
AMP and SMP systems), changes to operating systems and why system
simulation will play a more important role in the development process.

1.1  Why Multicore?

The migration to multicore devices requires complex changes to system and software to obtain optimal
performance. It is reasonable to question whether multicoreis worth this additional work, or whether it is
possible to continue gaining improvements through single-core devices

Before the advent of multicore, most efforts in improving performance increase were straightforward:
Crank up the frequency! But it has become all too apparent that pushing the frequency came at a price.
Frequency improvements penalize power consumption, which in turn generates heat that requires more
advanced cooling, decreases reliability, and shortensthe longevity of the device. So, solving the additional
problems that come with increasing frequency costs more money.

A rule of thumb is that doubling the frequency causes a fourfold increase in power consumption. Power
consumption itself is only proportional to frequency, but higher frequencies need increased voltage
because processors with higher speed transistors leak more than slow ones. Equation 1-1 explains the
relationship.

power = capacitance x voltage2 x frequency Eqn. 1-1

Figure 1-1 compares single- and dual-core implementations of the MPC8641. In a single-core
configuration, raising the frequency by 50% roughly doubles power consumption; however, dual-core
increases power by only 30%.

35
30
25—
g 20
@ Single
3 15 Core
a
10 Single
Core
5 —]
O —]
Core Frequency Core Frequency
1.5GHz, 1.1V 1.0 GHz, 0.95V

Figure 1-1. Improved Power Consumption as an Incentive for Multicore (MPC8641)
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Embedded Multicore, an Overview

It iswell understood that simply doubling the core frequency does not double performance. Techniques
such as parallelizing instructions, speculative execution, and pipelining cannot generally scale with the
frequency. For example, some stages in an instruction pipeline have internal timing requirements that
cannot be met if the processor clock frequency isincreased. Therefore, the instruction latency of many
instructions cannot scal e proportionately and additional pipeline stages are necessary. This naturally
increases the number of cyclesrequired for execution and penalizes branches. Although doubling the core
frequency may still allow such instructions to execute faster than they would on a core running at a
dower-frequency, lengthening the pipeline means that this improvement isless than double.

Of particular significance is the so-called “memory wall” that has materialized as the increasein the
on-core speed is not matched by the speed of off-core and off-chip memory and 10 subsystems. A
high-frequency core matched with alower-frequency bus will frequently stall as the core waits for data.
To some extent such disparities have been compensated by implementing large, fast, on-chip caches, but
increasing the size and numbers of on-chip caches subsequently increases both silicon size and power
consumption.

Power conservation isespecially critical for embedded systems. In aconventional system implementation,
the standard upper ceiling of around 2040 W requires a heat sink and either a fan or substantial air flow
for cooling. Ensuring that hot spots are distributed effectively complicates both board layout and the layout
of boards within alarger system. This may be acceptable for high-end devices, but not when power
requirements drop below approximately 7 W.

When the core runs at about 7 W, the fan can be removed and there is less need for sophisticated
management of hot spots. This, in turn, saves money, simplifies board design, and offers more flexibility
for placing high-end processorsin computing environments where [ow power isacritical necessity. There
are low-power multicore devices that consume only around 2 W, such as the e300-based MPC5121 with
integrated graphics and a signal-processing accelerator. For most applications, these devices can be
implemented without a heat sink.

Through a great deal of effort and cost, the performance race for desktop and embedded systems has
overcome the issues that arise with increasing the frequency. However, innovative workarounds are
coming to an end. To continue delivering higher performance with improved power consumption, a new
path must be taken. In fact, that trail has been blazed by ultra-high-end systems, such as supercomputers,
in which even tens of thousands of CPUs are increasingly common.

1.2  Different Types of Multicore

Given the growing importance of multiprocessing across the computing spectrum and that high-end
systems, such as telecom infrastructure, servers, and supercomputers, have long used multiple-core
designsasthe standard, is natural that the gains of high-end computing be applied to embedded computing
systems. These systems have much to offer on how to design and develop software, which is the focus of
later chapters.

Embedded Multicore: An Introduction, Rev. 0
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Embedded Multicore, an Overview

Multicore devices have been around for many yearsin different forms. For  homogenous

example, Freescale's PowerQUICC™ devices implement cores built on gﬁa%msé gtr;;um&ecores
Power Architecture™ technology, such as the €500 cores used in are identical and execute the
PowerQUICC 111 devices and the single or dual RISC coresin the same Instruction set.
QUICC Engine™ communication unit. Figure 1-2 shows the different types éterogeneous

of multicore environments. A device that contains multiple cores with Describes a multicore

different types of instruction setsisreferred to as heterogeneous. In contrast, ~ are notidentical and .
. . . . . . implement different instruction
homogeneous multicore devices implement multiple identical cores, asseen  gets
in the MPC8641 and P2020. The current trend is to create homogeneous
multicore devices, but asignificant performance advantage can be obtained by using specialized coresand

accelerators to offload the main cores.

Heterogeneous

QUICC EnglneTM RISC

2 2
s &

Data Processing

Homogeneous

388

Figure 1-2. Heterogeneous and Homogeneous
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Embedded Multicore, an Overview

Figure 1-3 shows basic core memory topologies.

* Indistributed memory designs, each CPU typically has a private memory and communication
between CPUs is performed over a high-speed network

* Inashared memory design, there is a public memory that is shared by multiple cores.

* Inahybrid design, there is a shared memory resource, but each core has private memory as well.
This allows each CPU/core to have a private memory that can smoothly be shared on a public
memory.

Distributed Memory

Private Memory Private Memory
Core Core
Core Core
Private Memory Private Memory
Shared Memory, P2020 Hybrid, MSC8156
Private Memory Private Memory
SC3850 Core SC3850 Core

Shared Memory
Shared Memory SC3850 Core SC3850 Core

Private Memory Private Memory

Figure 1-3. Memory Designs in Multiple CPU Systems

As processtechnology shrinks below 45 nm, devices can beimplemented with not just two and four cores,
but many tens of cores, an approach commonly referred to as manycore rather than multicore. It isthere
that the biggest challenges for system and software design lie. A dual-core device can typically provide
performance increase without any changes because the operating system can dedicate one core for the
main application and the other for special tasks such asinterrupt handling. However, in amanycore device
applications must be redesigned to make use of al coresto take optimal advantage of the processing power
available.

1.3 Parallelism

Parallelization is the central challenge of devel oping a multicore environment. Of course, parallel
execution is nothing new. However, implementing a system in which work can be donein parallel ina
computing environment in which order must be maintained at all costs poses problems. Why can't this be
solved in the hardware, or by the compiler or operating system? The answer isthat parallelization has
already been implemented in these areas.

Embedded Multicore: An Introduction, Rev. 0
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Embedded Multicore, an Overview

Parallelism can bethought of astaking four basic forms—hbit level, instruction, data, and task. Theseforms
are discussed in the subsequent sections.

1.3.1 Bit-Level Parallelism

Bit-level parallelism extends the hardware architecture to operate simultaneously on larger data. For
example, on an 8-bit core, performing computation on a 16-bit data object requires two instructions.
However, by extending the word length (the native data length that a core works with) from 8 to 16, the
operation can now be executed by a single instruction. Thus as the computer industry has matured, word
length has doubled from 4-bit cores through 8-, 16-, 32-, and 64-bit cores.

1.3.2 Instruction-Level Parallelism

Instruction-level parallelism (ILP) isthe technique for identifying instructions that do not depend on each
other, such as working with different variables and executing them at the same time. Because programs
aretypically sequential in structure, thisis not an easy task. Certain applications, such as signal processing
for voice and video, can function efficiently. A DSP, for example, and the Freescale StarCore™
architecture can execute 6 instructions per cycle per core or double this rate when working with video
processing. ILP is commonly implemented in the compiler. Other common techniquesin this area are
speculative and out-of-order execution, features supported by the RISC-based Power ISA, and are
implemented in the €500 and the legacy PowerPC cores, such as the e300 and e600.

1.3.3 Data Parallelism

Data paralelism alows multiple units to process the data concurrently. One such technique implemented
in hardware is SIMD (single instruction/multiple data), which isimplemented in the 128-bit vector
instructions defined by the AltiVec instruction set and the 64-bit vector instructions defined by the
signal-processing engine (SPE) instruction set.

Data parallelism is also where multicore plays a significant role. Performance improvement depends on
many cores being able to work on the data at the same time. When the algorithm is sequential in nature,
difficulties arise. Crypto protocols, such as 3DES (triple data encryption standard) and AES (advanced
encryption standard), are often sequential and therefore difficult to parallelize whereas matrix operations
are generally easier to paralelize because the data is interlinked to a lesser degree. In general, it is not
possible to automate data parallelism in hardware or through a compiler because areliable, robust
algorithm is difficult to assemble. Another difficulty isidentifying which parts of the software should be
parallelized as not all functions benefit from parallel execution. Both of these are problems that you will
face when doing it by hand.

1.34 Task Parallelism

Task parallelism distributes different applications, processes, or threadsto  thread

different units. This can be done either manually or with the help of the A flovg: gfdn,stéuctiorés tf;i'ﬂ yuns
operating system. The difficulty with task parallelism is not with how to othar flows | Ponaenty from

distribute the threads, but with how to divide the application into multiple
threads. For systems with many small units, such as a computer game, this can be easy. However, when

Embedded Multicore: An Introduction, Rev. 0
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thereisonly one heavy and well-integrated task, thisdivision can be very difficult and often facesthe same
problems associated with data parallelism.

1.4  System and Software Design

Of the four types of parallelism, multicore focuses most on data and task parallelism. Accordingly, thisis
where the system and software design matters. This section provides a brief overview, different design
approaches for handling tasks, and data management in parallel.

The simplest way to progress from single-core to multicore computing iSt0  asymmetric processing (AMP or
run each core independently. This approach is called asymmetric ASMP)

multiprocessing (AMP or ASMP) in contrast to symmetric multiprocessing Qgs%pnpgg%?ﬁigg (r:nourgiscgf;erate

(SMP), inwhich all of the cores act as one through the operating system. independently and perform
dedicated tasks.
In an AMP design, each core runs by itself and often is dedicated to asingle  symmetric processing (SMP)

task, such as decoding incoming data or handling a specific step in data An approach to multicore

g i i _ i design in which all cores share
processi ng._Thls can bedoneina ge_neral purpose coreor ina _ the same memory, operating
custom-designed core that has a dedicated security unit for performing systems, and other resources

encryption and decryption, such as Freescale's P2020.

An AMP system can be designed in which a set of cores can perform all of the tasks required for the
complete processing of a particular task so that the same process can be performed on multiple cores
running in parallel. Alternatively, a system can be defined in such away that each core specializeson a
single step in amultiple-step process where results are passed like serial stagesin a pipeline.

With either AMP approach, it isimportant that the hardware distributes the work among the cores. In the
case of Ethernet traffic, for example, this can be done by filtering MAC or | P addresses to specific cores.
However, with an SMP design, the operating system distributes the work. SMP requires homogeneous
coresthat share memory such that any thread or process can be assigned to any core at any time. Assuming
that an application is divided into multiple threads, thisis a very convenient approach because the
operating system does most of the work. However, there are performance | osses because all cores compete
for the same memory with SMP. Currently, this memory bottleneck sets a practical upper limit of about
eight cores, although there are ideas for how this can be extended further. These ideas are discussed in
subsequent chapters.

Combinations of SMP and AMP yield good results in scenariosin which the main system runs on afew

cores that use SMP and are helped by cores running AM P modes as software accelerators. For example,

in applications such as telecom 3G/LTE, one or more such accelerators process layer 1 and hand off the

processed datato layer 2, which isrunning with SMP. One core may run areal-time OS and the other Linux
(see Figure 1-5).

When multiple operating systems run on the same device, they need to share hypervisor

common resources. For memory, the MMU can easily do this, but for System-level software that
. . . . . . allows multiple operating
interfaces it is more complicated. The general solution to thisproblem liesa  systems to access common

i i i i eripherals and memor
level below the operating system and is called a hypervisor. The hypervisor peripherals an brovi Tory

provides system-level resources that allow operating systemsto interface. It communication mechanism
among the cores.

Embedded Multicore: An Introduction, Rev. 0
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is through the hypervisor that operating systems communicate with each other and with the shared
hardware.

PorPherals SDRAM CODEC/SLIC —> To POTS

1 1

DUART —
SPI —
-

Timers —

chio— @8 ] ]

Interrupts —

!

GEMSAR
Optical
Transceiver

Ethernet Ethernet
PHY PHY

Figure 1-4. MPC7120 GPON Block Diagram

Multilayer systems can benefit from a heterogeneous device with cores dedicated to the specific tasks.
Figure 1-4 showsthe M SC7120, one such example for GPON (gigabit parallel optical networks, i.e., fiber
to the home). It features an accelerator block for the physical layer, a Starcore SC1400 core for signal
processing, and an €300 core built on Power Architecture technology for higher layers of processing.

Control Plane Data Plane Other Services

Figure 1-5. Mix and Match
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Virtualization is a technique that allows one unit to act as multiple units or
vice versa. For the embedded market, virtualization can be used to move a
legacy system into a device, such as merging multiple single-core systems

into one multicore device.

Full virtualization features a complete simulation of the underlying hardware
so that any software that can run on the real hardware can also run on the
virtual machine. The drawback to this approach isthe performance overhead.
Paravirtualization can reduce the overhead. In this scenario, the software
needs to be aware of the virtualization and therefore has to be ported. For

Embedded Multicore, an Overview

virtualization

A computing concept in which
an OS runs on a software

implementation of a machine,
that is, a virtual machine (VM).

paravirtualization

A virtualization technique that
presents a software interface
to virtual machines that is
similar, but notidentical, to that
of the underlying hardware.

more information about virtualization, see Chapter 6, “Virtualization and the Hypervisor.”

1.5 Conclusion

Multicore devices provide a path forward for increased performance. This path requires comprehensive
and pervasive system and software changes aswell as new, innovative hardware designsto ensure that the
software can take advantage of the increased computational power. Freescale has years of experience with
many types of embedded multicore devices and thus can ensure that all necessary components are present
to ease the software burden and to avoid having an inefficient core. This balance is key for multicore

applications.
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Chapter 2
Embedded Multicore from a Hardware Perspective

—Jonas Svennebring

As the computer industry transitions into multicore computing, the
hardware must change shape accordingly. The change must happen not only
in the number of cores and how the software uses them, but also in the
supporting functionality. Memory and communication interfaces
(Ethernet/PCI Express®/Serial RapidlO) and accelerators for crypto, deep
packet inspection, and communication stacks that have traditionally resided
outside the chip are moved onboard for higher integration purposes and to
optimize and balance the loads shared by the cores.

This chapter examines the hardware aspects of multicore computing more

deeply by looking at two Freescale homogenous multicore device solutions:

general-purpose processors (GPP) and digital signal processors (DSP). It

contains the following main sections:

» Section 2.1, “Multicore Devices,” discusses a representative GPP
deviceand arepresentative DSP device. It al so discusses power savings,
system-level stability, and security.

» Section 2.2, “From Coprocessors to Multiple Cores,” discusses the
evolution of devicesto multicore and the attendant technological issues.
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2.1 Multicore Devices

We begin by focusing on homogeneous cores: devices that require more re-architecting than asimple
addition of coresto the silicon. Asexamples, we use two Freescale multicore solutions from thetwo main
device groups:. general-purpose processors (GPP) and digital signal processors (DSP).

Figure 2-1 shows an example of a GPP: the QorlQ™ (pronounced like “core | Q") communication
processor P4080 based on Power Architecture technology.

Watchpoint
Cross
Trigger

DD E3ES

Figure 2-1. P4080 Block Diagram
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Figure 2-2 shows the MSC8144 Starcore® DSP
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Figure 2-2. MSC8144 Block Diagram

In a homogeneous environment, relatively little in the basic core functionality of instruction execution
directly changes. Asareference, Figure 2-3 showsthe Freescale €500mc core. Like other coresin the 500
family, the e500mc uses superscalar dispatch, a seven-stage pipeline, and an ability to dispatch and retire
two instructions per cycle. The e500mc’s five execution units, the branch, floating-point, load/store, and
two integer units, allow out-of-order execution to minimize resource and memory stalls and features a
completion queue that ensures in-order completion.

Each of the P4080’s eight cores run standalone, with the principal goal of having each corerun as
independently of each other as possible, thus avoiding stalls due to core collisions from attempts to access
the same peripherals or memory. This, in combination with high performance and arelatively small die
size, makes the e500mc core a good base for multicore devices.
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Figure 2-3. e500mc Block Diagram
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Coupling the need to synchronize software on the different coreswiththe  virtual interrupt

need to minimize the number of wasted cycles makes core-to-core A software-triggered interrupt
communication acritical priority. Starcore devices employ virtual interrupts ~ from one core to another.

so that each core can get another’s attention quickly. With the e500mc, a

similar approach is adopted by the M essage Send and Message Clear instructions, msgsnd and msgclr.
These two new instructions, now part of the Power Architecture, are used to allow one core to signal a
doorbell interrupt to another.

2.1.1 Power Savings

Another goal of hardware design is to maximize the power consumption made possible by migrating to
multicore. Devicestypically implement modes that halt execution and power down the device to different
degrees—for example, nap, doze, and sleep. However these modes can be difficult to enable in the
software, and the wake-up can be time consuming, especially if the PLLs (phase-lock |oops) require
resynchronization. To ssmplify this, the e€500mc core introduces await [for interrupt] instruction that halts
execution on aspecific coreuntil aninterrupt occurs. While the processor waits, instruction fetching stops,
and the execution pipelineidles.

To further reduce power, the P4080 has separate power rails with different voltages, including complete
shutdown (static and dynamic) of all or a subset of cores and multiple PLLsto allow some coresto run at
lower, less power-consuming clock frequencies.

2.1.2 System-Level Stability and Security

In atraditional single-processor, single-operating system environment, there isa need for only two
privilege levels, one for the operating system (supervisor) and one for the user applications (user or
problem-state). But in a multiple-core, multiple-operating system system, it is necessary to add alayer of
privilege to coordinate all of the competing domains within the system. Freescale's instruction set
architects have extended the Power I1SA (instruction set architecture) to include instructions, registers,
interrupts, and memory management resources that thisadditional executive-level software usesto protect
memory resources and to provide a virtual interface to peripheral resources that can be shared across all
of the computing domains in multicore devices such as the P4080.

Thisnew layer of architecture creates anew privilege level, the hypervisor level. Hypervisor operationis
discussed in detail in Chapter 6, “Virtualization and the Hypervisor.”

When comparing devices, one should be careful not to look just at the raw core performance, but at how
efficiently the surrounding parts can feed the execution units with data, how system bottlenecks are
managed and minimized, and how the load can be distributed among the cores. In the Freescale Power
Architecture and StarCore devices, the programmable interrupt controller (PIC) can be used to configure
how hardwareinterrupts are prioritized and how they are directed towards specific cores. For example, Tx
(transmit) of a device can go to one core and Rx (receive) can go toward another. Another system design
approachisto use afully symmetric interrupt scheme that will ensure that all cores get triggered by an
interrupt.

Embedded Multicore: An Introduction, Rev. 0
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2.2  From Coprocessors to Multiple Cores

The roots of multicore can be traced to the earliest days of microelectronics 1989 First Multicore

and the evolutionary trend for more and morelogicto moveoff theboardand  rreescale’s first multicore
onto the same chip as the core. Transistors were combined to form small device, M68302, was

. . . . . launched 1989. It was a
integrated devices and those devices evol ved into processorsthat were given  heterogeneous devices
on-chip caches. The continuous improvements in process technology made  Paiting a 68000 core with the
it practical to integrate special-purpose functionality, such as interrupt

controllers and DMA into the processors. The next step was to move high-speed communications, video
controllers, and peripheral controllers, such as PCl and Ethernet into the devices, this to lower cost and

increase performance. It was only natural to call them Systems on a Chip, or SoCs.

With SoCsevolving into multicore devices the ability to process data increases significantly. Datamust be
communicated to and from the device at amuch higher rate. Thisin turn raisesaneed for specific hardware
acceleration. The Freescale PowerQUICC processor family handles communication processing, for
example routing and prioritizing incoming packages, by microcode executed in the QUICC Engine
communication unit. With higher datarates, such as the dual 10-Gigabyte Ethernet interfaces on the
PA080, this processing has to be implemented directly in the hardware but with flexible configurations.

Other accelerators commonly seen are for encryption and decryption of various protocols, table lookup,
and deep packet inspection. At high data rates, these things are difficult to do in software and can offload
the coresfor other operations; that is, the cores are offloaded to the accelerators so they can do other tasks.

2.2.1 Internal Access

Devices typically use abus-based approach for internal communication. Buses are smple to design, and
they give high throughput with low latency aslong asthere arefew mastersthat initiate datatransfers. This
isthe case with single-core devices, where typically only the core and some advanced peripherals can
function as bus masters.

However, the use of busesin multicore devices faces two considerable obstacles: Asshownin Figure 2-4,
as the number of unitsincreases, so must the physical length of the bus chain. The fixed-signal speed
(electron mobility related to the physical properties of the silicon) within the device necessitates an
increase in handshake time which in turn limits the clock frequency, reducing bandwidth and increasing
latency.

> Address Bus

I > Data Bus

Peripherals Peripherals

Figure 2-4. Single Bus vs. Switch Fabric
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Ironically, although microprocessors can perform almost instantly the sorts of complex complications that
decades ago institutions spent millions on and built rooms for, the step into multicore processing has
brought a simple problem to light: Because the total bandwidth must be divided among the bus masters,
more cores means |less bandwidth per core.

Als0, with increased bustraffic, therisk of collisions increases and this |lowers bandwidth even further. In
short, a bus does not scale well above four cores.

The solution, shown in Figure 2-4, is a switch fabric, which allows for switch fabric
multiple simultaneous accesses. With such an approach, as one core Interconnect architecture that
communicates with the Serial Rapidl O interface, another can access allows data coming in on one
memory, athird can use the Ethernet interface, and so on. The advantages of s saoer of e morte A -
having dual DDR interfaces can now be fully realized because two setsof ~ inputs are connected to all

. . . . . .. possible outputs.
cores can work with separate interfaces. To reduce collisions, in addition to memory layer 2 (M2)
on-chip caches, the cores can be spread over the two interfaces. This A second-level internal
approach of having multiple access pointsin the memory can alsobeseen  memory, similar to an L2
with the M2 memory on the MSC8144. Because the cores are expected to ~ ¢3°ne:
work directly with the M2 memory, it has four interfaces, one for each core.
The general drawback with switch fabricsisincreased latency. Freescale has minimized this, not only to

make the fabric itself efficient, but also to pair the cores with nearby cache memory.

Because it ismore complex than abus, there is adesire to optimize a switch fabric, both for the cores that
useit and for the applications running on the cores. Freescal e usestwo different switch fabrics, the CLASS
in the Starcore DSPs and CoreNet' technology in the QorlQ communication processors. The software
complexity of general-purpose processors increases greatly with multiple cores placed into highly
integrated devices, but providing a more sophisticated communication fabric, such as CoreNet, reduces
that additional demand on software. To accomplish this, the CoreNet fabric implements advanced
functionalities such as cache coherency across all cache layers. CoreNet fabric aso supports software
semaphores by extending the bit-test to guarantee atomic access between cores. The CLASS is better
suited for DSPs as they tend to use less complex operating systems and the application software is more
in control. For example, after using a software cache coherency, the switch fabric complexity can be
reduced and silicon area can be saved.

In a multitasking system, in addition to trandating the effective addresses peripheral access management
used in software to the physical addresses used by the memory subsystem, a Unit (PAMU) .
memory management unit (MMU) must protect applicationsfrominterfering ~ pimilarto an MMU, a PAMU is
with each other. Although the MMU provides protection for each corein a non-core masters and the
multicore system, other masters, such as peripheral DMAS, can corrupt the ~ CoreNetfabric

memory. Unlike with single-core devices, a multicore system often uses many operating systems which
openstherisk of incorrectly configuring other masters so that memory accessesinterfere with one another.
To prevent this, a new concept of periphera access management units (PAMU) isintroduced into QorlQ
devices. Much likean MMU, the PAMU islocated at the connection of non-core masters and the CoreNet
fabric, as seen in Figure 2-1. The PAMU can be configured to map memory and to limit access windows

thereby increasing system stability.
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2.2.2 Memory Hierarchy

The advancement of multicore implementations has been facilitated greatly by continued improvements
in process technology. With the introduction of 45-nm technology, core logic formsarelatively small part
of the device. In addition, caches are very costly, both in terms of power consumption and size. Asthe
core-to-memory interfaces speed differential increases, it is necessary to increase cache size. As core
frequency stabilizes and as caches are shared among cores more efficiently, the demand for cache
resources has been reduced.

Looking again at Figure 2-1, we can see that each core has its own Harvard L 1 caches, one for data and
one for instructions. The caches are very fast and the core can work directly with them by using the core
pipeline for prefetch and write-back queues. The unified L2 caches are private to the core but are shared
between data and instructions. Medium-sized private caches reduce the risk of resource competition,
reducing wasteful cache thrashing between the cores, and give a minimum guaranteed storage area for
each core. In other instances, where the core is configured as a software accelerator, the L1 and L2 caches
can accommodate all code with plenty of room for data. One can also configure, on a per way basis, the
cache as SRAM and addressit as normal, store variables, etc.

Backside caches, as in thisimplementation, are considerably faster than front-side caches and fit well as
fast private caches. To maximize usage and minimize core stalls, one can use a feature called cache
stashing. Datareceived from the interfaces are placed in memory and the coreisthen informed through an
interrupt. Asthe core retrievesthe datafrom memory it instantly suffers from memory stalls since the data
has to be transferred from external memory which can be on the order of hundreds of core cycles.
However, by using stashing, as seen in Figure 2-5, the datais placed in L1/L 2 cache at the sametime as it
is sent to memory. When the interrupt is triggered the datais conveniently available and the coreis fully

utilized.

Cache

DDR2/DDR3

T Switch Fabric

External Interface

Figure 2-5. Cache Stashing

For most applications, one large code base is either shared by all cores or, if some cores are specialized
and running their codein the L1 and L2 caches, is used by a controlling subset of these coresto run this
code. Commonly, thistype of code is executed randomly with areas of more intense execution. For
example, a complex computation or frequently occurring code such as the operating system kernel. The
intense and frequent partswill end up in the L2 caches. Having alarge, shared L3 cache also capturesthe
less-used parts of the code, which also comprises the largest part of the code footprint. On the P4080 this
cacheisinline, with the two DDR2/3 memory interfaces.
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2.2.3 Interfaces

With architectures built for strong computational performance and data throughput, only one piece of the
solution remains—external interfaces to pump the huge volumes of incoming and outgoing data.
Freescal€'s approach has been to go with a high degree of integration of common devices. Both the Power
Architecture and Starcore devices can be seen with high-speed interfaces, such as Gigabit Ethernet, Serial
RapidlO, PCI Express and general buses. Common low- and medium-speed interfaces, such as UART,
SPI, I°C and USB, arehandled easi ly by any core, but for the enormous flow of data associated with 10-Gb
Ethernet interfaces, the work must be divided up between the cores.

With the Qorl Q family, Freescale introduces the concept of hardware off-loading through the frame,
queue, and buffer managers, shown in Figure 2-1. The frame manager isthe central part that connects
directly with the Ethernet interfaces. Packets are then brought into a parser and classifier unit that inspects
the packet headers, including higher layer protocols up to L4, both standard and user defined as well as
user tunneled. Based on pre-configured settings the packets are then sent to different queues, forwarded
for decryption, sent out on a different interface, thrown away etc. Thisisall done at line rate even with a
load above 10 Gbps per frame manager. For example, we may decide to assign each core a unique IP
address but have all TCP packets to port 80 (HTTP) and port 22 (secure shell) sent to core 0. All UDP
packets spread evenly between cores 4-7 and ARP traffic to core 1. Asthe data gets classified and divided
up, the buffer and queue managers (Bman and Qman) take over. Because the buffers are already handled
by the hardware, this concept changes and s mplifiesthe way that the driversin an operating system work.
The focus can instead shift to data-path configuration.

2.2.4 Debugging and Profiling

With ever-increasing system complexity, the demand for deeper insight into what happensin the chip is
needed to find bugs and optimize performance through profiling. Freescale high-end DSPs and GPPs have
long had JTA G-based interfacesto support run-time control and debugging aswell asfor reading out trace
buffers and profiling counters to see how the program executed, what took time, how many cycles were
wasted on stalls, and what the reason was. Although thisis slightly intrusive, this data can a so be read out
by running software and operating systems, thereby allowing for transmission over standard high-speed
interfaces.

The on-chip debug functionality isnow expanded to alow for insight into the switch fabric, datamanagers,
and coreinteraction. The P4080 has, a ong with the JTAG connector, also aNexus port directly to memory
or over an Aurorainterface. Thisinterface has Gigabit bandwidth and can be used to send not only
information on program execution but also information on what data is processed. With a powerful
external acquisition unit this data can be recorded and as bugs appear, the user one can go through the
execution history and identify the root cause. Figure 2-6 depicts the possibilities and shows both the JTAG
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emulator as well as the trace probe. Theseiin turn interface with the CodeWarrior® devel opment tools on

an ordinary PC.
SoC Events Events
> Peripherals < > -

Scan A

— Events Nexus Transactions
_<—> Performance ——>» PCle/sRIO
I frace Transactions

Run Convol > AR NGKUS

Probe Watchpoints A Trace
' Trace l 3
Trace Nexus Port <— _
L Controller Trace
J Trace
_J Trace Buffer > Aurora

SERDES
to Trace Probe

Figure 2-6. Debug Interface

2.3 Conclusion

The transition to multicore devices involves much more than simply adding cores. The glue between the
cores hasto change from abus architecture to switch fabricsthat allow many to many parallel connections.
New approaches to core designs, such as Freescal€'s cores based on SC3400 Starcore and €500 cores, are
needed that adjust for those changes, and those adjustments are facilitated by modern and flexible
architectures the provide new functionality that simplifies core-to-core communications. One key
problems is how to divide the incoming data among the cores, especially with the high-bandwidth
interfaces. One possible solution isthe introduction of hardware managers. Hardware and software are
being codevel oped to address the new challenges and to leverage the many new possibilities, that will
advance overall computational performance.

Embedded Multicore: An Introduction, Rev. 0

2-10 Freescale Semiconductor



Embedded Multicore: Software Design

Chapter 3
Embedded Multicore: Software Design

—John Logan and Jonas Svennebring

Designing software for embedded multicore devices raises new questions
compared to designing for a single-core processor. How do | partition the
tasks in my application to achieve the most from the hardware? Should |
choose an SMP or AMP software architecture? Which communication and
synchronization issues should | consider between tasks?

This chapter explores software design and asymmetric multiprocessing. It
includes the following sections:

* Section 3.1, “Amdahl’s Law,” and Section 3.2, “ Gustafson’s Law,”
examine the two concepts that are useful for evaluating parallel
algorithms—Amdahl’s Law and Gustafson’s Law.

» Section 3.3, “Parallelism,” examines task and data parallelism.

»  Section 3.4, “ Symmetric and Asymmetric Multiprocessing,” introduces
the concepts of symmetric and asymmetric multiprocessing, which are
discussed in greater detail in Chapter 4, “Embedded Multicore: SMP
and Multithreading.”

* Section 3.5, “Processes and Threads,” discusses the use of processes,
threads, and locks in embedded multicore systems.
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3.1 Amdahl’'s Law

The basic aim of a multicore processor isto increase application performance by allowing multiple tasks
to runin parallel. This can involve running multiple independent tasks in parallel, multithreading one
application so that it runs across multiple cores, or some mixture of both.

For atypical application, thereis a portion that cannot be parallelized (called the serial portion) and a
portion that can. Ideally, the serial portion isvery small. In the 1960s, a computer architect at IBM named
Gene Amdahl formulated the equation shown in Equation 3-1, which isreferred to asAmdahl’sLaw. This
equation is used to predict the maximum speedup that can be expected in atypical application.

Speedup = 1/(S+(1-S)/N)

Where: Sis the portion of algorithm running serialized code
N is the number of processors running parallelized code

Amdahl’s Law Eqn. 3-1

For example, consider an image-processing algorithm running on afour-core device (N = 4). Sixty percent
of the application can be parallelized across all four cores, and 40% (S= 4) cannot be. WithN = 4 and
S= 0.4, the expected speedup is as shown in Equation 3-2

Speedup = (1/(0.4+ (1-0.4)/(4)))= 1.82
Example Speedup for a 60% Parallelizable Application in a Four-Core System Eqn. 3-2
An algorithm that took 10 seconds, now completesin 5.49 seconds.

According to Amdahl’s L aw, the maximum possible speedup is limited by the proportion of the serial
portion (S) of the application. As more processors are added to the parallelized portion (that is, as N
increases), the rate of speedup decreases. See Figure 3-1, which shows curves for Amdahl’s Law with
varying number of cores and varying sizes of serial portion. As more cores are added, the speedup tends
towards /S, as shown in Figure 3-1.

14
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Figure 3-1. Amdahl's Law: Speedup as a Function of Number of Cores
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Amdahl’s law seems to impose a fundamental limit on the performance boost achievable with multicore
processing; however it makesafundamental assumption about the application. Amdahl’s Law assumesthe
problem sizeisfixed, that is, the ratio between the serial and parallel portions does not change. For
example, in our image-processing example, this would mean you process only a fixed size or number of
images. Otherwise, the complete algorithm (serial portion + parallelized portion) must be rerun on each
run. In many applications, afixed problem size model is not appropriate.

3.2 Gustafson’s Law

There are many examples of applicationsthat do not have afixed problem size. For example, in anetwork
routing application, there may bean initial configuration phase that cannot be parallelized, followed by the
main task of routing and processing data packets. The number of packetsis usually unknown; indeed the
design goal may be to handle as many packets as possible. In such a system, it’s easy to see how adding
more cores could boost performance—each core can receive a new packet to process when it has
completed processing the last packet. Adding more cores means more packets processed in parallel.

In such a system, the relative size of the serial portion decreases over time and the parallelized portion
grows. Gustafson’s Law, named after John L. Gustaf son, statesthat the speedup for such asystem—known
as scaled speedup—is as follows:

Scaledspeedup = N+ (1-N) xS

Where: Sis the serial portion of algorithm running parallelized
N is the number of processors

Gustafson’s Law Eqn. 3-3

Gustafson’s Law shows that for a system where the problem size is not fixed, performance increases can
continue to grow by adding more processors. Figure 3-2 shows curvesfor Gustafson’s Law with different
valuesfor the serial portion and number of processors. Notice how speed continues to increase with more
cores.
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Figure 3-2. Gustafson’s Law
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3.3 Parallelism

We now have some simple formulae for evaluating the effects of running an application on a multicore
processor. Let’slook at different types of parallelism and how an application can be spread across multiple
cores.

» Task parallelism occurs when each core executes a different task. For example, imagine aword
processor application. It can run multiple tasks in parallel on the same data file, such as updating
the display, spooling information to a printer, or performing a word count.

» Data parallelism occurs when multiple cores execute the same task on different data sets, such as
running the same algorithm on different sections of an array or running the same algorithm on
different data packets.

For example, consider an | P-network router application that receives data packets on anumber of network
interfaces and that must route the data from the correct ingress port to the correct egress port. The router
receives | P packets containing different types of dataflows. It needsto identify each dataflow type, apply
the appropriate processing and route the flow to the correct destination. An algorithm could be written to
perform this task. An instance of this algorithm could be run on multiple cores of a multicore device to
allow it to handle multiple data flows in parallel. This would be an example of data parallelism.

In addition to handling packets for the data flows, which compose the data plane of the router, the router
application must also handle control and configuration tasks, which compose the control plane. The
control plane contains a diverse range of tasks, such as routing table updates, making statistical
measurements, and handling error conditions. Therefore, it needs to run different tasks in parallel—task
paralelism.

The high-level block diagram in Figure 3-3 illustrates how the router application can be implemented on
an 8-coredevice, such asthe Freescale Qorl Q™ P4080 family of communication platforms, with data path
and control path spread across the cores.

Data Parallelism Task Parallelism

Pool of cores running the control plane.

P : ; Multiple control tasks can be executed
Each core running |dent|cr|;1l Packet Processing Loop in parallel. OS load balances cores.

CPU CPU CPU CPU CPU
Running Running Running Running Running
Packet Packet Packet Packet Packet CPU CPU CPU
Processing  Processing Processing  Processing Processing
Loop Loop Loop Loop Loop
Data Flows—TCP, UDP, RTP, etc. Control Data—ARP, RTSCP, etc.

Figure 3-3. Block Diagram of Router Application

3.4 Symmetric and Asymmetric Multiprocessing

Multiprocessing has historically been designed for heterogeneous devices such as math, audio, graphics,
or communi cation co-processors. Thelatter has been very successful for Freescal e dueto the devicesbased
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on QUICC Engine™ technology. Thistype of multiprocessing is called asymmetric (AMP or ASMP)
because the cores are different or have different system views and hence cannot share the burden of one
task between them.

Due to theinability to increase core frequency, multiprocessing has recently been used to increase the
computationa performance of the device itself, which requires devices with multiple identical cores. By
having identical, equal powered cores with full access to the memory we get a symmetric hardware.
Symmetric multiprocessing (SMP) has many advantagesfor simplifying software design. We will explore
these advantages in Chapter 4, “Embedded Multicore: SMP and Multithreading.” Although symmetric
hardware allows for SMP software, it does not have to be used that way. Each core could be dedicated for
aspecific task just as easily. For example, one core could have industrial control with real-time
functionality, and the other could have user interaction.

The next chapter will focus on SMP software design and operating system functionality.

35 Processes and Threads

Processes and threads are the two mechanismsthat allow an operating system thread

(OS) to provide parallel processing. Theterm ‘process’ describes an instance Anflovg: gUnﬁguctiggs rr]ltjlnr#n?n
of aprogram being executed. It has an associated address spaceand aprocess  othar flows. - oY O
control block, which contains attributes and state information about the

process.

Each process contains one or more threads of execution, or threads. A thread is a basic unit of program
execution consisting of aflow of instructions that run on a CPU independently from other flows. Threads
within a process share the address space and resources. An SMP operating system schedules threads for
execution on the available cores on a device. On a single-core device, threads are time-diced to give the
illusion of multiple tasks running simultaneously. On a multicore device, threads can be truly runin
paralel.

For an operating system, switching between processesisarelatively heavyweight task. Typically, context
and state information hasto be saved for the old process and |oaded for the new one, and changes must be
made to memory mapping. Swapping between threadsin a processis amore lightweight task because the
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address space and resources are common. Figure 3-4 shows the relationship between processes and
threads.

Process 1 Process 2 Process 1

Time Thread 1 Thread 2 Thread 3

- >

T e

Heavyweight Swap Lightweight Swap
Y

Figure 3-4. Processes and Threads

To illustrate the difference between processes and threads, we conducted a test on a Freescale MPC8548
running Linux 2.6.23 in which welooped a create and destroy cycle 500,000 times. Asa process, thistook
115.82 seconds, but as athread, it took only 40.81 seconds. These results are architecture dependent, but
the comparison roughly characterizes the complexity differences between a process and athread.

3.5.1 Task and Process Mapping

In a desktop PC, the operating system takes care of scheduling and running processes and threads. M ost
desktops run using an SMP operating system—one OS running across all cores—where processes or
threads can be mapped to any core. In most cases, the operating system attemptsto run threads on the same
cores each time they execute. This boosts performance when caches are already |oaded with the required
data from previous runs.

Embedded Multicore: An Introduction, Rev. 0

3-6 Freescale Semiconductor



Embedded Multicore: Software Design

Thislinking of threads to specific coresis called processor affinity. Processor
affinity hastwo forms: soft affinity and hard affinity. Soft affinity existswhen
the OS prefersto link a process/thread to a specific core, but can choose
another if needed. Hard affinity exists when the user/programmer specifies
exactly where the process/thread should run. The OS also performs |load

bal ancing—spreading the required tasks across cores to minimize waiting.

In an embedded application, it may not be desirable for an OS to completely
control mapping of the tasks using soft affinity. Returning to the I P router
application example, there are two classes of tasksto be done: data plane and
control plane. Data plane tasks handle packets and data flow, such as VOIR,
video streams, and network gaming. Thesetypically requirelow latency, and
the system designer must guarantee some Quality of Service or throughput
figuresfor the design. If the data path can be mapped to a specific subset of
cores using hard affinity, it is much easier to design and test for these
requirements. The control planeislesssensitiveto latency and hasalarge mix

processor affinity

Modification of the native
central queue scheduling
algorithm. Each queued task
has a tag indicating its
preferred/kin processor. At
allocation time, each task is
allocated to its kin processor in
preference to others.

soft (or natural) affinity

The tendency of a scheduler to
keep processes on the same
CPU as long as possible

hard affinity

Provided by a system call.
Processes must adhere to a
specified hard affinity. A
processor bound to a
particular CPU can run only on
that CPU.

of different tasks. It is desirable to map these tasks to another subset of cores and allow the OSto schedule
them as appropriate.

Within these two subsets, users may wish to further constrain tasksto particular cores. For example, on the
data plane, it may be possibleto have onetask per corerunning avery fast algorithm to process data flows.
If each task has asingle thread, the OS scheduling overhead would be removed. Indeed, if this were
possible, it could be possible to run the parallel data plane algorithms without afull OS.

3.5.2

In the early days of computing, users used polling to check for events such as received data on the serial
port and key presses on the keyboard. However, for applications with many such possible events, checks
with nothing to report wasted time. Moreover, if the event was a burst of data, the first data could have
been overwritten by data arriving later by the time polling detected the event.

Run to Completion

To address this, interrupts were introduced. Just as it sounds, interrupts permit the event to interrupt the
core, which responds by handling the condition associated with the event. When finished handling the
interrupt, the core returns to its previous work. The advantages to interrupts are many, but disadvantages
also arise when there are large numbers of incoming interrupts. Interrupts have an overhead latency
required of jumping to and from the event with registers, stack, privilege level etc., to be shifted out when
theinterrupt is called for and back in again when it returns. Hence the interrupts are taking core cycles
away from the regular applications.

Multiple cores have the flexibility to alocate interrupts among themselves. As described in Chapter 5,
“Embedded Multicore: SMP Operating Systems,” users can clear out a core and useit only to
batch-process data. This principle of run to completion is similar to polling, but in this case, other cores
use interrupts to handle events. Polling for more data is only required after a set is processed.

Embedded Multicore: An Introduction, Rev. 0

Freescale Semiconductor 3-7



Embedded Multicore: Software Design

Such an approach yields higher core utilization and a so less complex bare metal

software asit can run with avery limited OS or even on bare metal. Freescale  Bare metal (or bare board) is
refersto this asan LWE (lightweight executive) and supportsitwith arich st ghouio enthe hadwarer 6
of library functions. The LWE contains standard functionality, such as g‘:}gﬁg?n‘évgggg an underlying
memory management, aswell as device drivers and protocolsto interact with '

operating systems running on the other cores.

3.5.3 Interprocess Communication and Synchronization
In a system with multiple threads and processes, some communication pipes
between processes is needed to pass information or status. Most operating Software connections
. . . - between programs. e.g., in
systems provide a set of functions to allow inter process communications Linux command line “Is *.c >

(IPC) and to enforce synchronization. Pipes, sockets, message queues, and grep main”

signals are common constructs used to provide communication. This

document does not look at communication mechanisms in detail; OS documentation should contain full
details of the resourcesit provides.

Synchronization is required between threads to prevent them from working on the same data or on shared
resources at the same time, which causes data corruption. This can be achieved by adding functions to
protect the application’s critical sections, which are the sections of code that manipulate shared data. Most
operating systems allow arange of synchronization functions based on two types—semaphores and mutex
(mutually exclusive) locks.

3.5.4 Semaphores and Locks

A semaphore allows or blocks access to a section of code. It consists of two  proeberen and verhogen
operations—atest function and an increment function—which useaninteger  Proeberen is Dutch for “Try’,
; ; _ ; . Verhogen is Dutch for
variable. Asshown in I_Example3 1, there are two functions: P (proeb(_aren, ‘Increment'—so named by
test) and V (verhogen, increment). Both operate on the semaphore variables.  Edsger Dijkstra, the Dutch
computer scientist who

Example 3-1. Semaphores defined the functions.

P(s)

{

s = s-1; /*This nmust be an atom c operation*/
wait until s >= 0 {}

}

V(s)

{

s = s+1; /* This must be an atom c operation */

}

Imagine a scenario where A and B are two threads that engage in the following sequence of actions.
1. Thread A and Thread B try to access the same critical section of code; sisinitially set to 1.
2. Thread A enters P function and decrements s (s = 0).

3. Thread A can continue to execute the critical section. Meanwhile, Thread B also enters P and
decrements s (snow = —1). Thread B must wait while sisless than O.

4. Thread A runsthe critical section and enters the V function, incrementing sto O.
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5. Thread B can stop waiting and execute the critical section.
6. Thread B finishes and runsthe V function, incrementing s (s= 1).

The increment and decrement functions can be implemented in software, but are commonly implemented
with aspecial bit test and set atomic instruction to ensure that thereis no task switch between test and set.
In Freescale's Qorl Q family, the CoreNet switch fabric also hasfunctionality that ensures exclusive access
between the cores such that only one core has accessto thelock-bit at any given cycle. The Starcore family
can do similar operations with cache configurations; they also have special hardware semaphores. Such
techniques simplify software design.

In the above example, athread waiting for the semaphore prevents a core from executing any other code;
the core sitsin aloop waiting. Most operating systems add wait queues to prevent this from happening.
When athread iswaiting for a semaphore, it is put on await queue. The OS can then schedule another
thread to run on the core. When the semaphore become available (s> 0), the thread istaken off the wait
gueue and can resume operation. Semaphores can have values greater than 1, allowing more than one
thread to share the resource at the same time. Thisis also useful for sharing resources that can support
multiple clients.

Figure 3-5 depicts a critical section of code containing a shared data structure, in this case array a[] .

Program Code

s=1
Acquire semaphore/lock
P(s)
for(l =0; i < 1000; i++)
{ Critical section
— . (Array ‘a’ is a shared
al[i] =b + c*i; data structure)
}
P(s)
Release semaphore/lock

Figure 3-5. Using Semaphores to Protect a Critical Section

Mutex locks, or locks, are similar to semaphores, but alock can only alow one thread accessto a critical
section. Typically, alock has acquire and release functions. Chapter 4, “Embedded Multicore: SMP and
Multithreading,” addresses this topic further, explaining common issues and how to optimize lock usage.
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Conclusion

At this stage, we have some ideas about how to partition a system. Figure 3-6 shows a block diagram of
the application partitioning, providing an example of implementation on areal machine. The control plane
processing is donein asingle SMP configuration running, for example, Linux. The data planeis
implemented using coresrunning AM P mode with an identical packet processing loop. Each of these could
run an RTOS (real-time operating system) such as Enea’'s OSE® or as an LWE. Within each of the two
planes—data and control—thereisroom to further parallelize specific parts of each task’salgorithm. Tools
such as Amdahl’s and Gustafson’s laws can be used to estimate the performance with particul ar
algorithms, allowing one to make ajudgement on the best solution.

Virtual Virtual Virtual Virtual Virtual
Machine Machine Machine Machine Machine

Virtual
Machine

RTOS/LWE

Shared | Interrupt
Cache | Controller

Figure 3-6. Network Routing Application
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Chapter 4

Embedded Multicore: SMP and Multithreading

Embedded Multicore: SMP and Multithreading

—Jonas Svennebring

As discussed in the previous chapters, multicore processing overcomes
many barriers found in single-core computing, particularly in terms of
performance and power management. Symmetric multiprocessing (SMP)
smplifies the changes required to reap the full benefits of migrating to
multicore. However, in order for the operating system to balance an
application over the cores, software must be retooled to take advantage of
parallelization.

This chapter describes different techniques for parallelization and explains
how to implement them. It includes the following sections:

Section 4.1, “ Introduction to Symmetric Multiprocessing,” summarizes
advantages and disadvantages of symmetric multiprocessing.

Section 4.2, “Parallelized Application Designs,” describes the three
primary design approaches to parallelization: master/worker, peer, and
pipeline.

Section 4.3, “Macro- and Microparallelization,” describes different
levels of parallelization and the support provided by the POSIX and
OpenMP multiprocessing standards.

Section 4.4, “ Performance Constraintsand Common Pitfalls,” describes
special concernsfor working in amultiprocessor environment, and how
to address them through the use of various locking strategies.
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4.1 Introduction to Symmetric Multiprocessing

Symmetric multiprocessing (SMP) is a system with multiple processors or a device with multiple
integrated cores in which all computational units share the same memory. This chapter focuses on the
latter. With the support of an SMP-aware operating system, each core can be |oad-balanced to ensure that
the workload is evenly distributed across the system for maximum overall performance. Because the
memory is shared, any core can handle any task at any time. The operating system scheduler assignsatask
for each core rather than selecting one task at atime to run system wide.

An advantage of SMP systemsistheir rel ative ease of implementation; they work similarly to asingle-core
system, but with maximum performance proportionate to the number of cores, asdescribed by Section 3.2,
“Gustafson’s Law.” The focus shifts to the application and how to partition it into different tasks, asis
described in the following sections.

The disadvantage of SMP is scalability. Commonly, 8 to 16 computational units are believed to be the
maximum number of coresthat improve performance. Thisisduein part to Section 3.1, “ Amdahl’s Law,”
which shows that even asmall amount of sequential code reduces scalability. It istherefore important that
the operating system functionality alows a high degree of parallelization and that system calls from one
task do not stall another. On the hardware side, the memory structure also limits scaling of SMP. Because
each core needs to access the shared memory, increasing the number of cores increases the number of
access stalls.

Both of these limitations can be addressed as the number of cores on devices approaches the scaling limit.
With respect to software, the kernel and libraries can be reworked to better alow multiple s multaneous

cals, limit semaphore locking, or other needs. The hardware architectures can replace the bus connection
with more scalable switch fabrics, multiple memory interfaces, and advanced hardware coherent caches,
as described in Chapter 2, “Embedded Multicore from a Hardware Perspective.”

Another solution is to break the SMP guideline of attaching all cores to a common shared memory. A
nonuniform memory architecture (NUMA) provides separate memory resources that are only availableto
asingle core or subset of cores. Then, through a slower connection, one group of cores can accessthe other
group’s memory and the scaling can continue. However, NUMA complicates task scheduling for the
operating system because a particular task cannot be scheduled freely to any other core at any time without
incurring an initial penalty in transferring the data to a different memory block. To some degree this extra
complexity isaready there, inasmuch as cache usage givesa penalty if tasks are transferred between cores.
Most SMP systems have processor affinity awareness and take the hardware design into account when
scheduling. Chapter 5, “Embedded Multicore: SMP Operating Systems,” discusses this in the context of
Linux.

For future SM P devel opment, device performanceis not ssmply amultiplication of the number of cores by
their individual raw performance. True performance with multicore devicesisnot equal to number of cores
timestheir performance. Freescale ispushing for fewer but stronger cores, rather than taking the approach
of competitors who have many weak cores, which in the end, resultsin poorer performance because of the
inability to scale well. If the surrounding software support and hardware glue is not good enough, the
outcome could be very low system performance.
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4.2  Parallelized Application Designs

A parallelized application typically has one of the following designs:

Master/wor ker One master thread executes the code in sequence until it reaches an area that can
be paralelized. It then triggers a number of worker threads to perform the
computational intensive work. Once finished, the worker threads turn the result
back to the master and become dormant.

Peer Like the master/worker design except that the master also functions as a peer
(worker) sharing the intensive computational work, which saves athread. Both
approaches target applications that have a sequential portion that is difficult to
remove, requiring a combination of concurrent and sequential execution.

Pipelined A pipelining approach can be be applied to application design. By dividing the
applicationsinto aseries of smaller, independent stages—where the output of one
stage is the input to the next—each stage can be placed on a different core,
forming a series of decoupled stages in a pipeline. These parts might be such
things as different protocol stack layers or specific functions such as
encryption/decryption. Pipelining can be very powerful if the degree of
parallelization is high, but it may take some effort to generate a constant
throughput: pipeline stages should have the same execution latency and they must
be tuned such that one stage does not become a bottleneck or, worse, that failure
at one stage crashes the system.

4.3  Macro- and Microparallelization

The concept of multitasking was introduced to account for one task wasting a disproportionate amount of
timewaiting for IO, with theactual computational load composing asmall fraction of the overall execution
time. Through multitasking, one core can handle multiple tasks, each having almost the same performance
asrunning by itself. However, the driving factor for multicore multitasking is different: to maximize the
load on each core. The portions that should be parallelized and distributed among the cores are those
portions that are computationally most intensive.

The traditional way of parallelizing tasksisreferred to as macroparallelization
macroparallelization, where a user or application assigns alarger portionof A taSL(]’ process, or tpt(er?d fis
work to one task, which is then implemented by aprocessor athread. This  \ork The coda s largely
can be auser or agroup of usersin aclient-based application such asa ?nugglrr‘]%rggﬁp?gf ;:g;tggsof
database or web server. |t can also be a specific type of work suchastheuser  yacrotasks should outnumber
interface to an application. In such cases, the paralelized task “livesitsown  cores.

life” in that it makes complex decisions, such as error handling, and also

executes for alonger time. Because the tasks spend a lot of time waiting for 10, to maximize core

utilization, the number of macrotasks should be greater than the number of cores.

To maximize performance in amulticore device, and thereby keep each core microparallelization

busy with work, computationally intense parts of an individual macrotask can ;%rglfértgglésé are tr)ggﬁttesntw;?
be parallelized into microtasks—small segments such as aloop or a are performed u%der the
independent function calls that the microtasks divide up among themselves.  control of the main task.

Each microtask performs a narrowly defined amount of computational work
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and then provides the results to the main task. Unlike macrotasks, the number of microtasks should not
exceed the number of cores, or they compete individually and add switch overhead.

Example 1 shows how aloop is divided into three parts using OpenMP, which is discussed in the

Section 4.3.2, “OpenMP” section.

Example 1. Microtask Example

void Main() Core 0
{
int bufferSize;
byte buffer[];
0-499
whil e(Lffel sGood() == true){

buf ferSize = Get NewDat a( buffer);

#pragnma onp parallel for

for (i=0; i < bufferSize; i++){

500-999

Core 1 Core 2

1000-1499

Microtasks and macrotasks can be combined, in which case the operating system must handle how threads

should be scheduled and balanced among the cores.

43.1 POSIX Threads

POSI X threads, or Pthreads, isathread API that is part of the POSI X standard
for portable operating systems. Initialy, the POSIX standard targeted
UNIX-like systems, but since its release in 1998, it has grown. Today, itisa
standard commodity that provides a dependable foundation for multicore
applications.

The APl islimited inits complexity, containing roughly 60 functionsthat are
grouped into three function classes. Thread management contains basic
functionality for creating and terminating threads, handling change status,
and configuring general attributes. Thereisalso aclassfor mutex locks, used
for synchronizing threads and resource usage. Lastly thereis aclass for
conditional variables, which allows communication among threads that share
amutex.

POS X (portable operating
systeminterface)

A family of related standards
specified by the IEEE to define
the API.

POS X threads (Pthreads)

A thread API for portable
operating systems.

mutex (mutual exclusion)

algorithms used in concurrent
programming to avoid the
simultaneous use of a
common resource, such as a
global variable, by sections of
critical code.

Because threads run on a shared memory, they do not need a specific memory-sharing functionality. A
global variableisvisibleto all threads. However, it isimportant to use the mutexesto ensure that no other
thread is updating a variable at the same time. There are aso other parts of the POSIX standard, such as

message passing, that deal with surrounding functionality.
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Example 2 showsasmall program that creates two new threadswhilethe main thread continuesto execute.
Support for Pthread iswidely available; for example, the CodeWarrior debugger spawns a new debug
window for each additional thread and allows separate control. Compilers also commonly support
Pthreads, and in this example we have used the GCC compiler: gcc -1 pthread test.c

Example 2. Pthreads

#i ncl ude <stdio. h>

#i ncl ude <pthread. h>

voi d Thread_Mai n(void *threadid)
{

int *tid=(int *)threadid;
printf("Worker Thread %d\n",tid[0]);
for(;:);

int main(int argc, char *argv[])

{
pthread_t threads[2];

int id[2]={1,2};

pt hread_creat e( & hreads[ 0], NULL, (void *)Thread_Main, (void *)& d[0]);
pt hread_creat e( & hreads[ 1], NULL, (void *)Thread_Main, (void *)& d[1]);

printf("Main Thread\n");

for(;:);:
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4.3.2 OpenMP OpenMP (open multiprocessing)
An API that supports

OpenMP is a multiprocessing standard that was first released in 1997. multiplatform shared memory

OpenMP facilitates adding thread functionality to C/C++ programs muclzt}?:rff%snséngo?{%gr:%?rrwggy

usingpragmas, which are an instruction to the compiler. In OpenMP, architectures.

pragmas, which start with onp.., are translated into afunction or library call.  merosscaielvation

OpenMP is built on top of Pthreads, but requires a special compiler and pragma (pragmatic information)

libraries for support, as well as a multithreaded operating system. OpenMP  General compiler-specific

. . . ) : : compiler directive in C/C++;
has been growing rapidly and has been included with GCC since Version 4.2. pragmas are generally not

You can compile your program easily by using gcc -fopennp test.c standardized. For example, a
pragma can instruct the
_ i compiler to align instructions or
Whereas Pthreads can be used to create both macro- and microtasks data in memory, Another might
(although the latter can be tedious), OpenM P mainly targets set optimization level.

microparallelization, as shown in Example 3. After amaster thread is

started, work-sharing commands such as FOR and SECTION cause it to fork and execute in multiple
threads. A loop can be divided statically so that each thread has an equal amount of work. However, in
many cases the operating system does not balance each core equally with other tasks, and the loop does
not return to the master until thelast thread compl etes. Therefore, more complex schedul ers should be used
for load balancing among specific application’s threads.

Example 3 showshow adataarray can be divided among the threads so that each core obtainsanew chunk
of data upon completion of the previous chunk. In thisexample, core 1 isthe fastest and core 3isthe
dowest, which affects how the work is distributed. For dynamic scheduling, the chunk size is equal to or
smaller than 1 + n, where n equals the number of cores. For guided scheduling, the chunk size decreases
incrementally to minimize the amount of time that the last core is executing by itself.

| data[SIZE]

Static Scheduling

Core

o NN

1
2
3

Dynamic Scheduling
Core

w NP

Core

Figure 4-1. Scheduling of Parallel Loops under OpenMP
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Example 3. Work Sharing

for — split up operation among threads.

section— assign independent code blocks to different threads.
single— block is executed by one thread

master— lock executed by master, no implicit barrier at the end

int main() int main()
{ {
int i, buffer[1000]; #pragma onp parallel sections
{
#pragma onp parallel for #pragma onp section
for (i=0;i<1000;i ++) cal cul ateA();
buffer[i]=i+1; #pragma onp section

cal cul ateB();
return O; #pragnma onp section

} cal cul ateC();

Thread synchronization is a key element to ensure that the threads move along as planned and that there
are no conflicts among threads attempting to work with the same data at the same time. A barrier ensures
that all threads reach a point before they can continue; a barrier is typically implicit after awork-sharing
clause when worker threads join up with the master. Implicit barriers can be removed, which isbeneficial
for multiple independent loops in asingle parallel region. Critical and atomic are standard functionalities
that ensure data in critical sections can be accessed by only one thread at atime; typically thisis
implemented using a Pthread mutex.

OpenMP supports barriers and critical sections as shown in Example 4.

Example 4. Synchronization Clauses under OpenMP

barrier—all threads wait at this point until the last thread gets here.

nowait—removes implicit barriers.

critical—mutual exclusion, only one thread will be in this section at a time.
atomic—similar to critical, advice compiler to use special hardware if possible.
ordered—the structure block is executed in same order as if it was a sequential program.

int foo()

{
do_init();

#pragma onp parall el
printf(“Hello%\n”, omp_get _thread_num());
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Example 4. Synchronization Clauses under OpenMP (continued)

#pragma onp barrier _

i f (onp_get_thread_num()==0)

printf(“We have % threads\n”, onp_get_num threads());

return O;

}

Inaparallel section, such asaloop, each thread hasits own copy of theindex variable. By default, all other
variables that are not defined within the parallel section are shared. However, it is possible to change this,
as Example 5 shows.

Example 5 also shows that isis possible to copy larger sets of shared data into a private set aswell asto
broadcast private data. Typically, the computational work in aloop isto update a shared dataset with new
information or the opposite, to calculate a single value such as a checksum from a dataset. By using
reduction and specifying an operator, users can merge each thread’s individual result into afinal result in
the master thread.

Example 5. OpenMP Data Scope

shared—YVisible to all threads

private—All threads have their own copy
firstprivate—private but init value taken from master thread
lastprivate—private but exit value from last iteration/section

reduction(op: var) »>nerge results frommultiple iterations

op: +- * && | || »
X[ N];

mai n()

{

int i, j, k;

#pragma onp parallel for reduction(+:j) lastprivate (k)
for(i=0; i<N;, i++)
{
k = j9%o0;
o= x[i] + kK
}
}

OpenMP a'so contains an API for run-time functions, environment variables, and other functionalitiesfor
data and task parallelization. For more information, see www.openmp.org.
4.4  Performance Constraints and Common Pitfalls

By its nature, parallel software works on a shared dataset. At the same time, the dataset must be updated
in a structured way, or the software can suffer from race conditions (read—modify—write). The solution is
to use different types of locks to guarantee that only one thread at atime can enter into a critical region to
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update the data (see Chapter 3, “Embedded Multicore: Software Design,” for more information). These
locks can also be expanded further, for example, as conditional variablesto trigger on amemory region or
barriers that ensure that all threads are synchronized at a given point in the program before they continue
execution.

The use of locks is not new to multicore software design, and the implications are smilar to those
introduced with multitasking. But when aprogram runson truly paralel hardware, the effects of software
bugs are both more obvious and frequently encountered compared to a semiparallel single-core device. In
asingle-core system, the operating system apportions time slices to each thread, and the probability islow
that a read—modify—write operation will be split by atime dice such that another thread updates the
specific datain between the operation. Programs on parallel hardware devices are more vulnerable to such
errors.

Thefollowing are some of the common pitfallsto be aware of when working with multithreaded software:

* Race conditions
Multiple threads access the same resource at the same time generating an incorrect result. For
example, Thread A reads out the balance of a bank account, adds $100, and writes the result back.
Parallel thread B reads out the same bank account, subtracts $200, and writes its result back.
Because both updates are done before any thread writes the result back, only one of them affects
the account balance.

» Deadlocks
Although locks are the solution to securing access to data structures, locks can aso create
problems. A deadlock situation occurs when two threads need multiple resources to complete an
operation, but each secures only a portion of them. This can lead to both threads waiting for each
other to free up aresource. A time-out or lock sequence prevents deadlocks.

* Livelocks
A livelock occurswhen a deadlock is detected by both threads; both back down; and then both try
again at the sametime, triggering aloop of new deadlocks. Randomizing the allocation algorithm,
for example by waiting a random time before trying again, can remove livelocks.

* Priority inversion
Thisoccurswhen ahigh-priority thread waitsfor aresourcethat islocked for alow-priority thread.
With threads also running at normal priority, there can be considerable delay before the
low-priority thread executes. A common solution to thisis to temporarily raise the low-priority
thread to the same level as the high-priority thread until the resource is freed.

Synchronization isessential to concurrent programs, but the efficiency with which thisisimplemented has
considerable impact on performance. As was shown in Section 3.1, “Amdahl’s Law,” software running
with 95% parallelization on a 10-core device yields only a 7x performance boost. Below are strategiesto
consider for optimization:

* Lock granularity

If possible, place locks only around commonly used fields and not entire structures. Make all
possible pre- and postcal cul ations outside of the critical section. This minimizestime spentin a
critical section.
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4.5

Lock frequency

Use locks only when needed and minimize synchronization overhead. Lock frequency and lock
granularity must be balanced; lower granularity can require higher frequency. Users must evaluate
the advantages and disadvantages of |ocking multiple fields with one lock.

Lock ordering

Make sure that locks are taken in the same order to prevent deadlock situations. In POSI X -based
systems, thereisatryl ock() that allows the program to continue execution to handle an
unsuccessful lock. Use this when needed and uni ock() resources when al of the locks cannot be
obtained.

Scheduling

Different scheduling algorithms can affect performance and response time. There aretypically a
number of schedulersin the system, with the operating system’s process/thread scheduler as the
most important. But a specific process can also have its own thread implementation and schedul er.
Another example is OpenMP, with different schedulers for distributing load between the
threads/cores. The scheduler should be tuned to the desired behavior, such as maximizing
throughput, core utilization, fairness, or response time.

Worker thread pool

When using a peer or master/worker design, users should not create new threads on the fly, but
should have them stopped when they are not being used. Creating and freeing processes and
threadsis expensive. The penalty caused by the associated overhead may belarger than the benefit
of running the work in parallel.

Thread count

Ensure there are enough threadsto keep all coresfully utilized, but remember that too many threads
can degrade performance as they compete for the cores. This increases the time required for tasks
such as thread switching and synchronization. OpenM P defaults to spawn one thread per core,
which can be too many if multiple OpenM P applications are running simultaneously.

Summary

Symmetric multiprocessing has matured into a stable technology that maps well to multicore devices
supporting shared memory. SMP allows multiple cores to smoothly share the workload of an application
if it, in turn, has been parallelized into multiple processes or threads. POSIX threads offer areliable base,
with OpenMP built on top. Multiprocessing works much the same on multiple- and single-core devices.
However, true parallelization intensifies the need to properly synchronize for maximum performance and
to use locks for avoiding race conditions.

Embedded Multicore: An Introduction, Rev. 0

4-10

Freescale Semiconductor



Chapter 5
Embedded Multicore: SMP Operating Systems

—Jonas Svennebring and Patrik Sromblad

By leveraging the concept of symmetric multiprocessing, an operating
system in a multicore device with a shared memory architecture is able to
allocate core resources and | oad bal ance tasks or threads between them. The
result is simplified software development. This chapter evaluates the
following SMP operating systems:

* Section5.1, “SMP Linux,” evaluates Linux, ageneral purpose system
with abroad application base and runs on very large number of hardware
platforms,

» Section 5.2, “Enea’'s OSE for Multicore,” evaluates Enea OSE®, a
message-passing based real -time system optimized for data plane
processing with tougher requirements on stability, determinism, and low
kernel overhead.

These two operating systems target different use cases and complement

each other in away that shows the advantages of SMP across a spectrum of

OS environments.
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5.1 SMP Linux

Linux isapopular desktop OS, and Freescale has broad, well-established support for it on arange of
embedded devices, such asPower Architecture and ColdFire. Linux istightly integrated with devel opment
at multiple stages. Freescale hasitsown release, Linux target image builder (LTIB), and isfocused on work
with supporting partners such as MontaVista and WindRiver.

The SMP support in Linux was introduced initially to handle multiprocessing, with many devicestied to
the same memory, but it suits multicorejust aswell. The original SMP patch was added in 1995 to kernel

version 1.3.42, but it was not considered stable until the 2.0 releasein 1996. As aresult, this

implementation is now mature and very reliable.

One disadvantage of the Linux kernel for SMPis the requirement for
reentrant kernel calls and fine granularity locks, which is a considerable
portion of the legacy code that till relies on big kernel lock (BKL, that is,
callstolock_kernel()). Theorigina 2.0 release used BKL to lock the kernel
to one CPU for system calls as away of ensuring safe concurrency. This
locking would represent a drawback with respect to parallelization, and
therefore to performance, when scaling to alarger number of cores. The
solution isto split the BKL into fine-grained locks, but this poses a delicate
problem because often it is hard to foresee theimpacts of such achange when
other code locks and uses the protected data. An incorrect change could be
difficult to detect and could lower stability. Much work was done for version
2.2 and 2.4 to free up the locks, but in kernel version 2.6.6, there were ill
over 500 BKLs. However, many were in older, deprecated parts that will

BKL (big kernel lock)

A lock needed for SMP
support to implement
concurrency control in the
kernel.

A single, global lock is held
when the thread enters the
kernel space, for example,
after a system call, and
released when thread returns
to user space. User-space
threads can run concurrently
in individual cores. Only one
can run in the kernel space;
threads in other cores must
wait to access kernel space.
This lock eliminates all
concurrency in kernel space.

eventually go away, such as old device drivers. In general, focusing on this problem and on kernel
parallelization ensures an increased SM P scalability as devices with more cores are introduced.

51.1 Task Schedulers and Load Balancing

The OS scheduler assigns tasks to cores by assessing a number of parameters, such astask priority, how
much time the task has had, and how long it was since last run. Linux 2.6 has used an O(1) scheduler up
t0 2.6.23 when the CFS (compl etely fair scheduler) wasintroduced as the default choice. Wewill 1ook first
at the O(1) scheduler, then at how the CFS differsfrom it, and finally at how load balancing works among
the cores.

The O(1) scheduler gets its name from the Ordo notation and indicatesthat ~ Ordo (big O) notation

the scheduling time is constant over the number of tasks to schedule among.
(Constant scaling is good but does not by itself imply that it isfast, just
predictable.)

The implementation, shown in Figure 5-1, is based on two run queues. The

Notation used to describe the
complexity level of an
algorithm as it scales (for
example, O(1) refers to a
constant value; O(n) referstoa
linear scaling; O(n"2) is
quadratic;

O(n") refers to factorial).

first queue (active) contains the tasks that are waiting to run. The second
gueue (expired) contains the tasks that have recently run and therefore must
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wait for the other queue to be empty. Note that these lists of schedulable tasks do not include tasksthat are
waiting for 10.

Active runqueue Expired runqueue

Priority O W

Priority 1 D D
pioriy2 (T P> {THIHTHID
priorty 100 {HH F—> {IHEHE—
Priority 101 {_ {_ fF—— {IF———D

Priority 139
=118 _]_]_ 8] _]_]_]_J8[_]_[_[®[_ "/ |_[®I® _1_[_|_[®|_|_|_[|_|_[_]_[_1_]_]_]

Figure 5-1. Schedulers (Using a Red—Black Tree Structure)

Each of the two queues contains 140 priority levels (lower numbers indicate higher priority); the top 40
are for normal user tasks and the lower 100 are allocated for real-time tasks. The scheduler picks the first
task in the active queue of the lowest priority level and letsit run. As soon asthe allocated execution time
isused up the task is placed in the expired queue. When all tasks at the lowest priority level have run, the
expired and active queues at that priority level switch places. If all the tasks are completed (for example,
waiting for 10), the scheduler picks tasks from the second lowest priority level and so on. The tasksto be
scheduled are always placed last in their priority levels queue.

The O(1) scheduler keeps one such run-queue pair per core with individual locks on them. When a core
needs to reschedule, it looks only in its own private run queue and can quickly decide which task should
execute next. Load balancing among the cores occurs every 200 ms as a higher level scheduler analyzes
the run queues to choose which task should move from one core to another.
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Instead of run queues, the CFS scheduler, shownin Figure 5-1, uses a red-black tree

red-black tree data structure (which is aderivative of the binary-tree A binary search tree where
structure) to form afuture execution path of tasks. A red-black treeisroughly ~ Sach hode has a red or black
balanced, and has good deterministic properties such asinsert and searchis ~ following requirements:
O(log n) to the number of elements (that is, tasks). Pickingthenexttasktorun ~ * a:é’kde Is either red or

is constant. The CFSiisbased on the concept of fair queuinginwhichnouser 5 10 oot ypically black.
should get more CPU timejust becausethey run moretasks. For example, tWo 3 aj jeaves are black.

usersin a system running one task each get 50% of the CPU time. When 4. Both children of every red
user A starts a second task, they still get 50% of the CPU time, so their two node are black.

tasks must now sharethat time, and, asaresult, get 25% each. If an additional 5. Every simple path from a
third user turns up, all users must share the CPU time equally and get 33% node to a descendant leat
each with user A having 16.5% per task. The goal with CFSisto reach better number of black nodes.

core utilization in combination with interactive performance.

Both O(1) and CFS make use of sleeper fairness, in which computation-intensive tasks are penalized
relative to an 10 intensive task that can execute only infrequently. Thisensuresit is given a small
advantage because an 10-intensive task (sleeper task) needs the core infrequently.

51.2 Core Affinity

Although SM P systems have shared memory, which should alow any coreto pick up any task at any time,
there are still hardware factors that make some cores more or lesswell-suited than othersfor varioustasks.
For example, private caches have anatural affinity for atask to a specific core because the caches and
branch tables are warm. This soft affinity prevents the task from being scheduled on another core unless
there is a stronger force that pushes it there, such as an imbalance between the cores

It isalso possible to manually set a hard affinity that forces atask to execute on a subset of cores. For each
process there is a bitmask with one bit per core that determines which core the process can run on. A set
bit for agiven core indicates that the program is allowed to run on it, and a cleared bit indicates that it
cannot. The Kernel API has two basic functions to access the mask: sched_setaffinity() and
sched_getaffinity(), which are supported by a number of macros to create and decipher the mask (for
example, CPU_SET(), CPU_CLR(), CPU_ZERO() and CPU_SETSIZE()). Example 5-1 shows a
sample program that makes use of these macros to assign a hard affinity and then read it out. On an
eight-core device on which the process can run on all but core 3, the output of this program would be
“Process 35324 isallowed torunoncore: 012456 7.

Example 5-1. Process ldentity

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#define _ USE _GNU
#i ncl ude <sched. h>
#def i ne MAX_CORES 8

int main()

{
cpu_set _t nask;
int core;

[*** Wite Affinity ***/
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CPU_ZERQ( &mask) ;
for(core=0; i < MAX_CORES; core++)CPU SET(core, &nask);

CPU_CLR( 3, &rask) ;
sched_setaffinity(0, sizeof(nask), &mask);

/*** Read Affinity */
sched_getaffinity(0, sizeof(msk), &mask);

printf("Process % is allowed to run on core: ",getpid());
for(core=0; i < MAX_CORES; core++){

i f(CPU_I SSET(core, &mask) == 1)printf("% ", core);

}

return O;

}

From the command line, the user can also make use of the taskset command to display, alter, or start a
process with a specific affinity. The user should be careful about using hard affinity to control task
allocation because it limits portability and can lower performance in unexpected system situations. The
scheduler often makes a better decision itself using the built-in soft affinity. However, it can be beneficial
to give an application a private core to improve real-time behavior or to test how an application scales.

Interrupt request (IRQ) can also be assigned to specific cores. By default, all interruptstrigger core 0, but
with large loads, this affects the core’s ability to execute other applications. The affinity can be used to
distribute the load among the coresjust as with processes, for example, the Tx interrupts can be placed on
one core and Rx on the other.

Example 5-2 provides alist of which interrupts are connected to which respective IRQs as well as how
many times they have been triggered on each core by listing /proc/interrupt. It uses the Freescale QorlQ
P4080, an eight-core machine. Now the serial interface should be altered and it isIRQ36.

Continue to /proc/irq/36/ and list smp_affinity and see that it currently has the hexadecimal value OXFF
(Ob1111 1111). Thisisagain abit mask, and aswith processes, a1l indicatesthat it can trigger on that core.
The state can be changed by writing to smp_affinity by using, for example, the echo command. However,
itis not possible to turn off an IRQ by writing all zeros to the mask; this setting isignored.

Example 5-2. Interrupt—Core Assignments

/ # more /proc/interrupts

CPUO CPUl1l CPU2 CPU3 CPU4 CPUS5 CPU6 CPU7

36: 1390 O 0 0 0 0 0 0 OpenPIC Level serial

38: 10 3 0 0 0 0 0 0 OpenPIC Level i2c-mpc

39: 8 0 0 0 0 0 0 0 OpenPIC Level i2c-mpc

87: 5735 0 0 0 0 0 0 0 OpenPIC Level enet_tx

88: 0 0 5722 0 0 0 0 0 OpenPIC Level enet_rx

89: 0 0 0 8298 O 0 0 0 OpenPIC Level enet_error

251: 0 0 0 0 0 0 0 0 OpenPIC Edge IPIO (call function)
252: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI1 (reschedule)
253: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI2 (unused)
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/ # more /proc/interrupts

254: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI3 (debugger break) BAD
| #
| #
I #
/ # more /proc/irg/36/smp_affinity
ff
| #
I #
/ # echo 80 > /proc/irq/36/smp_affinity
| #
I #
| #
CPUO CPUl1l CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
36: 1390 O 0 0 0 0 0 18 OpenPIC Level serial
38: 10 3 0 0 0 0 0 0 OpenPIC Level i2c-mpc
39: 8 0 0 0 0 0 0 0 OpenPIC Level i2c-mpc
87: 5735 0 0 0 0 0 0 0 OpenPIC Level enet_tx
88: 0 0 5722 0 0 0 0 0 OpenPIC Level enet_rx
89: O 0 0 8298 O 0 0 0 OpenPIC Level enet_error
251: 0 0 0 0 0 0 0 0 OpenPIC Edge IPIO (call function)
252: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI1 (reschedule)
253: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI2 (unused)
254: 0 0 0 0 0 0 0 0 OpenPIC Edge IPI3 (debugger break) BAD
| #
| #

52 Enea’'s OSE for Multicore

Enea OSE® isarea-time operating system aimed at high-performance data plane applications, such as
processing of user data packets and control signaling within both telecom- and datacom area. OSE isa
truly distributed operating system that uses amessage-based programming model that providesapplication
location transparency.

This section discusses the Enea OSE architecture and its advantages over other multicore models.
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521 Architecture Overview

Enea OSE is based on a micro-kernel architecture; see Figure 5-2.

| OSE Application | | OSE Application | | OSE Application |

Core File M P Stack Load Distributed IPC  Run-Time
Extensions 2 Wiketmezefelr tac Balancer (LlNX) Loader
Core Basic File System  IP Network C/C++ Program  Device Driver g'
Services Services Services POSIX Management Management o
Kernel Kernel
Services Memory Management, IPC, Scheduler
Figure 5-2. Micro-kernel Architecture
The OSE kernel is designed around the exchange of messages between message passing

processes, which in OSE isthe equivalent to POSI X threads. This mechanism ;}Zeggxgrrvﬁ% ﬁggggengggisngf
for inter-process communication (IPC) is the foundation of the OSE many messaging resources to
programming model, and it isimplemented asasimple AP that providesthe  Provide commurication from
ability to send messages between processes/threads in a distributed system hypervisor and

running on asingle, or several, processor nodes. OSE also provides an gggf;tf#gpg;‘gfec’r;"".‘}’ﬁgé’gtrge
addressing model that enables application scalability, makingit possibletolet  described in EREF: A
asystem run on asingle processor node or several nodes in a distributed programmer s Reference

cluster without changing the programming code. Embedded Processors.

When processors are physically on different devices, OSE kernelsusethe | PC
protocol Enea® LINX for passing messages. LINX is akernel concept used for the implementation of a
message passing back plane that is adaptable for different media

Servicesin OSE are mainly implemented according to the client-server model, providing a distributed
C/C++ run-timelibrary where parts of the POSI X API areincluded. Examples of such servicesaretheFile
System Managers and the | P stacks. These services run on a single processor node, while the API is
available to client applications on all processors viaa C/C++ run-time function library that uses message
passing to reach the operating system servers. An example of thisisthe cal to fread() that use internal
message passing toward thefile system server process, which can belocated anywhere in the system even
when the system is spread geographically.

The OSE programming model encourages an object-oriented, parallel design of applications where each
process uses its own private memory. In the OSE model the message passing is the main mechanism for
exchanging data and for synchronization. Using the message passing programming model as the
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foundation for parallelization and synchronization makes the transition to the multicore technology
significantly easier for the customers. An application that uses this model is aready designed for
distributed scalability, and therefore the migration to multicore devices becomes a straightforward task.
This makes the software architecture of the customer systems future-proof in regards to the paradigm shift
caused by the multicore technology; the applications can be reused without expensive software
investments when the customer wants to use new hardware architectures.

5.2.2 Various Multicore Models

Designing an operating system for multicore processors can be carried out using a number of different
approaches. When it comes to OSE, the most interesting models for multicore are the SMP model, AMP
model, and the bare metal mode!.

SMP model The symmetric multi-processing (SMP) model isthe classic model for designing
multicore operating systems, such as Linux, where datais shared to alarge extent
and where a number of different locking mechanisms and atomic operations are
used frequently for synchronization. The SMP model isavery simple model from
the application perspective, but its implementation is complex and difficult to
make correct at the operating system level. Moreover, it does not scale very well
to more than 4-8 cores, especially not on an application level.

AMP model The asymmetric multi-processing (AMP) model uses an approach where each
corerunsitsownisolated software system. These may even usedifferent RTOSes.
The advantages of an AMP system are that high performance is achieved locally
and that it scaleswell. Thetrade off isthat the system becomes difficult to manage
and can becomefairly static.

Bare-metal model The bare-metal model is an approach for running aregular operating system on
oneor several coresand letting therest of the cores execute asinglethread without
support from any operating system. Its advantage is that maximum performance
isachieved when running without an operating system, but its disadvantage isthat
the software becomes hardware-specific, forcing a redesign of any applications
when upgrading the hardware. The code running without an operating system
must also be very simple because it does not have any OS-like programming or
debug environment. The lack of visibility and debug ability therefore transforms
the bare metal application into a black box.

5.2.3 Enea OSE Advantages

The Enea OSE®: Multicore Real-Time Operating System (RTOS) combines ~ Enea OSE: Multicore

all the advantages of the above mentioned model swithout having to deal with Eeglo-gme Operating System

the disadvantages. More information about this
) o ) ) o o product can be found on the
OSE Multicore RTOS is similar to SMP in terms of smplicity, flexibility, Enea webpages at

application transparency, and error tracing, and it issimilar to AMPinterms ~ """-enea.com

of scalability and the lack of an extraload due to using several coreswith shared memory. In other words,
the performance level on each core is the same as on a unicore. Furthermore, an OSE application can be
implemented in supervisor mode and therefore has similarities with the bare metal model in that the
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hardware can be accessed without involving the operating system at all except for interrupt handling. All
together thisallowsfor maximizing CPU resourcesfor the application level and minimizing OS overhead.

The micro-kernel architecture and the message passing model allows common operating system services
such as loaders, memory managers, |P stacks, and file systems to be located on different cores.

Applications can then access these services regardless of location in the system, which gives a seamlessly
shared resource model likein the SMP model.

The OSE kernel instantiates a scheduler on each core with associated data
structures, achieving similarities with the AMP model. Oneimportant design
goal with the separated kernel scheduler instancesisto avoid the need for
kernel-internal synchronous transactions from athread running on one core
towardsthe data structuresthat belongsto the scheduler on another core. This
occurstypically when athread executes a system call that needsto modify the
state of another thread. Instead, a concept called “kernel event,” whichisa
low-level, light-weight-kernel, internal 1PC, has been invented. It is used to
perform various kinds of asynchronous, cross-core scheduler transactions.
The goals are to do the following:

Avoid using spinlocksfor synchronization in system callsthat need to
modify the scheduler data structures or process the control block.
Instead, the much cheaper interrupt locking mechanism is used to
synchronize the scheduler and interrupt handling locally on a core.

Centralizethe use of an optimized lock-free algorithm used to allocate
and free message buffers from the global, shared pool.

Avoid the effect of “cache-line bouncing” between L2 caches; itis
kept on a minimum because system calls do not operate on other
cores data structures except in rare cases.

Avoid internal “false sharing” of data cache lines when accessing
kernel data structures inside the RTOS.

Optimize for low overhead in inter-core messaging by using
asynchronous intercore kernel event queues. This ensures high
application throughput performance.

cache line bouncing

Describes what happens
when threads on different
cores frequently modifies the
same data cache line. Every
time data is written, the master
data is moved exclusively to
the L2 of the actual core and
all other core’s corresponding
L1/L2 cache line is invalidated
according to the MESI
protocol. This data can then
exclusively bounce across the
system and steal memory
bandwidth and thus decrease
performance. If the data the
different threads want to
modify is located within the
same cache line, an even
worse bouncing occurs, which
is called false sharing. The
hypervisor components of the
Power Architecture define
many messaging resources to
provide communication from
core-to-core and across
hypervisor and
guest-supervisor layers of the
operating system. These are
described in EREF: A
Programmer’s Reference
Manual for Freescale
Embedded Processors.

Use hardware support to implement theintercore kernel event queueswhere possible. For example,
Freescale’'s P4080 provides a programmable queue manager that can be used for this purpose.

Provide full OS API (al OS calls and debug features) to applications on al cores. From the
programming view and debug view, the operating system still lookslike an SM P operating system.
All threads on all cores are visible to the debugger. For example, it is possible to debug all threads

on al cores using the Enea® Optima Tool.

Achieve linear scalability to many cores, which is possible due to the asynchronous design.
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A system with OSE5 Multicore Edition based on a Freescal e eight-core P4080 might look like Figure 5-3.

HW acceleration

Hypervisor
layer
HW devices

______________________________________________

Driver
layer
Interrupt
handling

OS call API

O&M/SMP
services
FS, IP, etc

l core 0 “ core 1 H core 2 “ core 3 H core 4 H core 5 H core 6 H core 7 I

I Message Buffer pool l

Figure 5-3. OSE5 Multicore Output Simulation

In the system in Figure 5-3, the scheduler on core 0 runs OS services such as File System or | P stack, and
all other cores run the data plane application that is designed as aflow, or a“pipe,” between processes on
different cores. Potentially cores 1-3 can terminate the gigabit Ethernet devices and pass the dataon to a
flow of IP processing either by zero-copy LINX messages or by using the hardware support for data
transport. Cores 4—7 are running busy-looping processes/threads that consume data buffers, perform deep
packet inspection, encryption, or decryption, and then pass the buffers on to the next processin the flow.
Finally, a buffer is sent to one of the outgoing processes responsible for sending the packet out on a
Ethernet device.

The sequence of amessage send in Figure 5-3 contains the following steps:

1. A process/thread allocates a message buffer from the global message buffer pool.

2. The process performs the system call send specifying a destination address (PID) and a message
buffer.

3. The send call reads the destination core from the destination address, and “posts’ akernel event
containing the message buffer pointer and the destination address to the destination core. (Kernel
event may use hardware accelerators to transport the event)

4. Thedestination core either takes an ISR to get the event or pollsitin. Thisthread of execution then
performsthe core-internal transaction towardsits schedul er data structure, which involves queuing
the message buffer and the proper state transition. This transaction only uses the much cheaper
interrupt lock synchronization for the reason described above.

5. The destination process/thread is then eventually scheduled, and consumes in the message buffer
using the receive system call. It then either frees the message or resendsit.

Note that all processes/threads in such an OSE Multicore Edition system can still make full use of the
operating system servicesregardless of which core the processruns on. Because each scheduler isisol ated,
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just like in an AMP system, most system calls can be designed without using spinlocks or atomic
transactions that uses global shared data. In non-frequent cases a system call need to perform operations
on global datastructuresglobal locking must bedoneusing aBKL (Big Kernel Lock). An exampleiswhen
aprocess is moved from one core to another.

5.3 Conclusion

Various software models have been discussed by the industry in order to address the multicore challenge,
and all of them have benefits and drawbacks. Enea OSES Multicore Edition, having akernel design based
on an innovative combined SMP/AMP/*bare metal” technology, attempts to combine the advantages of
them using the message passing programming paradigm both on an RTOS level and on an application
level. Legacy applicationsthat use thismodel of programming and parallelization have been proven to be
easy to migrate to new multicore devices such as for example MPC8641D.

Enea OSE 5 Multicore Edition clearly challengesthe industry-perceived difficulty to get linear scalability
equal to AMP system performance and still be perceived asan SMP RTOS on the application level. When
used on processors like Freescale P4080, the OSE kernel can also utilize hardware support to accelerate
the inter-core transactions, which maximizes application performance. The Enea OSE 5 Multicore Edition
architecture primarily targets the data plane application domain, including both user data processing and
control signaling.

The Enea OSE 5.4 product, released in the end of 2008, containsinitial multicore support according to the
SMP model for Freescale’'sMPC8641D and P2020. The release of Enea® OSES Multicore Edition, which
will bereleased in Q2 of 2009, will be designed completely according to the architecture described above.
This not only provides even higher performance for two cores, but also more or less offers linear
performance scalability to devices with 8 cores or more, such as the P4080.
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Chapter 6

Virtualization and the Hypervisor

—John Logan

This chapter explores the concept of virtualization and describes a software
component, the hypervisor, which is used to enable virtualization on a
processor. It aso examines how embedded processor hardware has been
developed to support virtualization.

It contains the following sections:

Section 6.1, “Virtualization—An Overview,” provides an introduction
to virtualization, particularly its advantages for embedded multicore
systems.

Section 6.2, “Privilege Levels, Addressing and Exceptions,” discusses
the hypervisor level introduced in multicore devices.

Section 6.3, “Hardware Features to Improve Virtualization,” discusses
hardware features that improve virtualization.

Section 6.4, “ Security and Protection between VMSs,” discusses
strategies for limiting the damage caused by software bugs.

Section 6.5, “Messaging Between VMs,” discusses the different
techniques for sending messages between virtual machines.

Section 6.6, “Debugging and Run Control,” discusses debug and run
control in the context of embedded multicore systems, with a section on
how to use the hypervisor for debug.
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6.1 Virtualization—An Overview

In asystemwith asingle SMP operating system, the OS has control of all cores, memories, and peripherals
in the system. It provides all of the necessary scheduling, messaging, synchronization, memory

management, and other servicesrequired to implement the complete system. However, in many embedded
applications, especially with newer multicore processors, it is desirable to run multiple operating systems.

For example, in a network router application it can be advantageous to use a real-time operating system
(RTOS) for the data plane processing—jpacket encryption/decryption, classification, forwarding—where
low latency and predictable operation isrequired, and ageneral purpose OS, such asLinux, for the control
plane processing—higher level protocols, such as ARP (address resol ution protocol, a standard low-level
protocol used to sync local 1P addresses with Ethernet addresses), for which latency and timing are not so
critical, but where awide range of diverse tasks must be handled. A subset of the device's cores and
memory can be assigned to each OS. But running multiple operating systemsin asystem raises new issues
to address and new problems to solve. For example, how do the operating systems share the resources
available on the chip (memory, peripheras, etc.)?Isit possible to communicate between operating
systems?

Virtualization can be used to solve these problems. Virtualization is a computing concept in which an OS
runs on a software implementation of amachine—that is, avirtual machine (VM). ThisVM does not have
to have the same characteristics or features as the underlying hardware. Multiple VMs can run on asingle
hardware device, allowing multiple operating systems to coexist. The VMs are managed by avirtua
machine manager, also called a hypervisor layer, which provides abstraction between the underlying
physical hardware and the VMs. It can also provide communications between VMsiif required as well as
security and reliability (for example, one VM could crash but without affecting the rest of the system).

VMs and hypervisors have become common in network server consolidation. Rather than having separate
unitsfor aweb server, file server, email server, etc., al running at low utilization, server suppliers are now
looking at running servers within VMs and consolidating many systems on to a single multicore device.
This reduces capital expenditure and running costs. Using VMs allows legacy code running under older
operating systems to coexist with newer operating systems, removing the need to redesign code.

There are two types of virtual machine monitor, or hypervisor, as follows:

* hosted—the hypervisor runs as a program within an operating system. VMWare is a popular
example. Thistool alows auser with a Windows PC to run other operating systems (Linux, QNX
Neutrino, etc.) within secure virtual machines without requiring complex dual-boot setups or
multiple machines.

* native—the hypervisor runs directly on the processor. In an embedded application, a native
hypervisor is preferred.

Figure 6-1 shows the relationship between VMs, the native hypervisor, and underlying hardware on an
embedded multicore device. In this example, three VMs are running on afour-core device. Each VM has
access to a subset of the devices' cores, memory and 1/0O. Each VM also has its own address space. The
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hypervisor layer provides the link between the real hardware and the VMs. All VMs can access some
shared resources—cache, interrupt controller, and shared I/O—viathe hypervisor.

Virtual Virtual Virtual
Machine Machine Machine

|~ ]

Linux

|~ ]

Linux

Hypervisor

Multicore —
e == == ==
SEIE!

Memory

Hardware

Shared Interrupt
Cache Controller

I/10

Memory

Figure 6-1. Relationships among VMs, the Native Hypervisor, and Underlying Hardware on an Embedded
Multicore Device

Note that in this example, the VMs map to real hardware on the device: the VM with two cores uses two
real cores on the device. It is possible for the VM to have a completely different architecture than the
underlying hardware; for example, one could create a VM that thinksit is running on a four-core device
wheninreality thereisonly asingle physical core. It isa so possibleto run multipleVMson asingle core.
However, both of these options incur software overhead and are typically not seen in embedded
applications.
A native hypervisor for an embedded application can provide the following features:

* VM management—creating, removing, starting, and stopping VMs

»  Security among VMs

* Messaging among VMs

» System-level event handling—memory mapping, interrupt routing, etc

» Debug support

Before examining these features, we need to look at some hardware concepts required for efficient
virtualization in an embedded system.
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6.2 Privilege Levels, Addressing and Exceptions

On atypical single- or dual-core processor there are two privilege states: user and supervisor. Applications
run in user state whereas the operating system runsin supervisor state. System-level events, such as
handling interrupts and memory mapping, are handled by the OS and require the processor to bein
supervisor state. Thisisto prevent individual applications from compromising system integrity and
crashing the entire system by, for example, code runaway corrupting the memory map of other
applications.

A multicore devicerunning ahypervisor needsthree privilegelevels, theuser privilege levels

or problem state for applications, supervisor state for an operating system ;heﬁga%genge;n%y éhe;h%S for

hypervisor. System-level changes, such asmemory mapping and all ocation of g‘cgﬁspng:'netgfn']%\g' typically
dedicated peripherals, occur at the hypervisor state. '

For example, imagineauser program running under aLinux OSwithinaVM. Such asystem requiresthree
address spaces—one for the user program, one for the VM (and the Linux OS), and one for the physical
memory map of the device.

The user program, running in user mode, attempts to write datato amemory TLB

location. When this happens, the processor checksfor the requested memory Uggdslgign;ggkt?si\clii?tgglffers-
addressin its tranglation lookaside buffers (TLBS). The TLB convertsthis  memory systems.

memory address from the user program’s address space to the VM s address

space. The first time this memory location is requested, the processor does not have an entry for it in the
TLBs. Thisgeneratesa TLB miss exception (asupervisor-level exception), whichishandled by the Linux

OS. See Figure 6-2.

Application os Hypervisor
(User Mode) TLB miss TLB miss
handler handler
TLB H R
miss (Supervisor (Hypervisor
exceptio Mode) Mode)
start normal tlb mss tbwe
= pr ocessi ng exception
q\\ &l e _— Val i dat e physi cal address
Wi "'ff Gt Wpdate tlb
o Iof(iog)o(oo o Finish tlb pr ocess_i ng Retunn fromexception
Return from excepti on

Figure 6-2. TLB Miss Handler

The Linux OS, running in supervisor mode, handles the exception and runs the routines to update the
processor TLBsto point to the memory location. The Linux OS aso determines which TLB entry can be
used for the update, figures out the address trandl ation between the VM address space and the user
program’s address space, and performs the TLB update, usually by executing opcode (for example, the
TLB Write Entry (tlbwe) on a Power Architecture processor).

At this point, the original request has still not been mapped to a physical address, which must be done by
the hypervisor. To make this happen, the tIbwe instruction generates another exception (hypervisor-level
exception) that is handled by the hypervisor. Because the hypervisor hasahigher privilegelevel, it begins
processing this exception before the TLB exception completes. The hypervisor can do the final translation
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fromthe VM’ saddress spaceto the physical address space of the device, put these valuesin the processor’s
TLB, and then return control to the VM.

This process can be done in such away that Linux is completely unaware of the hypervisor update. This
means that users can easily take a Linux OS and applications running on an SMP system today and run it
inaVM on amulticore, multiple-VM system without needing to change the operating system’s
memory-mapping routines.

Thisprinciple of using exceptionsto jump to the hypervisor to handle system-level events can be extended
to external interrupts, too, which reduces the amount of recoding needed when moving to amultiple-VM
environment.

6.3 Hardware Features to Improve Virtualization

For efficiency, the hypervisor software layer should be as thin as possible. Typically, it runs code when a
VM needsto access aresource that could be shared with another VM—memory, peripherals, debug ports,
etc. Each time the hypervisor runs, it adds software overhead. Hardware support can reduce this overhead.

For example, if the device has multiple memory controllers, each VM can haveitsown. Each VM can also
have dedicated (that is, non-shared) peripherals. For resources dedicated to avirtual machine (that is, that
machine has sole access to them), there is no need for the hypervisor to be called.

Another approach isto provide alevel of abstraction between the cores and peripherals. One way to
achieve this abstraction iswith queuing mechanisms. Rather than each VM trying to write directly to each
peripheral, each VM can access send and receive queues. The queue contents are routed to and from
peripherals using dedicated hardware.

Figure 6-3 shows an example. Each VM has an associated queue that can be accessed with adriver. The
interface to the queue can be amemory-mapped portal where data can bewritten to or read from the queue.
Data can be sent to/from any 1/0 block connected to the queuing hardware to/from any VM with a
connection. The queuing management hardware takes care of any contention issues. With this kind of
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platform, it is possible to develop families of devices with varying numbers of cores and peripherals and
make software that easily ports across the whole family.

Virtual
Machine

=

Linux

Virtual
Machine

_r_ |

RTOS

Virtual
Machine

_r_ |

Linux

Queue (and buffer) management hardware

Figure 6-3. Abstraction Of Peripherals Using Queues

Freescale’'s PA080 el ght-core deviceisan example of adeviceimplementing such ascheme (see Figure 2-1
for ablock diagram of the P4080 processor). It has sophisticated hardware queue and buffer management
that handles all data traffic to/from its Ethernet ports. It also has parsing and classification hardware to

allow the Ethernet ports to examine incoming packets and route them to the appropriate virtual machine.

6.4  Security and Protection between VMs

Bugs are afact of life for any embedded developer. In a single-core multithreaded environment, an OS
provides some protection against bugsin one application causing a crash in another. For example, the OS
typically provides each user application with its own virtual address space, provides memory
allocation/deallocation functions, prevents user programs from directly manipulating device registers
(forcing the use of drivers/API instead), provides scheduling so that one program does not block others
from running, and more. Of course, the determined (or inexperienced) programmer can find flawsin these
setups.

In multicore systems running multiple VMs, the hypervisor can provide similar protection between
different VMsto prevent acrashin one VM from causing acrash in another. For example, imagine writing
aLinux driver that runsin supervisor mode. A bug isin the code, and the driver starts writing valuesto
memory randomly. It tries to write to a physical memory location that is assigned to another VM. The
hypervisor can detect these writes and take appropriate action to prevent them, as discussed in the
virtualization example above. With thiskind of protection, an entire VM can crash, but it isprevented from
corrupting the memory space of another VM due to erroneous writes from the processor cores.
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In an embedded processor, however, cores are not the only blocks capable of corrupting memory. Many
integrated peripherals can act as bus masters and move data around the memory map, such as DMA
controllers and Ethernet and RapidlO network interfaces. A bug in the software can set up one of these
peripheralsto write to memory assigned to adifferent VM. This can be prevented in hardware by making
peripherals aware of the particular memory ranges they can access. For example, the Freescale P4080
processor has afeature called peripheral access management unit (PAMU), which allows peripheralsto be
assigned different access rights to programmable ranges in memory. Thisis similar in concept to the
memory management unit (MMU) in a core.

6.5 Messaging Between VMs

In a system with multiple VMs, there is often a need to send information between VMs, for example to
synchronize events or signal a problem. This can be done using various methods, depending on the device
design. On devices with network connections such as Ethernet controllers, users can send messages using
the network as the path. On devices with hardware abstraction features, such as the queuing mechanisms
on the Freescale P4080, users can use the queues as a message path. The hypervisor can also provide
messaging. Cores can have dedicated instructions allowing data to be passed from core to core using the
cores internal registers. In the case of the Freescale P4080 device, each core can make a request to the
hypervisor to send a message. The hypervisor uses Message Send, msgsnd, and Message Clear, msgclr,
instructions to send messages between cores. These instructions can be executed only at the hypervisor
privilege level to prevent their use by malicious software.

6.6 Debugging and Run Control

There are several standard ways to debug asingle-core or single-OS-based  JTAG

system. The user might use a hardware debug cable that connectsto adebug  Joint Test Action Group. An
port (typically aJTAG based port) on the processor, or on atarget device, the 'J;g?réaé%;”'E,'S!'%Sﬁﬁ,‘?nprﬁgﬁf;
user might run a debug monitor program that transfers debug info on a serial 323.?; égf low-level debugging
port or network connection. There isalso usually a need for asimple console '

or acommand-line interface for smple debugging and system configuration. For example, in embedded

Linux applications, the classic interface isasimple UART connected to a terminal emulator

In a multicore, multiple-VM environment, each VM requires debug support. This can be achieved by
replicating debug hardware in each core, so that each core has some basic run control, breakpoint, and
tracing functionality. Providing ameans to access this debug functionality without requiring a separate set
of debug pins per core is desirable—imagine how many pins would be needed on a 128-core device!

In JTAG-type debug setups, each device core can be seen asan individual unit on asingle JTAG chain and
can be debugged separately. The device does not need to have an individual JTAG connector for each core;
they can all be accessed through one port.

Similarly for software debug setups, each VM could send/receive debug info on a network interface, for
example an Ethernet interface. Each VM could use an unique | P address for debug and would require only
one physical Ethernet controller.
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Some debug connections are not so easy to multiplex, such asthe classic UART connection. Thisiswhere
the hypervisor can help by providing virtual serial portsfor each VM and multiplexing thisinformation to
asingle physical serial port.

All of the above optionsimply having aseparate debug session or connection to each VM. Another option
isto have a single debug session that connects to the hypervisor. It receives al debug commands for all
VMs and passes them to the correct VM. Because the hypervisor runs at a higher privilege level than the
VMs, it can access their debug functionality directly.

Freescale’'s embedded hypervisor for the QorlQ family of processors provides all of the debug
functionality mentioned above and al so additional hardwareto allow streaming of debug data by means of
ahigh-speed SerDes interface. Figure 6-4 shows a block diagram of the QorlQ processor family concept.

Freescale Multi-core Platform

Power Architecture™ Cores
L2 Cache L2 Cache L2 Cache L2 Cache

e500-mc e500-mc e500-mc e500-mc
Core Core Core

Core

On-Demand Acceleration

Pattern Matching
Decompression /
Compression

CoreNet™ Fabric

Crypto Security
Table Lookups Connectivity
Data Path Resource QuiccC Ethernet
Management Engine™ eTSEC

PCI Express
RapidlO etc.

Figure 6-4. QorlQ Processor Family

6.7 Conclusions

In this chapter, we discussed the concept of virtualization and how a hypervisor software layer coupled
with some hardware features can support it efficiently. As multicore devices become more prevalent in
embedded designs, software devel opers will increasingly use virtualization to help them partition
applications across these complex devices. Additionally, device manufacturerswill develop new hardware
features and architectures to keep pace.
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Chapter 7
Embedded Multicore: Virtual Platforms

—Jakob Engblom

The shift to multicore processors and multiprocessor software systemscalls
for new software tools to help devel opers transform their code into parallel
applications. Traditional debugging techniques and debugging tools do not
work very well on an inherently nondeterministic system. Virtual platform
technology reintroduces control and determinism to the software debug and
analysisprocess, even for multicore processors. Virtual platformsalso make
it possible to devel op software before the physical hardware becomes
available, and they are an important tool for very early performance
assessment and analysis of the hardware design.

This chapter describes how avirtual platformis essentially a simulation of
acomputer system, and the ways in which such a system provides
opportunities for modeling, design, and debug in the context of multicore
computer systems.

» Section 7.1, “Simulation of Computer Systems,” describesthe historical
role of simulation in scientific and technological advancement and the
increasingly important role of simulation in complex multicore
environments.

» Section 7.2, “Obtaining Hardware Early,” describes how virtual
processor simulations provide an environment for designing with
complex multicore processor devices long before the integrated device
isphysicaly available.

e Section 7.3, “Using a Virtual Platform for Debugging,” describes the
advantages that a virtual platform brings to debugging and presents a
real-life example.

e Section 7.4, “Multiprocessor Software Debugging,” describes the
different types of ssmulation, their purposes and scope, and how they are
used in the design, development, and system-level integration of cores
and SoCs.

» Section 7.5, “Using Virtua Platformsfor Hardware Design,” describes
different types of simulation, their purpose and scope, and how they are
used in the design, development, and system-level integration of cores
and SoCs,
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7.1  Simulation of Computer Systems

Simulation has been used as atool since ancient timesin many areas of science and technology. Weather
prediction, virtual car crash tests, aerodynamic modeling, and other physical system simulations use
computers to model and understand the behavior of the physical world.

Simulation is used whenever trying things in the physical world would be inconvenient, expensive,
impractical, or impossible. It alows experimentersto try things with more control over input data and
parameters and to gain better insight into the results and system states on the way to those results. It
reduces the cost of experiments and enables work with systems that do not yet exist in physical form. It
cuts lead times and improves product quality. In a sense, we use simulation because reality is no fun.

For many of the same reasons, computers also can be used to ssmulate other virtual platform
computers. In the embedded systems space, such simulations are known as Sri]m,l:I%tﬁ]d ﬁ?mptatitngd |
virtual platforms and are used to develop and test software independently of  Snd tast software o r

hardware availability. glvdat?lgiﬂiczgntly of hardware

Figure 7-1 shows what we want to achieve from avirtual platform: a piece of

software that mimicsthe hardware so that the target software can run. Thisisnot just an academic exercise
in hardware—software equivalence, but rather a very useful tool for software developers, hardware
designers, and system integrators. Virtual platforms provide the same benefits as simulation of physical
systems do, making it possible to develop systems faster and with higher quality. As the complexity of
embedded systems increases, virtual platforms are increasingly important as a system development tool.

User program for target User program for target
Identical software
stack

Target operating system Target operating system

Physical target hardware Running on Simulated target hardware
physical or
simulated - -
hardware Simulation tool

Host operating system

Host hardware

Figure 7-1. Virtual Platform Running the Same Software as the Physical Hardware

Using avirtual platform to develop the target software for a system requires avery fast smulator that can
execute programs approximately asfast as a physical machine would. No user would wait hours for an

operating system boot that takes seconds on a physical machine. Thetrick is to gain execution speed and
reduce simulator implementation time by reducing the level of detail in the simulator to the bare minimum
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needed to run the software. We will return to the topics of ssimulation speed and abstraction levels. First,
let us look over the benefits that virtual platforms can bring to software and systems devel opment.

7.2  Obtaining Hardware Early

The most obvious benefit of avirtua platform isthat it is available for software devel opers much earlier
than the physical hardware. As Figure 7-2 shows, creating a virtual platform of hardware allows starting
software development tasks earlier, which shortens time-to-market.

. HW Prototype Hardware/Software
GitgResIdn Production Integration & Test
Hardware-Dependent
Software Development
Application Software
Development
: HW Prototype
HwWiDesign Production
Virtual Model Hardware/Software
‘Production’ Integration & Test Time
Saved

Hardware-Dependent
Software Development

Application Software
Development

Figure 7-2. Virtual Platforms Make the Hardware Available Sooner

A second benefit is that virtual platform availability is not affected by unexpected delays in physical
hardware availability. This reduces the risk that hardware delays will affect the final product’s shipping
date. It is the experience of Virtutech and others within the industry that between three months and
eighteen months are typically saved in time-to-market when virtual platforms are used to provide early
access to new hardware generations.

Furthermore, software devel opment can ramp faster because hardware availability isno longer aconstraint
on the development process. Every engineer can have a hardware board very early, at their desk, inside
their PC. Usually, the virtual platform remainsin use as avirtual hardware system, long after hardware
physical prototypes start to appear, because they are more convenient to use, offer better insight than the
physical hardware, and are easier to configure.

7.3  Using a Virtual Platform for Debugging

A primary benefit of avirtual platform isthat it provides superior debug and analysis features compared
to the physical hardware. Anyone who has ever developed code for an embedded board can appreciate the
convenience of avirtual environment: it providesa system that is not randomly flaky and that offers better
control over the target, faster communication, and conveniences such as unlimited numbers of hardware
breakpoints, deterministic repeatability of execution runs, and reverse execution and debugging. If the

target freezes completely, you can stop it and check what happened. You can change system parameters,
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such as clock speeds and memory size, aswell as network setups, with complete freedom and ease. For an
idea for how thisworks in practice, hereis areal-world example of debugging a multiprocessor system
with Virtutech Simics:

A virtua platform based on Simics was used to port a popular real-time operating system to the
Freescale MPC8641D multicore processor. In one test, the clock frequency of the target system
was changed from 800 to 833 MHz, and suddenly the system froze early in the boot process. The
system was completely unresponsive, with no input or outpuit.

A preliminary investigation revealed that the problem occurred only between 829.9 and
833.3 MHz. Thus, it had not been seen before, because the clock frequency had been 800 MHz.

Thanks to the repeatability of avirtual platform, the bug wastrivial to reproduce. Each time the
virtual platform was booted with one of the bad clock frequencies, the same crash happened at the
same time. Unlike the real world, where all we would have had was an unresponsive brick, the
virtual platform madeit possible to examine the state of the processor, memory, and software at the
point where the processor froze.

To homein on the problem, we used reverse execution and interrupt tracing on the serial port, the interrupt
controller, and the processor cores. With this, we could pin down the exact cycle in which the problem
occurred and the sequence of events that lead up to it. We did stack back traces at the critical point to
determine the locations in the operating system where the freeze occurred.

In the end, it was determined that the problem was caused when an interrupt service routine attempted to
lock akernel spinlock before re-enabling interrupts. In the case that froze, the lock had already been taken
when the service routine was entered, and with no interrupts enabled, there was no way for any other code
to run to release it.

The bug was found only because the virtual platform ran the complete real software stack, including
interrupt handlers and hardware drivers. It was triggered by changing the system configuration,
demonstrating the value of configurability of avirtual platform. Because of the repeatability of the virtua
platform, bug reproduction was trivial whereasin aphysical system, it would have happened only
occasionally. The ability to trace and inspect any part of the state was crucial to understanding what
happened and in which order. With reverse execution (see Figure 7-3), we simply backed acrossthefreeze
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to ingpect the path that the system took to get there and were also able to move back and forth over the

execution path to investigate it.

Nonreproducible
system execution:
Only some runs hit
the same error.

Rerun many times
to investigate.

Reversible execution:
When error hits, stop
and backup.

Backup

Go Forward

Figure 7-3. Reverse Execution

Note that we used afast virtual platform and still triggered and solved a race-condition bug. Thisisthe
genera case. Most multiprocessor software bugs are dueto logic errorsin the code, and they do not require
timing to be identical to physical hardware to trigger. Indeed, the key to finding bugsis not to faithfully
reproduce the actual behavior of a particular configuration of a physical machine, but rather to explore a
large range of potential behaviors. This requires configurability and execution speed, rather than ahigh
level of detail.

7.4  Multiprocessor Software Debugging

Especially for multicore and multiprocessor systems, virtual platforms provide a much needed boost to
inspection and debug power.

The main problem in identifying and fixing software bugs in parallel softwareisthelack of determinism
in the execution of the software system. Each run of a program exhibits a different order of eventsin the
program, and even very small timing changesto the system state or timing result in very different program
execution. This complicates debugging, as the very act of debugging a parallel program makes
timing-sensitive bugs such as race conditions disappear or appear in a different place.

A virtual platform provides determinism and repeatability. The simulator has explicit control over the
execution of instructions and propagation of information between processors, and can thus impose a
repeatabl e behavior on the software running on amulticore processor. Determinism does not mean that the
behavior of a software program is always identical; it means that when running the same software from
the sameinitia state with the same sequence of asynchronousinputs, the same execution sequenceis seen.
If anything changes, a different behavior is seen.
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Figure 7-4 shows an example of this change, where the same intentionally buggy program is run several
times on a ssmulated multiprocessor. Each run produces a different result because they are run from
different initial states. The simulator can go back and reproduce each run, whichisnot possible on physical
hardware.

~
£ Simics Control E@LJ
Eile Edit Run Debug TJools Window Help
2z e M
'@ @7 |._|:’ﬂ | . | é@ IEI Serial Console on uartl (stopped) =B} X
Race condition detected!

. . ~ # ./race_cond_test.elf 2 1000000 n
P2020e-simple - Linux 2.6.20-vt (IP 10.10.0.100) Starting race condition example application.

IThis is the incorrect variant of the program, without synchronization,

System: P2020E example system thus susceptible to race conditions.
' . Using 2 threads, each counting to 1000000
P Processors: 2 PowerPC €500, 1188 MHz Starting thread 0
Memory: 1 GiB Starting thread 1
& C 4 Waiting for thread O
Ethernet: 1 of 5 connected IWaiting for thread 1
<& . . Sum: 1802120, expected: 2000000
Storage: No disks Race condition detected!
~ # ./race_cond_test.elf 2 1000000 n
Starting race condition example application.
N IThis is the incorrect variant of the program, without synchronization,
|15.971 S |Usmg recor thus susceptible to race conditions.
L Using 2 threads, each counting to 1000000

Starting thread O
Starting thread 1
\Waiting for thread O

\Waiting for thread 1
Sum: 1885292, expected: 2000000

Race condition detected!
~ #

Figure 7-4. Example Output from a Multicore Run on a Virtual Platform

Another benefit of avirtual platform for multicore debugging is that the simulator can stop the execution
of the entire system at any point, making it possible to single-step code where processors communicate
with each other without changing the behavior of the code. Code running on other processors cannot
swamp a stopped processor with data to process.

7.5 Using Virtual Platforms for Hardware Design

Virtual platforms and the simulation of key componentsis an important tool for computer hardware
designers, both for processor cores and entire system-on-chip (SoC) designs.

In processor design, detailed simulation models of the pipeline and memory system of a processor core
have been the mainstay architecture tool for many years. Every microarchitectural ideais first evaluated
with the help of a detailed smulator before being used in an actual design. When creating new cores or
new variants of cores (like the Freescale e500mc core), the design teams use their own detailed simulators
to assess performance, power consumption, and other metrics.

Moving from processor coresto complete SoC designs, virtual platforms are used to eval uate interconnect
architectures, required bus widths, and other performance factors. They are also used to verify that the
design works as intended when isolated devices and processors are combined to form awhol e system. For
multicore designsin particular, users must validate cache-coherency protocols and check that systems
scale to the number of cores desired.

The ssimulation models used for hardware design are very detailed because they need to depict the precise
cycle-by-cycle execution at asystem level. The models take time to write and to run, but in return users
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obtain atool that lets them collect data that would be impossible to collect on physical hardware and that
provides modeling opportunities for architectural experiments.

Usually, computer architecture simulators are internal engineering tools. fast functional model
However, for the Freescale Qorl Q P4080, Virtutech and Freescale have Simulation model used for
collaborated to package the clock-cyclelevel internal simulatorsinto a functional testing and

user-accessible simulation system. This hybrid system combines the fast cycle accurate model
functional simulators and the slow but detailed clock-cyclelevel simulators 5 oer. more detailed

to give end users accessto the detailed target timing. Thefast virtual platform  simulation that can collect

is used to boot operating systems and position workloads in interesting h;b?rifgg;re‘fﬁ data
locations, and then the ssimulation can be switched over to the clock-cycle Allows for a switch between
level modelsto allow detailed studies of software and system performance. In - cycle accurate and functional
essence, the resulting combined solution lets users zoom in on performance ~ odels to obtain performance
details when and where they need to without compromising on the ability to

run large workloads.

7.5.1 Execution Speed

Because detailed performance models obviously provide more information, one might ask why they are

not the norm. There are two main reasons: It takes much longer to build a detailed model than afast model,
and detailed models aretoo slow to run large workloads. The latter problem of execution speed isthe most
important reason. Table 7-1 shows execution speeds at different levels of timing detail. Note that virtual

platforms can be faster than physical hardware.

Table 7-1. Simulation Speeds

Simulation Detail Level Typical Slowdown | Indicative Speed In MIPs | Time To Simulate One Real-world Minute

Gate-level simulation 1000000 0.002 2 years
Clock-cycle level 10000 0.2 7 days
Virtual prototypes 5 400 5 minutes

Table 7-2 shows statistics that provide an idea of the workload sizes. Workloads very quickly get into
billions of instructions, even when we are looking at single processors. For multiple processorsin a
multicore device, these numbers have to be multiplied accordingly.

Table 7-2. Workload Sizes

Workload Number of Instructions
Booting Linux 2.4 on a simple StrongARM machine 50 million
Booting a streamlined but full-featured real-time operating system on a PowerPC 440GP SoC 100 million
Booting Linux 2.6 on a single-core MPC8548 processor 1,000 million
Booting Linux 2.6 on a dual-core MPC8641D processor 3,600 million
Running 10 million Dhrystone iterations on a single-processor UltraSPARC machine 4,000 million
Running one second of execution in a rack containing 10 boards with one 1-GHz processor each. | 10,000 million
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Thus, for modern multicore chips, we need virtua platforms to be as fast as possible in order to run the
complete software in reasonable time. To accomplish this, we make the trade off of reducing the detall
level of the virtual platform model. It is better to cover the whole problem in some detail than atiny part
of the problemin great detail. The vast mgjority of software development can be performed on afast virtual
platform with approximate timing, and with ahybrid model, clock-cyclelevel timing can be applied when
and where it is needed.

7.6 Conclusion

Simulation is an established methodology in many fields of engineering, one that should also be applied
to software and systems engineering for embedded systems. With the shift to multicore processing,
simulation technology in the form of virtual platforms offers very attractive capabilities for software
devel opment, testing, debug, and optimization. Virtual platforms can run the real software stacks, well in
advance of the physical hardware availability and through the entire system life cycle, being a useful tool
all the way to full-scale system devel opment and maintenance.
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