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Scope & Context of This Talk
Multiprocessor revolution
Programming multicore
(In)determinism
Error sources
Debugging techniques
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Scope and Context of This Talk
Some material specific to shared-memory 
symmetric multiprocessors and multicore 
designs
– There are lots of problems particular to this

But most concepts are general to almost any 
parallel application
– The problem is really with parallelism and 

concurrency rather than a particular design choice



4

Introduction & Background

Multiprocessing: what, why, and when?
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The Multicore Revolution is Here!
The imminent event of parallel computers with many processors taking 
over from single processors has been declared before...
This time it is for real. Why?

More instruction-level parallelism hard to find
– Very complex designs needed for small gain
– Thread-level parallelism appears live and well

Clock frequency scaling is slowing drastically
– Too much power and heat when pushing envelope 

Cannot communicate across chip fast enough
– Better to design small local units with short paths

Effective use of billions of transistors
– Easier to reuse a basic unit many times

Potential for very easy scaling
– Just keep adding processors/cores for higher (peak) performance
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Parallel Processing
John Hennessy, interviewed in the ACM Queue sees 
the following eras of computer architecture evolution:
1. Initial efforts and early designs. 1940. ENIAC, Zuse, 

Manchester, etc.
2. Instruction-Set Architecture. Mid-1960s. Starting with the IBM 

System/360 with multiple machines with the same compatible 
instruction set

3. Pipelining and instruction-level parallelism. ~1980. The “RISC 
revolution”, and the single-core performance work since

4. Explicitly parallel processing. 2005. 
Mainstream going parallel, parallel going mainstream
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Multi(core) Processing History
Multiprocessors have been around since the 1950’s

– 1959: Burroughs D825, 
– 1960: Univac LARC, 
– 1965: Univac 1108A, IBM 360/65, 
– 1967: CDC6500, 
– 1982: Cray X-MP
– 1984: Transputer T414
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Multi(core) Processing History
Multicore is more recent

– 1995: TI C80: video processor: RISC + 4xDSP on a chip
– 1999: Sun MAJC (2)
– 2001: IBM Power4 (2): first non-embedded multicore in production
– 2002: TI OMAP 5470: (ARM + DSP)
– 2004: ARM11 MPCore (4)
– 2005: Sun UltraSparc T1 (8x4), AMD Athlon64 (2), IBM XBox 360 CPU (3x2)
– 2006: Intel Core Duo (2), Freescale MPC8641D (2), 8572(2), IBM Cell (1x2+8)
– 2007: Intel Core 2 Quad (4)
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Multiprocessing is Here
Multiprocessor and multicore systems are the future
The only option for maximum performance
Some current examples:

XPPC8PA6T customPA Semi

XMIPS6416Octeon CN38Cavium

XXPPC2MPC8641DFreescale

XXARMv64ARM11 MPCoreARM

X

X

AMP

ARM,C55,IVA3OMAP2TI

XMIPS648XLR 7-seriesRaza
PPC64,DSP9CellIBM

XPPC642970MPIBM

SMPArch#CoresChipVendor
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Manycore
In specialized naturally parallel domains, there 
are already many “manycore” chips
– Manycore is an emerging term for 10+ cores
– Goal: extreme performance/power, performance/chip

See Asanovic et al. The Landscape of Parallel Computing Research: A View From Berkeley, Dec 2006

25.6 @ 2.5 WHomogeneous64CS301ClearSpeed
60 @ 333 MHzHomogeneous360AM2045Ambric

Heterogeneous
Tensilica
Arch

41.6 @ 160 MHz
50 @ 35 W
GOps

344PC102PicoChip
188MetroCisco

#CoresChipVendor
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The Road Here
One processor used to 
require several chips
Then one processor 
could fit on one chip
Now many processors fit 
on a single chip
– This changes everything, 

since single processors 
are no longer the default
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Vocabulary in the Multi Era
Multitasking: multiple 
tasks running on a single 
computer

Multiprocessor: multiple 
processors used to build 
a single computer system

Computer system

Task

Task

Task

Task Task

CPU CPU CPU
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Vocabulary in the Multi Era
AMP, Assymetric MP: 
Each processor has local 
memory, tasks statically 
allocated to one 
processor
SMP, Shared-Memory 
MP: Processors share 
memory, tasks 
dynamically scheduled to 
any processor

Task

CPU

Task

CPU

Task
TaskTask

Task

CPU

Task

CPU

TaskTask
Task
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Vocabulary in the Multi Era
Heterogeneous: 
Specialization among 
processors. Often 
different instruction sets. 
Usually AMP design.
Homogeneous: all 
processors have the 
same instruction set, can 
run any task, usually 
SMP design. 

Media
Task

DSP

Signal
Task

ARM

Game
Task

UI
Task

Control
Task

Task

PPC

Task

PPC

Task TaskTask

PPC
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Vocabulary in the Multi Era
Multicore: more than 
one processor on a 
single chip

CMP, Chip 
MultiProcessor: Shared-
memory multiprocessor 
on a single chip

Multicore chip

CPU CPU CPU

Chip Chip Chip

CPUCPU CPU



16

Vocabulary in the Multi Era
MT, Multithreading: one 
processor appears as 
multiple thread. 
The threads share 
resources, not as 
powerful as multiple full 
processors. 
Very efficient for certain 
types of workloads

Chip

CPU

Thread Thread Thread
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System

Vocabulary in the Multi Era
Cache coherency: 
– Fundamental technology for 

shared memory
– Local caches for each 

processor in the system
– Multiple copies of shared data 

can be present in caches
– To maintain correct function, 

caches have to be coherent
When one processor 
changes shared data, no 
other cache will contain old 
data (eventually)

CPU

L1$

CPU

L1$

CPU

L1$

Shared 
Memory

You want data to be coherent 
across all caches and the 

shared memory in a system

You want data to be coherent 
across all caches and the 

shared memory in a system
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Future Embedded Systems

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial

One shared memory space

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

etc.Network

Timer Serial

Network with local memory in each node
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Programming Models
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The Software becomes the Problem
Parallelism required to gain performance
– Parallel hardware is “easy” to design
– Parallel software is (very) hard to write

Fundamentally hard to grasp true concurrency 
– Especially in complex software environments

Existing software assumes single-processor
– Might break in new and interesting ways
– Multitasking no guarantee to run on multiprocessor
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Process, Thread, Task

This talk will use “task” for any software thread of control

Operating system

Process

Thread

Thread

Thread

Process

Thread

Thread

Desktop/Server model: each process 
in its own memory space, several 
threads in each process with access to 
the same memory. Memory protected 
between processes. 

Simple RTOS model: OS and all 
tasks share the same memory space, 
all memory accessible to all

Operating system

Task Task TaskTask App

Operating system

Application
TaskTask Task

Generic model: a number of tasks 
share some memory in order to 
implement an application
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Message-Passing & Shared-Memory
Local memory for each 
task, explicit messages  
for communication

All tasks can access the 
same memory, 
communication is implicit

Application

Task
Data

Task
Data

Task
Data

Task Task Task

Application

Shared
Data

Task Task Task

Most common model 
presented by hardware 
and operating systems

Most common model 
presented by hardware 
and operating systems
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Programming Parallel Machines 
Synchronize & coordinate execution
Communicate data & status between tasks
Ensure parallelism-safe access to shared data

Components of the shared-memory solution:
– All tasks see the same memory
– Locks to protect shared data accesses
– Synchronization primitives to coordinate execution
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Success: Classic Supercomputing
Regular programs
Parallelized loops + serial 
sections
Data dependencies 
between tasks
Very high scalability, 
1000s of processors

FORTRAN, OpenMP, 
pthreads, MPI Main

Task

Task Task Task Task

Task Task Task
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Success: Servers
Natural parallelism 
Irregular length of parallel 
code, dynamic creation
Master task coordinates
Slave tasks for each 
connection client connection
Scales very well – using a 
strong database for the 
common data

C, C++, OpenMP, OS API, 
MPI, pthreads, ... Main

Task
Data-
base

Client
Client

Client
Client

Client

Client
Client
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Success: Signal Processing
“Embarrassing” natural 
parallelism 
– No shared data
– No communication
– No synchronization

Single controller CPU
Parallelizes to 1000s of 
tasks and processors
Good fit for AMP Cntrl

Task
DSP
Task

DSP
Task

DSP
Task

DSP
Task

DSP
Task
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Programming model: Posix Threads
Standard API
Explicit operations
Strong programmer 
control, arbitrary work in 
each thread
Create & manipulate
– Locks
– Mutexes
– Threads
– etc.

main() { 

... 

pthread_t p_threads[MAX_THREADS]; 

pthread_attr_t attr; 

pthread_attr_init (&attr); 

for (i=0; i< num_threads; i++) { 

hits[i] = i; 

pthread_create(&p_threads[i], &attr, 
compute_pi, 

(void *) &hits[i]); 

} 

for (i=0; i< num_threads; i++) { 

pthread_join(p_threads[i], NULL); 

total_hits += hits[i]; 

} 

... 
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Programming model: OpenMP
Compiler directives
Special support in 
the compiler
Focus on loop-level 
parallel execution
Generates calls to 
threading libraries
Popular in high-end 
embedded

#pragma omp parallel private(nthreads, tid) 

{ 

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n",tid); 

if (tid == 0) 

{ 

nthreads = omp_get_num_threads();

printf("Number of threads: %d\n",nthreads); 

} 

} 
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Programming model: MPI
Message-passing API
– Explicit messages for 

communication 
– Explicit distribution of data 

to each thread for work
– Shared memory not visible 

in the programming model
Best scaling for large 
systems (1000s of CPUs)
– Quite hard to program
– Well-established in HPC

main(int argc, char *argv[])

{

int npes, myrank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &npes);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

printf("From process %d out of %d,  

Hello World!\n", myrank, npes);

MPI_Finalize();

}
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Programming: Thread-oriented
Language design
– Threads fundamental unit 

of program structure
– Spawn & send & receive
– Local thread memory
– Explicit communication

Designed to scale out 
and to be distributed
Control-code oriented, 
not compute kernels

-module(tut18).
-export([start/1,  ping/2, pong/0]).
ping(0, Pong_Node) ->

{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
ping(N - 1, Pong_Node).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
Ping_PID ! pong,
pong()

end.
start(Ping_Node) ->

register(pong, spawn(tut18, pong, [])),
spawn(Ping_Node, tut18, ping, [3, 
node()]).

source: Erlang tutorial at www.erlang.org
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Programming: Performance Libraries
Vendor-provided function 
library customized for each 
machine
– Optimized code “for free”
– Tied to particular machines

Supports computation kernels
– Arrays of data
– Function calls to compute

Supercomputing-style loop-
level parallelization
Limited in available functions

int i, large_index; 

float a[n], b[n], largest; 

large_index = isamax (n, a, l) - 1;

largest = a[large_index]; 

large_index = isamax (n, b, l) - 1; 

if (b[large_index] > largest) 

largest = b[large_index]; 

source: Sun Performance Library documerntation
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Programming: Stream Processing
Idea is simple: 
– Stream data between compute kernels

Rather than loading from memory and storing results back

– Execute all kernels in parallel, keep data flowing
– Aimed at data-parallelism

Hip concept currently, especially for massive 
parallel programming; with many different 
interpretations
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Stream Processing (variant 1)
Array parallelism
– Special types and libraries
– Sequential step-by-step 

program, each step parallel 
compute kernel

– “Better OpenMP”
Current implementations:
– Compiles into massively 

parallel code for DSPs, GPUs, 
Cell, etc. Hides details!

PeakStream, RapidMind, et al.

Arrayf32 SP_lb, SP_hb, SP_frac; {
Arrayf32 SP_mb; {
Arrayf32 SP_r; {
Arrayf32 SP_xf, SP_yf; {
Arrayf32 SP_xgrid =
Arrayf32::index(1,nPixels,nPixels) + 1.0f;

Arrayf32 SP_ygrid =  
Arrayf32::index(0,nPixels,nPixels) + 1.0f;

SP_xf = (SP_xgrid - xcen) * rxcen;
SP_yf = (SP_ygrid - ycen) * rycen;
} // release SP_xgrid, SP_ygrid
SP_r = SP_xf*cosAng + SP_yf*sinAng;
} // release SP_xf, SP_yf
SP_mb = mPoint + SP_r*mPoint;
} // release SP_r
SP_lb = floor(SP_mb);
SP_hb = ceil(SP_mb);
SP_frac = SP_mb - SP_lb;
SP_lb = SP_lb - 1;
SP_hb = SP_hb - 1;
} // release SP_mb

source: PeakStream white papers
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Stream Programming (variant 2)
“Sieve C”
– More general than array 

parallelism, can do task 
parallelism as well

– Explicit parallel coding
– “Better OpenMP”

Smart semantics to simplify 
programming and debug
– No side-effects inside block
– Local memory for each 

parallel piece
– Deterministic, serial-

equivalent semantics and 
compute results

sieve {

for(i = 0; i < MATRIX_SIZE; ++i) {

for(j = 0; j < MATRIX_SIZE; ++j)  {

pResult->m[ i ][ j ] =  

sieveCalculateMatrixElement
( a, i, b, j );

}

}

}    // memory writes are moved to here

source: CodeTalk taIk by Andrew Richards, 2006

Main reason that I want to mention this fairly 
niche product. The design of the parallel 

language or parallel API can greatly affect the 
ease of bug finding

Main reason that I want to mention this fairly 
niche product. The design of the parallel 

language or parallel API can greatly affect the 
ease of bug finding
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Stream Processing (variant 3)
Network-style data-flow API
– Send/receive messages, similar to classic message-passing
– But with support to scale up to many units, map directly to fast

hardware communications channels
– Example: Multicore Association CAPI

Parallel application

Compute 
Kernel

Compute 
Kernel

Compute 
Kernel

Compute 
Kernel

Compute 
Kernel
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Programming: Coordination Languages
Separation of concerns: computations vs parallelism
– Express sequential computations in sequential language like 

C/C++/Java, familiar to programmers
– Add concurrency in a separate coordinating layer

Research approach

source: “The Problem with Threads”, Edward Lee, 2006
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Prog: Transactional Memory
Make the main memory into a “database”
– With hardware support in the processors
– Extension of cache coherency systems

Define atomic transactions encompassing multiple 
memory accesses
– Abort or commit as a group
– Simplifies maintaining a consistent view of state
– Software has to deal with transaction failures in some way
– Simplification of shared-memory programming

Research topic currently, the dust has not settled
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Programming Models Summary
Many different programming languages, tools, 
methodologies and styles available
Choice of programming model can have a huge 
impact on performance, ease of programming, 
and debuggability
Current market focus is on this essentially 
constructive activity: create parallel code
– ...with less concern for the destructive activity of 

testing and reconstructive activity of debugging
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Determinism

The fundamental issue with parallel 
programming and debugging
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Determinism
In a perfectly deterministic system, rerunning a program 
with the same input produces
– The same output
– Using the same execution path
– With the same intermediate states, step-wise computation

“Input”
– The state of the system when execution starts 
– Any inputs received during the execution

The behavior and computation of such a system can be 
investigated with ease, “classic debugging”
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Indeterminism
An indeterministic program will not behave the same 
every time it is executed
– Possibly different output results
– Different execution path
– Different intermediate states
– Much harder to investigate and debug

Very common phenomenon in practice on 
multiprocessor computers. Why?
– Chaos theory 
– Emergent behavior
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Chaos Theory
Even the smallest 
disturbance can cause 
total divergence of 
system behavior
– Mathematically, the system 

can be deterministic. It is 
just very sensitive to input 
value fluctuations

– Popularized as the 
“Butterfly Effect”

Lorenz attractor example
– Jumps between left and right 

loops seemingly at random
– Very sensitive to input data

picture from Wikipedia
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Emergent Behavior
Complex behavior arises 
as many fundamentally 
simple components are 
combined
Global behavior of 
system cannot be 
predicted or understood 
from the local behavior 
of its components

Examples:
– Weather systems, built up 

from the atoms of the 
atmosphere following 
simple laws of nature

– Termite mounds resulting 
from the local activity of 
thousands of termites

– Software system instability 
and unpredictability from 
layers of abstraction and 
middleware and drivers 
and patchesDisclaimer: this is my personal intentionally 

simplifying interpretation of a very complex 
philosophical theory

Disclaimer: this is my personal intentionally 
simplifying interpretation of a very complex 

philosophical theory
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Determinism & Computers
A computer is a man-made machine
– There is no intentional indeterminism in the design
– It consists of a large number of deterministic 

component designs
Processor pipeline, Branch prediction, DRAM access, cache 
replacement policies, cache coherence protocols, bus 
arbitration, etc. 

– But in practice, the combined, emergent, behavior is 
not possible to predict from the pieces. New 
phenomena arise as we combine components.
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Determinism & Multiprocessors
Each run of a multiprocessor program tends to behave 
differently
– Maybe not the end result computed by the program, but 

certainly the execution path and system intermediate states 
leading there

Differences can be caused by very small-scale 
variations that happen all the time in a multiprocessor:
– Number of times a spin-lock loop is executed
– Cache hits or misses for memory accesses
– Time to get data from main memory for a read (arbitration 

collisions, DRAM refresh, etc.)
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Determinism & Multiprocessors
Fundamentally, multiprocessor computer 
systems exhibit chaotic behavior
A concrete example documented in literature:
– A simple delay of a single instruction by a few clock 

cycles can cause a task to be interrupted by the OS 
scheduler at a slightly different point in the code. With 
different intermediate results stored in variables, 
leading other tasks to take different paths... and from 
there it snowballs. It really is the butterfly effect!
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Variability Example
The diagram: 
– Average time per transaction 

in the OLTP benchmark
– Measured on a Sun 

multiprocessor
– Minimal background load
– Average over one second, 

which correspond to more 
than 350 transactions

– Source: Alameldeen and 
Wood: “Variability in 
Architectural Simulations of 
Multi-Threaded Workloads”, 
HPCA 2003.  

And here is the result when five 
identical runs are started on a fresh 

machine. Still huge variation 
across “identical” runs

And here is the result when five 
identical runs are started on a fresh 

machine. Still huge variation 
across “identical” runs
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Macro-Scale (In)Determinism
Note that reasons for indeterministic behavior 
on multiprocessor systems can be found in the 
macro scale as well
– (coming up)

The micro-scale events discussed above just 
makes macro scale variation more likely, and 
fundamentally unavoidable in any dynamic 
system
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(In)Determinism in the Macro Scale
Background noise:
– With multiple other tasks running, the scheduling of 

the set of tasks for a particular program is very likely 
to be different each time it is run

Asynchronous inputs:
– The precise timing of inputs from the outside world 

relative to a particular program will always vary
Accumulation of state:
– Over time, a system accumulates state, and this is 

likely to be different for any two program runs
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Macro-Scale Determinism
We can bring control, determinism, and order 
back to our programs at the macro scale
– We have to make programs robust and insensitive to 

micro-scale variations and buffeting from other parts 
of the system

This happens in the real world all the time
– Bridges remain bridges, even when they sway
– Running water on a bathroom floor ends up at the 

lowest point... even if the flow there can vary
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Macro-Scale Determinism in Software
Synchronize
– Your program dictates the order, not the computer
– Any important ordering has to be specified

Discretize
– Structure computations into “atomic” units
– Generate output for units of work, not for individual operations

Impose your own ordering
– Do not let the system determine your execution order
– For example, traversal of a set should follow an order given 

explicitly in your program
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Is this Insanity?
“Insanity is doing the same thing over and over 
again and expecting a different result”
– Folk definition of insanity

That is exactly what multiprocessor 
programming is all about: doing the same thing 
over again should give a different result
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What Goes Wrong?

The real bugs that bite us
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True Concurrency = Problems
Fundamentally new things happen
– Some phenomena cannot occur on a single 

processor running multiple threads
More stress for multitasking programs
– Exposes latent problems in code 
– Multitasking != multiprocessor-ready
– Even supposedly well-tested code can break
– Bad things happen more often and more likely
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(Missing) Reentrancy
Code shared between tasks has to be reentrant
– No global/static variables used for local state
– Do not assume single thread of control

True concurrency = much higher chance of 
parallel execution of code
– Problem also occurs in multitasking
– But is much less likely to trigger 

See example later in this talk on race conditions
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Priorities are not Synchronization
Strict priority scheduling on single processor
– Tasks of same priority will be run sequentially
– No concurrent execution = no locking needed
– Property of application software design

Multiple processors
– Tasks of same priority will run in parallel
– Locking & synchronization needed in applications
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Priorities are not Synchronization

CPU

Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

Prio 7 Prio 6 Prio 6 Prio 6 Prio 5

Execution on a single CPU 
with strict priority 

scheduling: no concurrency 
between prio 6 tasks

Execution on a single CPU 
with strict priority 

scheduling: no concurrency 
between prio 6 tasks

CPU 1
Prio 6

Prio 6

Prio 5

Prio 7

Prio 6

CPU 2

Prio 7

Prio 6 Prio 6

Prio 6

Prio 5

Execution on multiple 
processors: several prio 6 

tasks execute 
simultaneously

Execution on multiple 
processors: several prio 6 

tasks execute 
simultaneously
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Disabling Interrupts is not Locking
Single processor: DI = cannot be interrupted
– Guaranteed exclusive access to whole machine
– Cheap mechanism, used in many drivers & kernels

Multiprocessor: DI = stop interrupts on one core
– Other cores keep running
– Shared data can be modified from the outside
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Disabling Interrupts is not Locking
Big issue for low-level code, drivers, and OS
Note that interrupts is typically how the different 
cores in a multiprocessor communicate
– The interrupt controller lets the OS code locally on 

each processor communicate with the others
– Disabling interrupts for a long time might break the 

operating system
Need to replace DI/EI with proper locks
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Race Condition
Tasks “race” to a common point
– Result depends on who gets there first
– Occurs due to insufficient synchronization

Present with regular multitasking, but much 
more severe in multiprocessing
Solution: protect all shared data with locks, 
synchronize to ensure expected order of events
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Race Condition: Shared Memory
Correct behavior Incorrect behavior

Task 1 Task 2Shared 
data

read

write
edit

read

write
edit

Task 2 gets the 
updated value 

from task 1

Task 2 gets the 
updated value 

from task 1

Task 1 Task 2Shared 
data

read

write

edit read

write

edit
Task 1 and 

task 2 work on 
the same data

Task 1 and 
task 2 work on 
the same data

Update from 
task 2 gets 

overwritten by 
task 1

Update from 
task 2 gets 

overwritten by 
task 1
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Race Condition: Messages
Expected sequence Incorrect sequence

Task 1 Task 3

msg1

msg2

calc

Task 2 expects 
data from task 
1 first, and then 

from task 3

Task 2 expects 
data from task 
1 first, and then 

from task 3

Task 2

calc

Task 1 Task 3

msg1

msg2

calc

Messages can also arrive
in a different order. 

Program needs to handle
this or synchronize to 

enforce ordering

Messages can also arrive
in a different order. 

Program needs to handle
this or synchronize to 

enforce ordering

Task 2

calc
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Race Condition Example
Test program: 

– Two parallel threads
– Loop 100000 times:

Read x

Inc x 

Write x

Wait...

Intentionally bad: not designed for 
concurrency, easily hit by race
Observable error: final value of x 
less than 200000
Will trigger very easily in a 
multiprocessor setting
But less easily with plain 
multitasking on single pro Thanks to Lars Albertsson at SiCS

Task 1 Task 2Shared 
data

read(1)

write(2)

X=1+1
read(1)

write(2)

1

X=1+1

2
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1 3

10

10
0

20
0

50
0

80
0

95
0

97
7

10
00

10
13

10
00

0

1 CPU
2 CPUs

0%
10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Clock freqency (MHz)

Percentage of runs triggering race

Race Condition Example
Simulated single-CPU and 
dual-CPU MPC8641
Different clock frequencies
Test program run 20 times 
on each case
Count percentage of runs 
triggering the bug
Results:

– Bug always triggers in 
dual-CPU mode

– Triggers around 10% in 
single-CPU mode

– Higher clock = lower 
chance to trigger 
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Deadlocks
Locks are intrinsic to shared-memory parallel 
programming to protect shared data & synch
Taking multiple locks requires care
– Deadlock occurs if tasks take locks in different order
– Impose locking discipline/protocol to avoid
– Hard to see locks in shared libraries & OS code
– Locking order often hard to deduce

Deadlocks also occur in “regular” multitasking
– But multiprocessors make them much more likely
– And multiprocessor programs have many more locks
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Deadlocks
Lucky Execution

Task 1 Lock B

lock

Task 2Lock A

lock

unlock

unlock

lock 

wait...

lock

unlock

unlock

Deadlock Execution
Task 1 Lock B

lock

Task 2Lock A

lock

lock 

wait...
lock

wait...System is 
deadlocked with 
tasks waiting for 

the other to 
release a lock

System is 
deadlocked with 
tasks waiting for 

the other to 
release a lock
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Deadlocks and Libraries

main():
lock(L2)

// work on V2
foo()

// work on V2
unlock(L2)

foo():
lock(L1)
// work on V1

unlock(L1)

main():
lock(L1)

// work on V1
lock(L2)

// work on V2
unlock(L2)

// work on v1
unlock(L1)

Task T2Task T1 Easy way to deadlock: 
– Calling functions that 

access shared data and 
their locks

– Order of locks become 
opaque 

Need to consider the 
complete call chain
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Partial Crashes
A single task in a parallel program crashes
– Partial failure of program, leaves other tasks waiting
– For a single-task program, not a problem

Detect & recover/restart/gracefully quit
– Parallel programs require more error handling

More common in multiprocessor environments 
as more parallel programs are being used
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Parallel Task Start Fails
Programs need to check if parallel execution did 
indeed start as requested
– Check return codes from threading calls

For directive-based programming like OpenMP, 
there is no error checking available in the API
– Be careful!
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Invalid Timing Assumptions
We cannot assume that any code will run within 
a certain time-bound relative to other code
– Any causal relation has to be enforced
– Locks, synchronization, explicit checks for ordering

Easy to make assumptions by mistake
– Will work most of the time
– Manifest under heavy load or rare scheduling
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Invalid Timing Assumptions
Assumed Timing Erroneous Execution

Task 1 Task 2Data V

create (task 2)

write V initialize...

read V 

Assumption: 
initialize takes a 
long time, task 1 
will have time to 

write V

Assumption: 
initialize takes a 
long time, task 1 
will have time to 

write V

Task 1 Task 2Data V

create (task 2)

write V 

initialize...

read V 

Initialize finishes 
fast & task 1 

takes a long time: 
V read before 

value available

Initialize finishes 
fast & task 1 

takes a long time: 
V read before 

value available

hiccup...
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Relaxed Memory Ordering
Single processor: all memory operations will 
occur in program order*
– * as observed by the program running
– A read will always get the latest value written
– Fundamental assumption used in writing code

Multiprocessor: not necessarily the case
– Processors can see operations in different orders
– “Weak consistency” or “relaxed memory ordering”
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Relaxed Memory Ordering: Why?
Performance, nothing else
– It complicates implementation of the hardware
– It complicates validation of the hardware
– It complicates programming software
– It is very difficult to really understand

Imposing a single global order of all memory 
events would force synchronization among all 
processors all the time, and kill performance
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Relaxed Memory Ordering: What?
It specifically allows the system to be less strict 
in synchronizing the state of processors
– More slack = more opportunity to optimize
– More slack = allow more reordering of writes & reads
– More slack = greater ability to buffer data locally
– More slack = more opportunity for weird bugs

Exploited by programming languages, 
compilers, processors, and the memory system
to reduce stall time 
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Relaxed Memory Ordering: Types 
Strong, non-relaxed memory order:
– SC, Sequential Consistency, means that all memory 

operations from all processors are executed in order, 
and interleaved to form a single global order. 

Some examples of relaxed orders:
– TSO, Total Store Order, reorder reads but not writes. 

Common model, not totally unintuitive (Sparc)
– WO, Weak Ordering, reorder reads and writes and 

bring order explicitly using synchronization primitives 
(PowerPC, partially ARM) For more information, see Hennessy 

and Patterson, Computer 
Architecture, a Quantitative Approach 

or other text books

For more information, see Hennessy 
and Patterson, Computer 

Architecture, a Quantitative Approach 
or other text books
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Relaxed Memory Ordering: Example
Expected obvious case

Task 1

Task 1 writes variables 
X, Y, Z in order. Task 2 
reads them, and sees 
the values update in 

order X, Y, Z. 

Task 1 writes variables 
X, Y, Z in order. Task 2 
reads them, and sees 
the values update in 

order X, Y, Z. 

Task 2

write Y

Legal less obvious case

write X

write Z
read Y

read X

read Z

read Y

read X

Task 1

The writes to X & Y 
get delayed a little 

and are not observed 
by the first reads. 

The writes to X & Y 
get delayed a little 

and are not observed 
by the first reads. 

Task 2

write Y

write X

write Z
read Y

read X

read Z

read Y

read X

Later reads of X and 
Y sees new value. 
Apparent order of 
update is Z, X, Y.

Later reads of X and 
Y sees new value. 
Apparent order of 
update is Z, X, Y.

Disclaimer: This example is really very very simplified. But it is just an example to show the core of the issue.
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Relaxed Memory Ordering: Issues
Synchronization code from single-processor 
environments might break on a multiprocessor
Programs have to use synchronization to 
ensure that data has arrived before using it 
Subtle bugs that appear only in extreme 
circumstances (high load, odd memory setups)
Latent bugs that only appear on certain 
machines (typically more aggressive designs)
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Multipro-Unsafe Synchronization
Example algorithm
– Simplified Dekker’s
– Textbook example
– Any interleaving of writes 

allow a single task to enter 
the critical section

– Works fine on single 
processor with multitasking

– Works fine on sequential 
consistency machines

flag2 = 1
turn = 1
while(flag1 ==  1 && 
turn == 1) wait;

//critical section
flag2 = 0

flag1 = 1
turn = 2
while(flag2 ==  1 && 
turn == 2) wait;

//critical section
flag1 = 0

Task 2Task 1
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Multipro-Unsafe Synchronization
Example with relaxed memory ordering:
– Both tasks do their writes in parallel, and then read the flag variables
– Quite possible to read “old” value of flag variables since nothing 

guarantees that a write to one variable has completed before another 
one is read

Task 1 Task 2

turn = 1

flag2 = 1

read flag1

turn = 2

flag1 = 1

read flag2

flag1flag2

0 0

11

0 0

critical 
section

critical 
section

Both tasks in 
critical section a 

the same time, not 
good

Both tasks in 
critical section a 

the same time, not 
good
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Memory Ordering & Programming
Data synchronization operations:
– fences/barriers to prevent execution from continuing 

until all writes and/or reads have completed. All 
memory operations are ordered relative to a fence.

– flush to commit local changes to global memory
Note that a weak memory order might cause 
worse performance if programmers are 
conservative and use too much synchronization
– TSO is often considered “optimal” in this respect



81

Memory Ordering & Programming
C/C++ has no concept of memory order or data 
handling between multiple tasks
– volatile means nothing between processors
– Use APIs to access concurrency operations

Java has its own memory model, which is fairly weak 
and can expose the underlying machine
– Not even “high level” programs in “safe” programming 

languages avoid relaxed memory ordering problems

OpenMP defines a weak model that is used even when 
the hardware itself has a stronger model (compiler)
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Relaxed Memory Ordering: Fixing
Use SMP-aware synchronization
Use data synchronization operations
Read the documentation about the particular 
memory consistency of your target platform
– ... and note that it is sometimes not implemented to 

its full freedom on current hardware generations...
Use proven synchronization mechanisms
– Do not implement synchronization yourself if you can 

avoid it, let the experts do it for you
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Missing Flush Operations
Data can get “stuck” on a certain processor
– In the cache or in the store buffer of a processor
– Aggressive buffering and a relaxed memory ordering 

avoids sending updated data to other processors
– Real example: a program worked fine on a Sparc

multiprocessor, but it made no progress on a 
PowerPC machine. Flushes had to be added. 

Solution: explicit ”flush” operations to force data 
to be written back to shared memory
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How Can We Debug It?
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Three Steps of Debugging
1. Provoking errors

– Forcing the system to a state where things break
2. Reproducing errors

– Recreating a provoked error reliably
3. Locating the source of errors 

– Investigating the program flow & data
– Depends on success in reproduction
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Parallel Debugging is Hard
Reproducing errors and behavior is hard
– Parallel errors tend to depend on subtle timing, interactions 

between tasks, precise order of micro-scale events
– Determinism is fundamentally not given

Heisenbugs
– Observing a bug makes it go away
– The intrusion of debugging changes system behavior

Bohr bugs
– Traditional bugs, depend on the controllable values of input 

data, easy to reproduce
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Breakpoints & Classic Debuggers
Still useful 
Several caveats:
– Stopping one task in a collaborating group might 

break the system
– A stopped task can be swamped with traffic
– A stopped task can trigger timeouts and watch dogs
– Might be hard to target the right task
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Tracing
Very powerful tool in general
Can provide powerful insight into execution 
– Especially when trace is “smart”

Weaknesses:
– Intrusiveness, changes timing
– Only traces certain aspects
– No data between trace points
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Tracing Methods...
Printf
– Added by user to program

Monitor task
– Special task snooping on application, added by user

Instrumentation
– Source or binary level, added by tool

Bus trace
– Less meaningful in a heavily cached system
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...Tracing Methods
Hardware trace
– Using trace support in hardware + trace buffer
– Mostly non-intrusive
– Hard to create a consistent trace due to local timing

Simulation
– Can trace any aspect of system
– Differences in timing, requires a simulation model

More information later about HW trace & sim
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Bigger Locks
Fine-grained locking:
– Individual data items
– Less blocking, higher performance
– More errors

Coarse locking:
– Entire data structures
– Entire sections of code
– Lower performance
– Less chance of errors, limits 

parallelism
Make locks coarser until 
program works

Working 
on this 
item

Working 
on this 
item

Fine-
grained 
locking

Fine-
grained 
locking

Coarse-
grained 
locking

Coarse-
grained 
locking
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Apply Heavy Load
Heavy load
– More interference in the system
– Higher chance of long latencies for communication
– Higher chance of unexpected blocking and delays
– Higher chance of concurrent access to data

Powerful method to break a parallel system
– Often reproduces errors with high likelihood

Requires good test cases & automation 
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Use Different Machine
Provokes errors by challenging assumptions
– Different number of processors
– Different speed of processors
– Different communications latency & cache sizes
– Different memory consistency model

It is easy to inadvertently tie code to the 
machine the code is developed and initially 
tested on
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Use Different Compiler
Different compilers have different checks
Different compilers implement multiprocessing 
features in different ways
Thus, compiling & testing using different 
compilers will reveal errors both during 
compilation and at run-time

Note this techniques works for many categories of errors. 
Making sure a program compiles cleanly in several different 

environments makes it much more robust in general. 

Note this techniques works for many categories of errors. 
Making sure a program compiles cleanly in several different 

environments makes it much more robust in general. 
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Multicore Debuggers
Many debuggers are starting to provide support 
for multiple processors and cores

Basics features:
– Handling several tasks within a single debug session, 

at the same time
– Understanding of multiple tasks and processors
– Ability to connect to multiple targets at the same time
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Multicore Debuggers
Advanced features:
– Visualizing tasks
– Visualizing data flow and data values
– Grouping processes and processors
– Profiling that is aware of multiple processors
– Pausing sets of tasks
– Understanding the multiprocessor programming 

system used (synch operations, task start/stop)
For multicore, you need new thinking in debug
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Multicore Debugger Implementation
Impact on potential probe effects and observation power
Implementation choices
– Instrument the code
– Instrument the parallelization library (OpenMP, MPI, CAPI-

aware debuggers)
– Use an OS-level debug agent
– Use hardware debug access

In all cases, the debugger has to understand what is 
running where, and this makes OS-awareness almost 
mandatory
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Multipro Hardware Debug Support
Requires a multicore-aware debugger to be 
really useful, obviously
Hardware should supply the ability to:
– Access data and code on all processors
– Stop execution on any processor
– Trace memory and instructions
– Access high volumes of debug and trace data
– Synchronize stops across multiple processors
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Multipro Hardware Debug Support
Trace
– Trace behavior of one or 

more processors (or other 
parts)

– Without stopping system or 
affecting timing

– Can be local to a core
– Present in many designs 

today (e.g., ARM ETM)
– Good and necessary start

Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial
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Multicore node

Multipro Hardware Debug Support
Trace
– For full effect, want trace 

units at all interesting 
places in a system, not just 
at processors

– Costs some chip area, 
might not be present in 
“shipping” versions of a 
multicore SoC

– Note that debug interface 
bandwidth limitations
can put a limit on 
effectiveness

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial

Trace Trace Trace

Trace

TraceTrace
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Multipro Hardware Debug Support
Cross-triggering
– Hardware units listen to 

events on all cores
Breakpoints, raw memory 
trace, watchpoints, 
interrupts...

– Cause action in one core 
based on events occurring in 
other cores or elsewhere in 
the system

Stop execution, start tracing, 
stop tracing, interrupt, ...
Requires logic on the 
multicore chip
Basically, it is programmable Multicore node

CPU

L1$

CPU

L1$

CPU

L1$

L2$

RAM

Devices

Networketc.

Timer Serial

Trace & 
debug

Trace

Trace
Trace

Debug 
support 

unit

Debug 
programs

Trace & 
debug

Trace & 
debug
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Multipro Hardware Debug Support
Currently quite sketchy
– New implementations and ideas are coming out
– Standards are arriving, like ARM CoreSight
– Better debug access ports are being added to HW

The acceptable overhead cost in hardware 
seems fixed at about 10%
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Replay Execution
Record a system execution, replay it
– Solves reproduction problem, if an error is recorded
– Controlled replay minimizes the probe effect
– Apply debuggers during replay

Record asynchronous events & inputs
– Interactions between tasks
– Isolates the system from the outside world

Requires specialized tool support
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Replay Execution: Inputs
Replay problem can also be attacked at higher 
level by capturing and replaying input streams
– Does not capture precise execution pattern inside the 

system being debugged
– A very useful tool for rare events if they are 

somewhat deterministic from the input
– Reasonable approach to reproduce problems found 

in the field, if the field has capture equipment
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Reverse Debugging
Stop & go back in time
– Instead of rerunning 

program from start
– No need to rerun and hope 

for bug to reoccur
– Investigate exactly what 

happened this time
– Breakpoints & watchpoints

backwards in time
– Very powerful for parallel 

programs

Backup
Go forward

Only some runs 
reproduce the 

right error

Only some runs 
reproduce the 

right error
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Reverse Debugging: Techniques
Trace-based
– Record system execution
– Special hardware or 

simulator support 
– Use as “tape recorder”, 

fixed execution observed

Simulation-based
– Record in simulator
– Replay in same simulator
– Can change state and 

continue execution

Backup
Go forward

Backup

And go somewhere else
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Reverse Debugging Tools
For new techniques like this, I like to point out 
some vendors that you can find on the show 
floor today:
– Green Hills
– Virtutech
– IAR Systems (?)
– Lauterbach (?)
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Simulate the System
Use simulation model instead of the hardware

Offers more control and insight than 
physical hardware = better debug

Backplane

CPU

RAM

Device

FLASH

Device

DSP

Device

CPU

RAM

Device

FLASH

Device

Enet

Device

Enet

Hardware Simulation Model Simulated Hardware
on programmer’s PC
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Simulate the System
Simulation uses:
– Vary parameters to provoke errors
– Inject variations in execution to provoke errors, steer 

system towards known corner cases 
– Reliable reproduction of problems
– Powerful inspection abilities
– No probe effect from tracing and breakpoints
– Can support record & replay, and reverse debugging
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Simulate the System
Need to run the same binaries as the physical 
hardware target 
– Including the operating system with synchronization 

primitives and scheduling algorithms 
– Requires modeling not only processors but also 

devices, interrupt controllers, shared memory, etc. 
– Simple classic instruction-set simulators do not run 

operating systems or handle multiple processors
– Performance has to be sufficient for SW load 

Varies widely between types of target machines
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Simulate the System
In practice:
– To be fast enough, simulation cannot use RTL 

implementation. Has to be at a higher level.
– Modeling is an additional task in development, you 

cannot use simulation without a simulation model.
– Most cases, you can keep using existing debuggers 

and other programming tools. Simulation replaces 
hardware, not your software tools.

– You still need the hardware, but possibly less of it 
and not quite as often.
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Simulate the System
Fidelity of simulation:
– Simulation is never quite like the real thing, but it is 

close enough to be useful
– Any bugs found in simulation are valid bugs 

Simulation does explore a range of behaviors of the real 
system. If desired, simulation can force certain behavior.

– Precise timing simulation is not really possible
“Cycle Accuracy” is really a “Cycle Approximate”

See Ekblom and Engblom, “Simics: a 
commercially proven full-system simulation 

framework”, SESP 2006, for a deeper discussion

See Ekblom and Engblom, “Simics: a 
commercially proven full-system simulation 

framework”, SESP 2006, for a deeper discussion
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Example Bug found in Simulation
Changed clock frequency of virtual MPC8641D
– From 800 to 833 Mhz
– OS froze on startup – quite unexpectedly

Investigation:
– Only happened at 832.9 to 833.3 MHz
– Determinism: 100% reproduction of error trivial
– Time control: single-step code feasible
– Insight: look at complete system state, log interrupts, check the call 

stack at the point of the freeze, check lock state
What we found:
– ISR takes a lock on entry, and then expect a second external interrupt 

to occur to unlock the data structure. But this interrupt arrives before 
interrupts are reenabled, and thus we are stuck in deadlock. Took a 
few hours to find. 
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Simulation Tool Vendors
Some vendors:
– ARM
– CoWare
– Synopsys (Virtio)
– Vast
– Virtutech
– (Qemu, Bochs, and other open-source tools)
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Static Code Analysis
Analyze the source code to determine all 

possible program behaviors  
– Possible variable values, possible (and impossible) 

execution paths, etc. 
– Without running the program
– Think of “lint” on steroids
– Current tools have some support for parallel 

programs
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Static Code Analysis
In practice:
– Analysis times can be very long (hours, days)
– Code should be written to support analysis

Best solution: well-designed subsets like SPARK Ada
Existing code often hard to analyze properly
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Static Code Analysis & Parallelism
Parallel analysis exponentially more difficult
Parallel support limited to certain APIs/primitives
– Synchronization and locking operations known  
– Semantics of operations known

Limited to certain classes of errors
– Check locking order for deadlocks, for example
– Cannot find unprotected access to global data
– Cannot prove correctness of fundamental synchronization 

operations
– Cannot see effects of subtle timing shifts or memory 

consistency
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Static Code Analysis Vendors
Vendors I know of:
– Coverity
– Polyspace
– Green Hills
– + a range of MISRA-compliance checkers
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Dynamic Analysis
Run a program and trace its behavior
– Unlike static analysis, no attempt to analyze source code offline

Generalize from behavior in a concrete run to a larger 
set of potential program execution paths
– “What happens if these operations are interleaved differently?”
– “What other orders are allowed by synchronization?”

Analyze the set of potential paths to find possible errors
– Locking order
– Use of uninitialized variables
– Efficiently find such hard-to-find bugs
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Dynamic Analysis
In practice
– Cannot find all possible paths, only those similar to 

the ones found in the concrete runs
Code that is never executed in concrete runs will never be 
examined, for example

– Specific algorithms needed for each class of errors
– Programs have to be instrumented

Often run-time slowdown of factor 10 or more

Highly practical approach for some errors
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Dynamic Analysis Tools
Tools on the market:
– Intel ThreadChecker, works with locking discipline
– Open-source program Valgrind
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Model Checking
Static verification technique for parallel systems

Model: A

Requirement 
Specification: F A || F

Yes!

No!        
Diagnostic 
Information

Model-
checker

Source: Paul Pettersson, Uppsala University
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Model Checking
Explores the entire state space of a system
– Verifies that certain properties hold 

Requires a model of the behavior of a system
– Typically expressed as an extended state machine 
– Not the same as a simulation model of the hardware

Requires a specification of properties to check
– Invariants – bad states are never entered
– Liveness – something good will eventually happen
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Model Checking
In practice:
– You will verify a model, not the actual system
– Building a model and formulating properties to check 

can be hard work
– Compared to many other formal methods, the output 

is much better since it is a concrete trace of events
Applicability:
– Very successful for protocols (leader elections, 

transmission protocols, synchronization protocols)
– Best used at the specification stage of a project
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Summary & Outlook
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Summary
We are at the beginning of the era of 
widespread parallel computation

Hardware is leading the move
– Parallelism is a major paradigm shift for software
– Software and software tools are racing to catch up
– Education and training needs to be updated
– Programmers need to relearn programming
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Outlook
To manage the software, we need:
– New programming paradigms

Expressed in new or modified programming languages
– New debug and analysis techniques

Supported by good tools 
– Hardware support!

For programming paradigms
For debug and analysis

I think we are going to see many interesting 
hardware-software combinations
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Questions?
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Thank You!

Please remember to fill in the course 
evaluation forms completely!


