
Ubuntu BIOS/UEFI Requirements
Canonical Services Ltd.

Revision: 602c945c (public build)

Date: 2012-05-22

Release: general

1

Table of Contents
1. Introduction ... 2
2. Ubuntu development .. 2

2.1. LTS releases ... 2
2.2. Reporting Ubuntu bugs .. 2
2.3. Kernel source code access .. 3
2.4. Where to find more information .. 3

3. Firmware Test Suite .. 3
3.1. Reporting fwts bugs .. 4
3.2. Firmware Test Suite Live image .. 4
3.3. Reporting fwts-live bugs and results .. 4

4. ACPI ... 4
4.1. ACPI 4.0 functionality .. 4
4.2. Predefined ACPI names handled in Ubuntu ... 5
4.3. Supported ACPI device IDs ... 12
4.4. 32- and 64-bit addresses (Generic Address Structure) .. 13
4.5. ACPI table checksum .. 13
4.6. ACPI Machine Language (AML) ... 13
4.7. _OSI(Linux) ... 14
4.8. Battery .. 17
4.9. Mutexes .. 18
4.10. Thermal zones ... 18

5. Windows Management Instrumentation (WMI) .. 18
5.1. Common Errors .. 19

6. System Management Mode (SMM) .. 19
6.1. High Precision Event Timer (HPET) ... 20

7. System Management BIOS (SMBIOS) ... 20
7.1. Common Errors .. 20

8. Hotkeys .. 21
8.1. Hotkey mappings ... 21
8.2. Brightness controls .. 22
8.3. WMI hotkeys .. 22
8.4. Keyboard BIOS hotkeys / Embedded Controller hotkeys .. 22
8.5. Vendor-specific ACPI device HID hotkeys .. 22
8.6. PNP device HID hotkeys ... 23
8.7. Video output hotkeys .. 23
8.8. RF killswitches ... 23
8.9. Touchpad killswitches .. 24

9. UEFI ... 24
9.1. Legacy BIOS compatibility .. 24
9.2. UEFI boot services ... 24
9.3. UEFI runtime services ... 25
9.4. UEFI configuration tables ... 26
9.5. Secure boot ... 26
9.6. Graphics output protocol ... 26

References ... 27
A. Contacting Canonical .. 27
B. Existing hotkey mappings ... 28

1. Hotkey mapping tables ... 28

Ubuntu BIOS/UEFI Requirements

2

1. Introduction
This document outlines a set of recommendations for system firmware teams producing both lega-
cy BIOS and UEFI firmware images for consumer systems, intended to be released with Ubuntu pre-
installed at the factory. The goal is to ensure that the system interoperates in a first-class manner
with Ubuntu, which may lead to eventual Ubuntu certification of the system(s).

The technical recommendations cover ACPI, WMI, SMM, hotkeys, video, and UEFI-specific details.

This document also covers the Ubuntu release cycle, including how Ubuntu incorporates the Linux
kernel. Finally, it discusses some of the tools that have been developed by Canonical and the Ubun-
tu Community for the purpose of debugging and/or qualifying BIOS / UEFI implementations.

2. Ubuntu development
Ubuntu releases new versions on a fixed six-month schedule. Ubuntu uses a release numbering con-
vention YY.MM, where YY is the last two digits of the year, and MM indicates the month of the re-
lease. At the time of writing, the current release of Ubuntu is 12.04, which was released in April
2012. Ubuntu releases also are given a two-word informal name, comprised of a fanciful or rare ani-
mal, and an adjective. The informal name for 12.04 is “Precise Pangolin”.

The current development version of Ubuntu is 12.10, codenamed “Quantal Quetzal”, and is sched-
uled for release in october 2012.

For more information on the Ubuntu release cycle, please refer to https://wiki.ubuntu.com/Re-
leaseSchedule

2.1. LTS releases

In addition to the regular six-month release cycle, Ubuntu also has a release cycle for Long Term
Support (LTS) releases. Every fourth Ubuntu release (which is every 2 years) is a LTS release. These
releases receive security updates for a longer period (5 years) than a normal Ubuntu release (18
months).

At the time of writing, the most recent LTS release is Ubuntu 12.04 LTS. The next development re-
lease will be 14.04.

Previously (up to and including the 10.04 release), LTS releases were supported for 3 years. This has
been extended to 5 years from the 12.04 release onwards.

For more information about Ubuntu LTS releases, please refer to: https://wiki.ubuntu.com/LTS

2.2. Reporting Ubuntu bugs

Ubuntu uses a website called Launchpad, hosted by Canonical, to track Ubuntu bugs. The main
Launchpad site is at http://launchpad.net/. As Ubuntu itself is fully open-source, all bugs reported
to Launchpad are publicly visible.

If you wish to file a public bug against an Ubuntu release, including bugs in Ubuntu’s ACPI or WMI
implementation, driver bugs, or generic kernel bugs, please refer to the following page on the
Ubuntu Wiki, at https://help.ubuntu.com/community/ReportingBugs.

If your bugs relate to pre-production hardware, Canonical is able to establish a private “project”,
within Launchpad, for your company’s use. Bugs filed within this project will not be publicly accessi-

https://wiki.ubuntu.com/ReleaseSchedule
https://wiki.ubuntu.com/ReleaseSchedule
https://wiki.ubuntu.com/LTS
http://launchpad.net/
https://help.ubuntu.com/community/ReportingBugs

Ubuntu BIOS/UEFI Requirements

3

ble by default. Please contact your representative at Canonical if you would like to establish such an
account.

Finally, you can always contact Canonical’s Professional & Engineering Services organization for
help. Please see Appendix A, Contacting Canonical.

2.3. Kernel source code access

Being an open-source project, the source code for the Ubuntu kernel is available for public access.
The authoritative repositories for the source code are hosted on http://kernel.ubuntu.com/git/, us-
ing the git version control system.

The kernel for each release of Ubuntu is kept in a separate git repository, and will require use of the
git application to access it. For example, to download the kernel source code used in the 12.04 re-
lease of Ubuntu (codename “precise”), run the following:

git clone git://kernel.ubuntu.com/ubuntu/ubuntu-precise.git

For access to the kernel sources used in other releases, replace precise with the codename for the
appropriate release. For help using the git software, consult the git documentation at http://git-
scm.com/documentation.

2.4. Where to find more information

• http://www.ubuntu.com/

• https://wiki.ubuntu.com/

• https://odm.ubuntu.com/

3. Firmware Test Suite
Canonical has developed the Firmware Test Suite (FWTS) to check BIOS / UEFI firmware for imple-
mentation bugs and divergences from relevant specifications. FTWS is open source software, origi-
nally based on Intel’s Linux-ready Firmware Developer Kit. While development on Intel's Test code
ceased on October 2007, FWTS development continues to refine and expand the test coverage.

FWTS is a command-line tool, to be run from with Ubuntu, which performs a series of tests against
the currently installed BIOS and/or UEFI firmware. It offers a rich set of arguments which allow
users to run individual ACPI tests, specify the number of cycles certain tests to be run, etc.

The test is hosted in two Launchpad Personal Package Archives (PPAs) belonging to the firmware-
test-team on Launchpad (at https://launchpad.net/~firmware-testing-team). There are two PPAs:
development and stable. To install the stable version:

 sudo apt-add-repository ppa:firmware-testing-team/ppa-fwts-stable
 sudo apt-get update
 sudo apt-get install fwts

For more information on how to install Ubuntu packages from Launchpad PPAs, please see: https://
help.launchpad.net/PPAQuickStart.

For more information on how to run/use FWTS, please refer to https://wiki.ubuntu.com/Kernel/Ref-
erence/fwts.

http://kernel.ubuntu.com/git/
http://git-scm.com/documentation
http://git-scm.com/documentation
http://www.ubuntu.com/
https://wiki.ubuntu.com/
https://odm.ubuntu.com/
https://launchpad.net/~firmware-testing-team
https://help.launchpad.net/PPAQuickStart
https://help.launchpad.net/PPAQuickStart
https://wiki.ubuntu.com/Kernel/Reference/fwts
https://wiki.ubuntu.com/Kernel/Reference/fwts

Ubuntu BIOS/UEFI Requirements

4

3.1. Reporting fwts bugs
If you discover problems with FWTS, bugs should be reported against the package in Ubuntu, at
https://bugs.launchpad.net/ubuntu/+source/fwts.

3.2. Firmware Test Suite Live image
FWTS Live is a bootable USB image that will automatically boot and execute tests provided by
Firmware Test Suite. The FWTS Live image is available for both 32 and 64 bit architectures and is ca-
pable of booting both legacy BIOS implementations as well as native UEFI (64 bit only). The test re-
sults are stored on the USB device and can be analysed on the fly or later on another computer.

For more information on the FWTS Live image, including installation information and a demo,
please visit the FWTS Live home page at https://wiki.ubuntu.com/HardwareEnablementTeam/Docu-
mentation/FirmwareTestSuiteLive.

3.3. Reporting fwts-live bugs and results
If you discover problems with the FWTS Live image or have questions about your test results, bugs
should be reported against the fwts-live project in Launchpad, at https://bugs.launchpad.net/fwts-
live/+filebug.

4. ACPI
The Advanced Configuration and Power Interface (ACPI) specification provides an open-standard
for configuration and power management on consumer computing devices, such as desktops, lap-
tops, and all-in-ones. Table 1, “Supported ACPI versions” shows the versions supported by each
Ubuntu release.

Table 1. Supported ACPI versions

Ubuntu release Kernel version ACPICA version ACPI version

Precise (12.04) 3.2 20110623 4.0

Oneiric (11.10) 3.0 20110413 4.0

Natty (11.04) 2.6.38 20110112 4.0

Maverick (10.10) 2.6.35 20100428 4.0

Lucid (10.04 LTS) 2.6.32 20090903 4.0

4.1. ACPI 4.0 functionality
ACPI tables contain a very rich range of configuration data and some tables even contain exe-
cutable ACPI Machine Language (AML) code that can implement machine specific custom features
in a high level operating system neutral way. Not all are mandatory and hence there are different
levels of implementation to handle the various tables.

Table 2. ACPI tables

ACPI Table ACPI 4.0 § Implemented Notes

BERT 17.3.1 N

BOOT 5.2.6 N

CPEP 5.2.18 N

Y: Yes, implemented; N: Not implemented, P: Partially implemented

https://bugs.launchpad.net/ubuntu/+source/fwts
https://wiki.ubuntu.com/HardwareEnablementTeam/Documentation/FirmwareTestSuiteLive
https://wiki.ubuntu.com/HardwareEnablementTeam/Documentation/FirmwareTestSuiteLive
https://bugs.launchpad.net/fwts-live/+filebug
https://bugs.launchpad.net/fwts-live/+filebug

Ubuntu BIOS/UEFI Requirements

5

ACPI Table ACPI 4.0 § Implemented Notes

DBGP 5.2.6 N See Microsoft Debug Port Specification

DMAR 5.2.6 N

DSDT 5.2.11 P Some methods not fully implemented

ECDT 5.2.15 Y

EINJ 17.5.1 Y Ubuntu Maverick 10.10++

ERST 17.5 Y Ubuntu Maverick 10.10++

ETDT 5.2.6 N Superseded by HPET, now considered obsolete

FACS 5.2.10 Y

FADT 5.2.9 Y

HEST 17.3.2 N

HPET 5.2.6 Y

IBFT 5.2.6 N

IVRS 5.2.6 Y AMD specific, Ubuntu Lucid 10.04 LTS++

MADT 5.2.12 Y

MCFG 5.2.6 Y

MCHI 5.2.6 N

MSCT 5.2.19 N

OEMx 5.2.6 N OEM specific tables

PSDT 5.2.11.3 Y Treated like SSDT, PSDT now deprecated

RSDT 5.2.7 Y

SBST 5.2.14 N

SLIT 5.2.17 Y

SPCR 5.2.6 N

SPMI 5.2.6 N

SRAT 5.2.16 Y

SSDT 5.2.11.2 P Some methods not fully implemented

TCPA 5.2.6 N

UEFI 5.2.6 Y Ubuntu Maverick 10.10++. Limited functionality

WAET 5.2.6 N

WDRT 5.2.6 N

XSDT 5.2.8 Y

Y: Yes, implemented; N: Not implemented, P: Partially implemented

4.2. Predefined ACPI names handled in Ubuntu
The DSDT and SSDT contain byte code that can implement a range of control methods and data ob-
jects as described in section 5.6.7 of version 4.0 of the ACPI specification [ACPI 4.0]. The names of
these control methods and objects are “predefined ACPI names” and must be implemented in a
manner that conforms to the ACPI specification.

The Ubuntu Linux ACPI driver can use these control methods and data objects in a variety of ways.
Control methods are executable ACPI Machine Language code which gets executed by an AML in-
terpreter. For example, the Ubuntu Linux ACPI driver may want to determine the current brightness
level, by evaluating (executing) the _BQC control method, which returns a value back to the driver.

Ubuntu BIOS/UEFI Requirements

6

Less used are control methods that the ACPI firmware can call and the ACPI driver returns a result
in response. An example of this the _OSI method which returns true or false depending on the ar-
gument passed to it.

The Ubuntu Linux ACPI driver can also evaluate ACPI data objects - an evaluated data object returns
ACPI objects back to the Ubuntu Linux ACPI driver. For example, predefined battery information is
returned as a package of integers and strings when the _BIX object is evaluated.

The firmware test suite can sanity check control methods and data objects using the “method” test.
This will load the ACPI tables into the Intel ACPICA execution engine and evaluate a sample of fre-
quently used methods and data objects. The test type checks the return data, sanity checks fixed re-
turn values (such as in the _BIX and _BIF methods) and also checks to see if any mutexes are left in
an incorrect locked state. To run this test use:

sudo fwts method

The “method” test will check over 90 of the most commonly used methods and objects.

The Ubuntu Linux ACPI driver uses just subset of all the available control methods and data objects.
Firmware may implement a full and complete set of these, however, a subset are just evaluated and
used at run time. Conversely, the firmware may implement a small subset - the level of implementa-
tion is a choice left to the vendor. For a full feature rich implementation we recommend implement-
ing as much functionality as is supported by Ubuntu.

The Linux kernel handles the predefined ACPI names in three ways:

4.2.1. Fully supported ACPI names

The Ubuntu Linux ACPI driver can evaluate the following names (methods and data objects) for spe-
cific operating system functionality.

Table 3. Fully supported ACPI names

Method/Object ACPI 4.0 § Base version

_ADR 6.1.1, B.6.1, 18.1.8 Dapper 6.06 LTS

_BBN 6.5.5 Jaunty 9.04

_BCL B.6.2 Dapper 6.06 LTS

_BCM B.6.3 Dapper 6.06 LTS

_BFS 7.3.1 Dapper 6.06 LTS

_BIF 10.2.2.1 Dapper 6.06 LTS

_BIX 10.2.2.2 Maverick 10.10

_BQC B.6.4 Dapper 6.06 LTS

_BST 10.2.2.6 Dapper 6.06 LTS

_BTP 10.2.2.7 Dapper 6.06 LTS

_CID 6.1.2 Karmic 9.10

_CRS 6.2.2 Dapper 6.06 LTS

_CRT 11.4.4 Dapper 6.06 LTS

_CST 8.4.2.1 Dapper 6.06 LTS

_DCK 6.5.2 Hardy 8.04 LTS

_DCS B.6.6 Dapper 6.06 LTS

_DDC B.6.5 Dapper 6.06 LTS

_DGS 6.2.3 Dapper 6.06 LTS

Ubuntu BIOS/UEFI Requirements

7

Method/Object ACPI 4.0 § Base version

_DIS 6.2.3 Dapper 6.06 LTS

_DOD B.4.2 Dapper 6.06 LTS

_DOS B.4.1 Dapper 6.06 LTS

_DSS B.6.8 Dapper 6.06 LTS

_DSW 7.2.1 Jaunty 9.04

_Exx 5.6.4.1 Dapper 6.06 LTS

_EC 1.12 Dapper 6.06 LTS

_EJD 6.3.2 Dapper 6.06 LTS

_EJx 6.3.3 Hardy 8.04 LTS

_GHL 10.4.7 Lucid 10.04 LTS

_GL 5.7.1 Dapper 6.06 LTS

_GLK 6.5.7 Dapper 6.06 LTS

_GPD B.4.4 Dapper 6.06 LTS

_GPE 5.3.1, 12.11 Dapper 6.06 LTS

_GTF 9.8.1.1 Dapper 6.06 LTS

_GTM 9.8.2.1.1 Dapper 6.06 LTS

_GTS 7.3.3 Dapper 6.06 LTS

_HOT 11.4.6 Dapper 6.06 LTS

_INI 6.5.1 Dapper 6.06 LTS

_IRC 7.2.13 Dapper 6.06 LTS

_Lxx 5.6.4.1 Dapper 6.06 LTS

_LCK 6.3.4 Dapper 6.06 LTS

_LID 9.4.1 Dapper 6.06 LTS

_MAT 6.2.9 Hardy 8.04 LTS

_OFF 7.1.2 Dapper 6.06 LTS

_ON 7.1.3 Dapper 6.06 LTS

_OSC 6.2.10 Karmic 9.10

_OSI 5.7.2 Dapper 6.06 LTS

_OST 6.3.5 Lucid 10.04 LTS

_PCT 8.4.4.1 Dapper 6.06 LTS

_PDC 8.4.1 Dapper 6.06 LTS

_PMC 10.4.1 Lucid 10.04 LTS

_PMD 10.4.8 Lucid 10.04 LTS

_PMM 10.4.3 Lucid 10.04 LTS

_PPC 8.4.4.3 Dapper 6.06 LTS

_PR 5.3.1 Dapper 6.06 LTS

_PR0 7.2.7 Dapper 6.06 LTS

_PRS 6.2.11 Karmic 9.10

_PRW 7.2.11 Dapper 6.06 LTS

Ubuntu BIOS/UEFI Requirements

8

Method/Object ACPI 4.0 § Base version

_PS0 7.2.2 Dapper 6.06 LTS

_PS3 7.2.5 Dapper 6.06 LTS

_PSC 7.2.6 Dapper 6.06 LTS

_PSD 8.4.4.5 Hardy 8.04 LTS

_PSL 11.4.8 Dapper 6.06 LTS

_PSR 10.3.1 Dapper 6.06 LTS

_PSS 8.4.4.2 Dapper 6.06 LTS

_PSV 11.4.9 Dapper 6.06 LTS

_PSW 7.2.12 Dapper 6.06 LTS

_PTC 8.4.3.1 Dapper 6.06 LTS

_PTP 10.4.2 Lucid 10.04 LTS

_PTS 7.3.2 Dapper 6.06 LTS

_PUR 8.5.11 Lucid 10.04 LTS

_PXM 6.2.13 Dapper 6.06 LTS

_Qxx 5.6.4.1 Dapper 6.06 LTS

_REG 6.5.4 Dapper 6.06 LTS

_REV 5.7.4 Dapper 6.06 LTS

_RMV 6.3.6 Dapper 6.06 LTS

_ROM B.4.3 Dapper 6.06 LTS

_SB 5.3.1 Dapper 6.06 LTS

_SBS 10.1.3 Dapper 6.06 LTS

_SCP 11.4.11 Dapper 6.06 LTS

_SDD 9.8.3.3.1 Hardy 8.04 LTS

_SEG 6.5.6 Dapper 6.06 LTS

_SHL 10.4.5 Lucid 10.04 LTS

_SPD B.4.5 Dapper 6.06 LTS

_SRS 6.2.15 Dapper 6.06 LTS

_SST 9.1.1 Dapper 6.06 LTS

_STA 6.3.7, 7.1.4 Dapper 6.06 LTS

_STM 9.8.2.1.2 Hardy 8.04 LTS

_SUN 6.1.8 Jaunty 9.04

_T_x 18.2.1.1 Dapper 6.06 LTS

_TC1 11.4.12 Dapper 6.06 LTS

_TC2 11.4.13 Dapper 6.06 LTS

_TMP 11.4.14 Dapper 6.06 LTS

_TPC 8.4.3.3 Hardy 8.04 LTS

_TSD 8.4.3.4 Hardy 8.04 LTS

_TSP 11.4.17 Dapper 6.06 LTS

_TSS 8.4.3.2 Dapper 6.06 LTS

Ubuntu BIOS/UEFI Requirements

9

Method/Object ACPI 4.0 § Base version

_TZ 5.3.1 Dapper 6.06 LTS

_TZD 11.4.19 Dapper 6.06 LTS

_TZM 11.4.20 Karmic 9.10

_TZP 11.4.21 Dapper 6.06 LTS

_UID 6.1.9 Dapper 6.06 LTS

_VPO B.4.6 Dapper 6.06 LTS

_WAK 7.3.7 Dapper 6.06 LTS

_Wxx 5.6.4.2.2 Dapper 6.06 LTS

4.2.2. Checked ACPI names

These are ACPI methods or data objects that are not currently accessed in any way by the Ubun-
tu ACPI driver. However if they are referenced by calling methods the driver will sanity check re-
turn values when these are evaluated and issue an error message if they do not confirm to the ACPI
specification.

Table 4. Checked ACPI names

Method/Object ACPI 4.0 § Base version

_ALx 11.4.2 Lucid 10.04 LTS

_ALC 9.2.4 Karmic 9.10

_ALI 9.2.2 Karmic 9.10

_ALN 18.1.8 Karmic 9.10

_ALP 9.2.6 Karmic 9.10

_ALR 9.2.5 Natty 11.04

_ALT 9.2.3 Karmic 9.10

_ART 11.4.3 Lucid 10.04 LTS

_BCT 10.2.2.9 Lucid 10.04 LTS

_BDN 6.5.3 Lucid 10.04 LTS

_BLT 9.1.3 Karmic 9.10

_BMA 10.2.2.4 Lucid 10.04 LTS

_BMC 10.2.2.11 Karmic 9.10

_BMD 10.2.2.10 Karmic 9.10

_BMS 10.2.2.5 Lucid 10.04 LTS

_BTM 10.2.2.8 Karmic 9.10

_CBA n/a Karmic 9.10

_CDM 6.2.1 Lucid 10.04 LTS

_CSD 8.4.2.2 Karmic 9.10

_DDN 6.1.3 Karmic 9.10

_DMA 6.2.4 Karmic 9.10

_DSM 9.14.1 Karmic 9.10

_DTI 11.4.5 Lucid 10.04 LTS

_EDL 6.3.1 Karmic 9.10

Ubuntu BIOS/UEFI Requirements

10

Method/Object ACPI 4.0 § Base version

_FDE 9.9.1 Maverick 10.10

_FDI 9.9.2 Karmic 9.10

_FDM 9.9.3 Karmic 9.10

_FIF 11.3.1.1 Lucid 10.04 LTS

_FIX 6.2.5 Karmic 9.10

_FPS 11.3.1.2 Lucid 10.04 LTS

_FSL 11.3.1.3 Lucid 10.04 LTS

_FST 11.3.1.4 Lucid 10.04 LTS

_GRA 18.1.8 Karmic 9.10

_GSB 6.2.6 Karmic 9.10

_HE 18.1.8 Karmic 9.10

_HPP 6.2.7 Karmic 9.10

_HPX 6.2.8 Karmic 9.10

_IFT n/a Karmic 9.10

_INT 18.1.8 Karmic 9.10

_LEN 18.1.8 Karmic 9.10

_LL 18.1.8 Karmic 9.10

_MBM 8.12.2.1 Lucid 10.04 LTS

_MLS 6.1.5 Karmic 9.10

_MSG 9.1.2 Karmic 9.10

_MSM 9.12.2.2 Lucid 10.04 LTS

_NTT 11.4.7 Lucid 10.04 LTS

_PAI 10.3.2 Lucid 10.04 LTS

_PCL 10.3.2 Karmic 9.10

_PDL 8.4.4.6 Lucid 10.04 LTS

_PIC 5.8.1 Karmic 9.10

_PIF 10.3.3 Lucid 10.04 LTS

_PLD 6.1.6 Karmic 9.10

_PPE 8.4.5 Karmic 9.10

_PR1 7.2.8 Karmic 9.10

_PR2 7.2.9 Karmic 9.10

_PR3 7.2.10 Karmic 9.10

_PRL 10.3.4 Lucid 10.04 LTS

_PRT 6.1.12 Karmic 9.10

_PS1 7.2.3 Karmic 9.10

_PS2 7.2.4 Karmic 9.10

_RT 18.1.8 Karmic 9.10

_RTV 11.4.10 Karmic 9.10

_S0 7.3.4.1 Dapper 6.06 LTS

Ubuntu BIOS/UEFI Requirements

11

Method/Object ACPI 4.0 § Base version

_S1 7.3.4.2 Dapper 6.06 LTS

_S2 7.3.4.2 Dapper 6.06 LTS

_S3 7.3.4.4 Dapper 6.06 LTS

_S4 7.3.4.5 Dapper 6.06 LTS

_S5 7.3.4.6 Dapper 6.06 LTS

_S1D 7.2.14 Dapper 6.06 LTS

_S2D 7.2.15 Dapper 6.06 LTS

_S3D 7.2.16 Dapper 6.06 LTS

_S4D 7.2.17 Dapper 6.06 LTS

_S0W 7.2.18 Karmic 9.10

_S1W 7.2.19 Karmic 9.10

_S2W 7.2.20 Karmic 9.10

_S3W 7.2.21 Karmic 9.10

_S4W 7.2.22 Karmic 9.10

_SI 5.3.1 Dapper 6.06 LTS

_SLI 6.2.14 Karmic 9.10

_SRV n/a Karmic 9.10

_STP 9.18.2 Lucid 10.04 LTS

_STR 6.1.7 Dapper 6.06 LTS

_STV 9.18.3 Lucid 10.04 LTS

_SWS 7.3.5 Karmic 9.10

_TIV 9.18.4 Lucid 10.04 LTS

_TIP 9.18.5 Lucid 10.04 LTS

_TPT 11.4.15 Karmic 9.10

_TRT 11.4.16 Karmic 9.10

_TTS 7.3.6 Jaunty 9.04

_UPC 9.13 Karmic 9.10

_UPD 9.16.1 Karmic 9.10

_UPP 9.16.2 Karmic 9.10

4.2.3. Unsupported ACPI names

The Ubuntu ACPI driver does not reference or sanity check the following methods or data objects in
any way.

Table 5. Unsupported ACPI names

Method/Object ACPI 4.0 §

_ACx 11.4

_ASI 18.1.8

_ASZ 18.1.8

_BAS 18.1.8

Ubuntu BIOS/UEFI Requirements

12

Method/Object ACPI 4.0 §

BM 18.1.18

_DEC 18.1.18

_MAF 18.1.8

_MAX 18.1.8

_MEM 18.1.8

_MIF 18.1.8

_MIN 18.1.8

RW 18.1.8

_TDL 8.4.3.5

_TRA 18.1.8

_TRS 18.1.8

_TSF 18.1.8

_TTP 18.1.8

_TYP 18.1.8

_MTP 18.1.8

_RBO 18.1.8

_RBW 18.1.8

_RNG 18.1.8

_SHR 18.1.8

_SIZ 18.1.8

4.3. Supported ACPI device IDs
Certain integrated devices require support for some device-specific ACPI controls. Section 5.6.6 of
version 4.0a of the ACPI specification [ACPI 4.0] lists these devices and their corresponding Plug-
and-Play (PNP) IDs. The Ubuntu kernel supports a variety of these devices as described below. If the
DSDT contains PNP _HIDs that are not supported, then expect Ubuntu to effectively ignore the de-
scription given in the DSDT. However, this doesn’t necessarily mean the device is not supported, it
just means that Ubuntu will ignore the device description/configuration.

Table 6. Checked ACPI names

PNP _HID Description Base support version

PNP0C09 Embedded Controller Dapper 6.06 LTS

PNP0C0A Contol Method Battery Dapper 6.06 LTS

PNP0C0B Fan Dapper 6.06 LTS

ACPI_FPB Power Button Dapper 6.06 LTS

ACPI_FSB Sleep Button Dapper 6.06 LTS

PNP0C0C Power Button Dapper 6.06 LTS

PNP0C0D Lid Device Dapper 6.06 LTS

PNP0C0E Sleep Button Dapper 6.06 LTS

PNP0C0F PCI interrupt link device Dapper 6.06 LTS

PNP0C14 WMI Jaunty 9.04

PNP0C80 Memory Device No

Ubuntu BIOS/UEFI Requirements

13

PNP _HID Description Base support version

ACPI0001 SMBus 1.0 Host Controller Dapper 6.06 LTS

ACPI0002 Smart Battery Subsystem Dapper 6.06 LTS

ACPI0003 Power Resource Device Dapper 6.06 LTS

ACPI0004 Modular Device Dapper 6.06 LTS

ACPI0005 SMBus 2.0 Host Controller Hardy 8.04 LTS

ACPI0006 GPE Block Device No

ACPI0007 Processor Device Karmic 9.10

ACPI0008 Ambient Light Sensor Device No

ACPI0009 I/OxAPIC Device No

ACPI000A I/O APIC Device No

ACPI000B I/O SAPIC Device No

ACPI000C Processor Aggregator Device Lucid 10.04 LTS

ACPI000D Power Meter Device Lucid 10.04 LTS

ACPI000E Wake Alarm Device No

4.4. 32- and 64-bit addresses (Generic Address Structure)
Some tables, such as the FADT, contain required 32-bit addresses and also a 64-bit extend-
ed address field in the form of a Generic Address Structure (GAS). For example, the 32-bit
PM1a_EVT_BLK is superseded by the 64-bit X_PM1a_EVT_BLK.

The strict interpretation from version 4.0 of the ACPI specification is that the 64-bit address super-
sedes the 32-bit address, if the 64-bit address is non-zero. The assumption is that a non-zero 64-bit
address should point to the same object as the 32-bit address. However, some firmware has been
known to set different addresses (referencing different data), which is ambiguous.

Ubuntu will use 64-bit addresses if they are present and non-zero, 32-bit addresses otherwise.

4.5. ACPI table checksum
All ACPI tables contain an 8 bit checksum which should be set so that the 8 bit sum of data in each
table is zero. For the Root System Description Pointer (RSDP) the checksum covers the first 20 bytes
of the structure. For all other system description tables, a header contains a checksum field, which
should again be set so that the 8 bit sum of all the data in each the table comes to zero.

Invalid checksums indicate a potentially corrupt table, and the kernel will complain with a warning.
However, tables will still be loaded. We recommended that checksums are present and correct, oth-
erwise it is impossible to differentiate between a correct table with a bad checksum and a table
that contains errors because of firmware data corruption.

The firmware test suite contains an ACPI table checksum test which can be run as follows:

sudo fwts checksum

For more details, consult sections 5.2.5.3 and 5.2.6 of the ACPI 4.0 Specification [ACPI 4.0]

4.6. ACPI Machine Language (AML)
ACPI Machine Language (AML) is the byte code instruction found in the ACPI DSDT and SSDT tables.
The Linux kernel fully supports the AML bytecode as specified in section 19 of version 4.0 of the

Ubuntu BIOS/UEFI Requirements

14

ACPI specification [ACPI 4.0]. ACPI control methods are compiled into AML and this code is execut-
ed inside the kernel context by the Linux ACPI driver. Generally the AML is compiled using either the
Microsoft AML or Intel compilers and these can produce different output based on the same source
code. Ubuntu uses the Intel AML compiler.

• We recommended that the code should not contain infinite loops. All loops should contain a
loop counter or a timeout to break out of a loop at some point. Infinite loops can lock up the
ACPI driver’s thread of execution and lead to excessive CPU load and potential lockups on seri-
alized code paths.

• Deep recursion of methods should be avoided. The Linux ACPI driver will detect and halt recur-
sions deeper than 255 levels, this leads to undefined execution behaviour.

• Methods should always return the expected return types according to the ACPI specification
for methods that are defined by the ACPI specification. If the method is not defined by the
ACPI specification the method should always return the type expected by the caller. We have
observed that sometimes methods have multiple return control paths and some of these ne-
glect to return the expected return types on all the return paths.

• Methods should never return packages containing zero elements.

• Package lists and tables returned by methods should always be the correct expected size.

• Methods should always be called with the correct number of arguments with the correct type.

• Field accesses outside a defined buffer or memory region are illegal and ignored. This leads to
undefined behaviour and hence unexpected results.

• No illegal AML op-codes are allowed. This will result in undefined behaviour at run time.

The Microsoft compiler seems to be less strict than the Intel AML compiler, and so we recommend
that the source is compiled using the Intel compiler to check for any illegal code. The Intel compiler
also contains some semantic checking and can even catch some subtle bugs such as mutex Acquires
with missing timeout failures.

4.7. _OSI(Linux)
Section 5.7.2 of version 4.0a of the ACPI specification [ACPI 4.0] describes the _OSI (Operating Sys-
tem Interfaces) object. This object provides the firmware with the ability to query the operating
system to determine the set of ACPI related interfaces, behaviors, or features that the operating
system supports. For example, Windows Vista requires the latest ACPI backlight functionality (see
Appendix B of the ACPI specification) and the firmware can use _OSI to detect this version of the
operating system to enable this extra functionality.

Linux attempts to be compatible with the latest version of Windows, and will always return true
to _OSI with all known Windows version strings. The intention is to make it impossible for the
firmware to tell if the machine is running Linux. The implementation of _OSI can be found in the
kernel sources in drivers/acpi/osl.c

_OSI has been used to detect an operating system version to try to work around bugs in the oper-
ating system. Trying to work around a Linux bug by detecting an operating system version using
_OSI should be avoided at all costs. These workarounds can break with new versions of the ker-
nel. The best approach is to engage with Linux developers and fix the problem in the kernel.

4.7.1. _OSI in detail

The _OSI method has one argument and one return value. The argument is an OS vendor defined
string representing a set of OS interfaces and behaviours or an ACPI defined string representing an
operating system.

Ubuntu BIOS/UEFI Requirements

15

Ubuntu Linux will return 0xffffffff (i.e. feature is supported) for the following arguments to
_OSI:

Table 7. _OSI support

_OSI argument Windows version Supported in Ubuntu

Windows 2000 Windows 2000 Pre-Dapper 6.06 LTS

Windows 2001 Windows XP Pre-Dapper 6.06 LTS

Windows 2001 Windows XP SP1 Pre-Dapper 6.06 LTS

Windows 2001.1 Windows Server 2003 Pre-Dapper 6.06 LTS

Windows 2001 SP2 Windows XP SP2 Pre-Dapper 6.06 LTS

Windows 2001.1 SP1 Windows Server 2003 SP1 Hardy 8.04 LTS

Windows 2006 Windows Vista Hardy 8.04 LTS

Windows 2006.1 Windows Server 2008 Lucid 10.04 LTS

Windows 2006 SP1 Windows Vista SP1 Lucid 10.04 LTS

Windows 2006 SP2 Windows Vista SP2 Natty 11.04

Windows 2009 Windows 7 and Server 2008 R2 Lucid 10.04 LTS

_OSI will always return 0 (feature not supported) for "Linux". Ubuntu Linux will return true
(0xffffffff) to the most recent Windows _OSI string. The "Linux" _OSI argument is meaning-
less and should never be expected to work or do anything useful.

The DSDT and SSDT tables contain ACPI Machine Language (AML) code that has access to a wide
range of I/O ports, memory regions and memory mapped I/O. The ACPI driver will ban the AML code
from accessing certain port I/O operations at run time depending on which which OS behaviour
compatibility string is passed to _OSI. See Table 8, “Banned I/O ports” for the list of I/O ports that
are always banned to AML byte code.

Table 8. Banned I/O ports

Port range Description

0x0020-0x0021 PIC0: Programmable Interrupt Controller (8259_a)

0x00a0-0x00a1 PIC1: Cascaded PIC

0x04d0-0x04d1 ELCR: PIC edge/level registers

However, for Windows XP and higher, different port ranges are banned to AML byte code. Table 9,
“Windows XP+ banned I/O ports” lists these ranges.

Table 9. Windows XP+ banned I/O ports

Port range Description

0x0000-0x000F DMA: DMA controller

0x0040-0x0043 PIT1: System Timer 1

0x0048-0x004b PIT2: System Timer 2 failsafe

0x0070-0x0071 RTC: Real-time clock

0x0074-0x0076 CMOS: Extended CMOS

0x0081-0x0083 DMA1: DMA 1 page registers

0x0087-0x0087 DMA1L: DMA 1 Ch 0 low page

0x0089-0x008b DMA2: DMA 2 page registers

0x008f-0x008f DMA2L: DMA 2 low page refresh

Ubuntu BIOS/UEFI Requirements

16

Port range Description

0x0090-0x0091 ARBC: Arbitration control

0x0093-0x0094 SETUP: Reserved system board setup

0x0096-0x0097 POS: POS channel select

0x00c0-0x00df IDMA: ISA DMA

0x0cf8-0x0cff PCI: PCI configuration space

So avoid accessing these ports by AML byte code - it will not work and it results in an kernel error
message ("Denied AML access to port"), and the AML will execute incorrectly. This could lead to un-
defined behaviour since port reads and writes will not be executed. Failed port reads can potential-
ly return uninitialised random data found on the stack or heap - an error will be flagged and usually
the port reading caller will skip or abort execution.

To access registers in devices using these I/O spaces, one needs to declare devices in ASL.

The following is an example of PCI(e) device written in ASL. By declaring this device in the PCI
bridge or PCIe Root Port, the BIOS is able to read the Vendor ID (VID) and Device ID (DID) in PCI con-
figuration space without directly accessing I/O ports 0xCF8 and 0xCFC. The low-level hardware ac-
cesses will be handled by the Linux kernel.

 Device (PDEV) { // Device 0x01, Function 0x02
 Name (_ADR, 0x00010002)
 OperationRegion (CNFG, PCI_Config, 0x0, 0x100)
 Field (CNFG, DWordAcc, NoLock, Preserve) {
 VID, 16,
 DID, 16,
 }
 }

Similarly, the BIOS can read from or write to CMOS registers in a RTC device without directly access-
ing I/O Port 0x70 and 0x71. The example below demonstrates how the BIOS can declares Seconds,
Minutes and Hours registers in a RTC device. More details for different RTC devices can be found in
section 9.15 of ACPI specification [ACPI 4.0].

 Device (RTC) { // PC/AT-compatible RTC Device

 Name (_HID, EisaId ("PNP0B00"))
 Name (_CRS, ResourceTemplate () {
 IO (Decode16,
 0x0070,
 0x0070,
 0x01,
 0x08,
)
 IRQNoFlags ()
 {8}
 })

 OperationRegion(CMS1, SystemCMOS, 0, 0x40)
 Field(CMS1, ByteAcc, NoLock, Preserve) {
 SECD, 8,
 , 8,
 MINT, 8,
 , 8,
 HOUR, 8

Ubuntu BIOS/UEFI Requirements

17

 }
 }

Port access violations caused by AML code (which occur very rarely) can be detected by the
firmware test suite using the klog test, run FWTS as follows:

sudo fwts klog

4.8. Battery
Battery information is of value to Linux on mobile platforms such as laptops and netbooks. The
ACPI specification describes two interfaces, “Smart Battery” (Section 10.1) and “Control Method
Batteries” (Section 10.2). Few systems implement “Smart Battery”, and although Linux provides
a driver, it has not been tested on a wide range of machines. The preferred interface is “Control
Method Batteries”, but Canonical can assist if your hardware or firmware requires Smart Battery
support.

It is recommended that static battery information should be provided by either one of the _BIF
(Battery Information) or _BIX (Battery Information Extended) objects. Linux can handle either ob-
ject, however _BIF is deprecated in ACPI 4.0 so _BIX is the preferred choice. Sections 10.2.2.1 and
10.2.2.2 of ACPI specification 4.0a describe these objects in detail. Please ensure that the objects
are packages that comply with the specification in terms of typing and ranges. Most specifically:

1. Power Unit is 0x00000000 (mWh) or 0x00000001 (mAh).

2. Design Capacity is between 0x00000000 and 0x7ffffffff if known and 0xffffffff if unknown.

3. Last Full Capacity is between 0x00000000 and 0x7ffffffff if known and 0xffffffff if unknown.

4. Battery Technology is 0x00000000 or 0x00000001.

5. Design Voltage is either 0x00000000-0x7ffffffff if known and 0xffffffff if unknown.

6. Design capacity of Warning is 0x00000000-0x7fffffff

7. Cycle Count is either 0x00000000-0xffffffffe if known and 0xffffffff if unknown.

8. Measurement Accuracy is in thousands of a percent, 0x00000000-0x000186a0

9. Min and Max Sampling Times are 0xffffffff if unavailable.

10. Model Number, Serial Number, Battery Type and OEM Information strings are defined. Null en-
tries make it practically impossible to identify battery hardware, so please ensure they are de-
fined correctly.

The Linux kernel will report these values with minimal filtering of any incorrect data. Incorrect or
out of range values can potentially confuse the higher levels of power management.

Where as the _BIX and _BIX objects are generally static information, the _BST (Battery Status)
control method is used to determine the current battery status. We expect this control method to
be implemented for mobile platforms.

This method is described in section 10.2.2.6 of version 4.0a of the ACPI specification. This needs to
return a package of all DWORD integers which contain values conforming to table 10-7 (_BST Re-
turn Package Values) in the specification.

It is essential that the Battery State Bits 0..2 contain the correct discharging/charging/critical state
settings and Battery Present Rate. Note that bits 0 and bit 1 in are mutually exclusive.

Battery Remaining Capacity and Battery Present Voltage fields contain correct and reliable data in
the ranges 0x00000000-0x7fffffff if known and 0xffffffff if unknown.

Ubuntu BIOS/UEFI Requirements

18

4.9. Mutexes
ASL provides mutex primitives via the Acquire() and Release() operators. Mutexes are used to
provide synchronization around critical data to avoid race conditions. The executing thread is sus-
pended until the mutex is released or a timeout occurs. The timeout value can be 0xffff (or greater)
to indicate an indefinite wait, or a value less than 0xffff indicates a timeout in milliseconds.

The Acquire operator returns True if a timeout occurs and hence the mutex was not acquired.
Thus for timeouts less than 0xffff it is required that mutex acquire failures are checked and the er-
ror condition is handled appropriately. We class any AML code that contains non-indefinite waits
without checking for timeout failures as a critical bug - the AML code contains potentially haz-
ardous race conditions and will result in undefined incorrect execution behaviour.

It is also important to balance each Acquire() with a mutex Release(). Sometimes methods con-
tain multiple return paths and some of these do not release acquire mutexes. This causes subtle
lock-ups during execution of the methods and we class these as critical bugs.

4.10. Thermal zones
Linux has a mature ACPI Thermal Zone driver that allows proactive system cooling policies as de-
scribed by section 11 of the ACPI specification. Providing ACPI thermal zones in the firmware allows
Linux to monitor and control cooling decisions based on CPU loading and thermal heuristics. ACPI
Thermal Zones can be implemented as a complete system thermal zone, or a system can be parti-
tioned into multiple thermal zones (e.g. per CPU, device, etc.) for finer control.

It is recommended to provide reasonable and sensible trip points and polling intervals within the
limits provided by the ACPI specification. If the hardware cannot generate asynchronous notifi-
cations to detect temperature changes, then one is required to specify sensible polling intervals.
Polling intervals should not be too short to overload the CPU and also not too infrequent as to miss
critical thermal levels.

Ensure that critical trip points are correctly set (in degrees Kelvin) so that Linux can trigger graceful
shutdowns.

It is our observation that ACPI Thermal Zones are not implemented in the firmware of the major-
ity of mobile platforms and instead System Management Mode (SMM) seems to be the preferred
mechanism for handling fan control and critical thermal trip points. While this solution may work, it
does mean that non-maskable System Management Interrupts can preempt the kernel and hence
affect real time performance. Therefore, if possible, use ACPI thermal zones in preference to SMM.

5. Windows Management Instrumentation
(WMI)
Windows Management Instrumentation (WMI) is a complex set of proprietary extensions to the
Windows Driver Model that provides an OS interface to allow instrumented components to provide
information and notifications.

Typically we are interested in WMI if a laptop or netbook has implemented hotkey events using
WMI. In this case, we need to write a driver or extend and existing driver to capture the appropriate
WMI events and map these onto key events.

Our recommendation is to implement hot keys by generating scan codes that can be interpreted at
the input layer without the need of a WMI driver. However, if hotkeys must be implemented using
WMI, then we recommend:

1. Use existing WMI implementations, so that drivers do not need to be written or extended.

Ubuntu BIOS/UEFI Requirements

19

2. WMI interfaces are thoroughly documented. New WMI interfaces require a specification provid-
ed during the planning phase.

We require a description of the following:

1. The WMI GUIDs and Notifier IDs

2. A complete description of the data return on a notifier event (e.g. the data returned by the
_WED control method).

3. A description of the expected return codes and the keys they map to. E.g. “code 0x0013 maps
to the brightness down key.”

4. Where possible, the Managed Object Format (MOF) source before it is compiled into a WMI
WQxx binary object. This will help us to understand the higher level semantics of the WMI
GUIDs.

5.1. Common Errors

5.1.1. Incorrect GUID generation

It is important not to reuse GUIDs. Copying and pasting GUIDs from elsewhere (for example, from
sample code) will cause GUID conflicts, which makes it impossible for a driver to distinguish WMI de-
vices uniquely. This makes fixing bugs impossible, as the designs of two WMI devices are likely to be
different.

It is also important not to generate a GUID by modifying existing GUIDs in any way. It is a common
mis-understanding that modifying a GUID (eg. adding 1) can avoid conflict. This is not how GUIDs
work; all GUIDs must be generated independently.

A number of tools are available for proper GUID generation:

• For Ubuntu, the uuidgen utility will generate GUIDs quickly and easily.

• For Windows, Microsoft's GuidGen tool can be used to generate GUIDs. This tool is shipped
with MS Visual C++, but is also available at https://www.microsoft.com/download/en/
details.aspx?displaylang=en&id=17252.

• There are various web services available to generate GUIDs online, such as http://guid.us/.

6. System Management Mode (SMM)
System Management Mode (SMM) is a mechanism that allows the processor to temporarily jump in-
to a high privilege mode and execute specialised (firmware) assist code.

To enter System Management Mode, a System Management Interrupt (SMI) is generated either by
hardware signals on a pin on the processor, or by a software SMI triggered via a SMI port (eg, port
0xb2 on Intel platforms), or by a I/O write to a port that is configured to generate an SMI.

SMIs cannot be blocked or disabled and effectively suspend execution of the operating system
while they are being handled. This can disrupt the operating system in several ways:

• From the operating system’s viewpoint, clock ticks are mysteriously lost

• SMIs can disrupt real time performance, due to unexpected latency injection

• SMM code can make assumptions on the way specific hardware is configured (such as APICs)
and these may be incompatible with the way Ubuntu Linux handles the hardware

https://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17252
https://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17252
http://guid.us/

Ubuntu BIOS/UEFI Requirements

20

Therefore, we recommend that SMIs are used only where absolutely necessary, such as critical CPU
temperature behaviour, where the functionality provided in the SMI handler must be available re-
gardless of the state of the operating system. In situations where other hardware service facilities
are feasible, we recommend using those over SMI-based implementations.

When they are used, we recommend that that SMIs take no longer than 150 microseconds to com-
plete (ie., return control to the operating system). SMI latencies longer than 150 microseconds po-
tentially risk operating system timeouts. Delays greater than 300 microseconds are considered in-
appropriate (will definitely cause operating system timeouts) and must be avoided.

Intel’s BIOSBITS (BIOS Implementation Test Suite) (http://biosbits.org/) is a useful test suite that
can detect long SMI latencies. We recommend that firmware passes the SMI test.

6.1. High Precision Event Timer (HPET)
The HPET can cause issues with suspend (S3) because Ubuntu Linux uses a tickless HZ timer, where-
as Windows uses a periodic clock. We have observed that System Management Mode SCIs that jump
into the BIOS can cause long hangs, possibly because of small delays based on 64 bit timers than
may have 32 bit counter wrap-around, and the firmware does not take this into consideration. We
recommend that BIOS vendors consider the ramifications of the tickless HZ timer that Ubuntu Linux
uses when handling SMIs.

7. System Management BIOS (SMBIOS)
The System Management BIOS (SMBIOS) specification [SMBIOS 2.71] describes how systems and
motherboard vendors structure management information in a standard way. This information de-
scribes the hardware and is intended to allow operating systems and applications to identify hard-
ware without the need to probe system hardware which can be difficult, error prone and unreliable.
Unfortunately, firmware can reach the market with poorly constructed SMBIOS information which
makes it difficult or impossible to determine hardware configurations because of empty (null) fields
or fields containing meaningless default values or text strings.

Therefore, we recommend that fields comply with the following rules:

• No empty or invalid fields

• Serial numbers must be defined and not left to a default such as 0123456789

• Asset tags must be defined and not left to a default such as 0123456789

• UUIDs need to be defined and not defaulted to
0A0A0A0A-0A0A-0A0A-0A0A-0A0A0A0A0A0A0A0A0A

• No fields should contain defaults such as “To Be Filled By O.E.M.”

7.1. Common Errors

7.1.1. System Enclosure or Chassis (Type 3)

SMBIOS defines attributes of mechanical enclosures in section 7.4 [SMBIOS 2.71]; specifically, the
System Enclosure Indicator (offset 0x00) specifies the chassis type. It is common that this field does
not match the actual hardware. We recommend that the Type 3 data is programmed correctly.

In addition to SMBIOS, ACPI defines Preferred_PM_Profile in Fixed ACPI Description Table (FADT)
[ACPI 4.0]. It is a very common error that the SMBIOS Type 3 data and ACPI Preferred_PM_Profile
does not match. We recommend that these two attributes are consistent.

http://biosbits.org/

Ubuntu BIOS/UEFI Requirements

21

7.1.2. Portable Battery (Type 22)

Both SMBIOS and ACPI specifications define structures for portable batteries. Because SMBIOS is
static and ACPI is dynamic, it is not practical to match their attributes. However, we recommend al-
ways including SMBIOS Type 22 when systems support portable batteries, i.e. the ACPI battery is
declared in AML, even if no battery is attached during BIOS POST.

8. Hotkeys

8.1. Hotkey mappings
Because of the wide range of hardware that the Ubuntu kernel supports, and the different applica-
tions that expect to receive input events, there is a translation between hardware event data and
the input event codes that are generated from these hardware events. Figure 1, “Hardware-to-in-
put-event mapping” shows the process used to map hardware events to events that applications
can understand.

Figure 1. Hardware-to-input-event mapping

hardware
scancode

0xe0 0x01

hardware/BIOS
event source

system
application

hardware/BIOS
kernel driver

kernel input
subsystem

kernel
scancode

0x81

input
event

KEY_PLAYPAUSE

1. Hardware and/or
BIOS emits event
with system-
specific key data

2. Kernel driver
receives event, and
maps system key
data to a known
kernel scancode

3. Kernel input layer
converts kernel
scancode to well-
known key symbol,
using keymap tables

4. Application
receives input
event with known
key symbol

While the first stage of mapping is generally hardcoded in the driver, the second stage is config-
urable through a standard kernel interface. Where possible, existing mappings should be re-used.
This is best achieved by using a standard set of hardware scancodes across multiple SKUs.

Tables of existing hotkey mappings can be found in Appendix B, Existing hotkey mappings.

The mappings are defined by udev rules, and can be found in the /lib/udev/keymaps/ directory.
The format is as follows:

kernel-scancode keycode-symbolic-name #comments

For example:

0x81 playpause # Play/Pause
0x82 stopcd # Stop
0x83 previoussong # Previous song
0x84 nextsong # Next song

The scancode in the file is in the encoded form used by Linux kernel. For example, the scancode
0xe0 0x01 is encoded as 0x81 and it is mapped to the symbolic name KEY_PLAYPAUSE. The avail-
able keycode symbolic names are listed in /usr/include/linux/input.h.

The relevant mapping file will generally be called /lib/udev/keymaps/vendor-name. The
appropriate keymap is loaded at runtime, by the udev rules in /lib/udev/rules.d/95-
keymap.rules. If no suitable file exists, Canonical can work with you to create a new one. Howev-

Ubuntu BIOS/UEFI Requirements

22

er, we highly recommend that existing mappings are re-used. New mappings (for keys that are
not already present in a suitable keymap) can be easily added to this file, but should be kept consis-
tent across product lines.

8.2. Brightness controls
Brightness control hotkeys on mobile platforms are implemented in various ways on different plat-
forms. The recommended method is to implement the ACPI brightness control methods, detailed in
section B.6 of the ACPI specification [ACPI 4.0]. We also recommend that the BIOS notifies the Linux
kernel as defined in section B.7 of the specification. The supported notification values are listed in
Table 10, “Notification Values for Brightness Control”.

Table 10. Notification Values for Brightness Control

Notification Value Description

0x86 Increase Brightness

0x87 Decrease Brightness

Brightness control hotkeys should not be an internal BIOS implementation that excludes operating
system participation. Some BIOSes require specific _OSI levels before they enable ACPI brightness
controls - Linux will always support ACPI brightness control support, so use this, no matter what
_OSI reports.

8.3. WMI hotkeys
These should be avoided, as they usually require a custom WMI event mapper to translate WMI
events into key scan codes. See Section 5, “Windows Management Instrumentation (WMI)” for more
details.

8.4. Keyboard BIOS hotkeys / Embedded Controller
hotkeys
Sometimes known as “Keyboard BIOS hotkeys”, or “Embedded Controller hotkeys”, this is a mecha-
nism where the scancodes are sent directly via the keyboard controller. The Linux kernel directly re-
ceives keyboard codes on the keyboard input device, so a special hotkey driver is not required. How-
ever, the hotkey keyboard codes need to be remapped to meaningful key codes via udev keymaps.

We recommend that hotkeys implemented in this manner should re-use already-existing keymaps,
keeping consistent with previous SKUs. Refer to Section 8.1, “Hotkey mappings” for the mapping
process, and Appendix B, Existing hotkey mappings for details of existing mappings used by Ubuntu.

A well-behaved EC for this hotkey should send both key press and release scan codes.

8.5. Vendor-specific ACPI device HID hotkeys
A vendor specific device HID is an alternative mechanism for implementing hotkeys in ACPI. Typical-
ly a vendor specific device is implemented in the DSDT with some arbitrary device HID and hotkeys
generate GPE edge or level triggered event(s) which cause notify events that need to be handled. A
Linux platform specific driver needs to be written to handle this unique device.

Such hotkey implementations should be avoided. However, if it cannot be avoided then full details
about the notify events and how they map onto hotkeys, the HID and any methods that need to be
evaluated to operate this interface are required. Failure to disclose this information requires the en-
gineer to reverse engineer the driver from the DSDT by observing notify events on key presses.

Ubuntu BIOS/UEFI Requirements

23

8.6. PNP device HID hotkeys

Table 11, “Hotkey PNP devices” describes the Hotkey PNP Devices supported by Ubuntu.

Table 11. Hotkey PNP devices

PNP device Description

ACPI_FPB Power Button

ACPI_FSB Sleep Button

PNP0C0C Power Button

PNP0C0D Lid Device

PNP0C0E Sleep Button

8.7. Video output hotkeys

Most laptops have a video out hotkey (generally Fn+F1 or Fn+F7) which causes the system to cycle
through the following external monitor options when an external monitor is attached to one of the
system’s video outputs (eg. HDMI, DP or VGA). This key cycles the video output mode through the
following four states:

• Same image on both ("clone")

• Builtin Display only (LVDS)

• External Display only

• Extended Display (both displays active, desktop extended over both displays)

Newer laptops released with support for Windows 7 now sends a new keycode, “Mod4 + P” (Mod4 is
the Windows key modifier).

Video mode switching is handled by the OS system application gnome-settings-daemon. This
daemon responds to the keycodes and uses the xrandr application to affect the desired mode
changes. This requires that the X graphics driver supports the xrandr protocol, version 1.2 or later.

8.7.1. Discrete NVIDIA graphic switching

At the time this document was written, the closed source NVIDIA driver does not support xrandr
1.2, so the standard Ubuntu utilites are unable to control the monitor configuration when this dri-
ver is in use.

Specifically, the driver relies on an ACPI event, NVIF_NOTIFY_DISPLAY_DETECT (value 0xcb) to
be generated by the BIOS on display reconfiguration. This event is enabled through the NVIF ACPI
method.

8.8. RF killswitches

RF killswitches are hotkeys that disable/re-enable radio devices such as Wifi and Bluetooth. We rec-
ommend that these keys generate a standard vendor-specific key scancode that can be remapped
to the wlan key via the udev keymapping. These key events can then be used to inform the driver to
disable/re-enable wireless, via the Ubuntu kernel rfkill interface.

An example of the mapping for Dell laptops is the Fn+F2 key, which emits scancode 0xe0 0x08.
This scancode is mapped to the wlan key event via udev rules in /lib/udev/keymaps/dell.

Ubuntu BIOS/UEFI Requirements

24

Note

If a driver provided by an OEM/ODM/IHV does not support the standard kernel rfkill inter-
face, and the hardware design of the hotkey directly controls power to the device, Canoni-
cal will not accept responsibility for bugs tied to the wireless hotkey.

8.9. Touchpad killswitches
Touchpad kill switches are hotkeys that enable/disable touchpads. Touchpads that use the underly-
ing PS/2 mouse protocol typically implement the kill switch at the embedded controller firmware
layer. When the kill switch disables the touchpad, no further PS/2 packets are emitted from the
8042 keyboard controller until the kill switch toggles it back on again.

We recommend that a touchpad toggle key event is generated, so that a notification can be dis-
played to the user. The key code is vendor-specific and requires remapping through udev keymaps.

For example, Dell laptops emit the scan code 0xe0 0x1e or 0xe0 0x59 when the rfkill key is
pressed. This maps to the F21 key event (touchpad toggle) via the udev rules in /lib/udev/
keymaps/dell.

The touchpad toggle key event is processed by gnome-settings-daemon, which will trigger the
on-screen notification. It also will track the state of the touchpad toggle, and persist this state using
the GConf key /desktop/gnome/peripherals/touchpad/touchpad_enabled. This GConf key
allows the system to keep track of the touchpad state across suspend, hibernate, or reboot.

Neither the Linux kernel, nor gnome-settings-daemon explicitly handle the actual enable/disable
logic, nor the any associated LED which indicates the status of the touchpad. Both of these func-
tions are the responsibility of the BIOS/Embedded Controller.

9. UEFI
Canonical is currently working on a base-level compatibility between Ubuntu and UEFI firmware. We
are expecting that most OEM machines will ship with a firmware that complies with version 2.3.1 of
the UEFI standard.

9.1. Legacy BIOS compatibility
Ubuntu's UEFI compatibility has mainly been tested with legacy BIOS compatibility mode (known
as a Compatibility Support Module, or “CSM”) enabled. However, Ubuntu is known to work with
non-CSM firmware: Ubuntu 12.04 has been tested on EDK Build Version 10 in native UEFI mode (no-
CSM), on Intel SDP hardware.

In the future, we expect for CSM to be disabled. Provided that native-UEFI drivers are working (in
particular, those providing EFI_GRAPHICS_OUTPUT_PROTOCOL support), UEFI firmware with con-
figurable CSM mode should be configured to disable CSM.

9.2. UEFI boot services
Table 12, “Boot services used” lists the boot services that may be referenced by the Ubun-
tu bootloader. Any optional services that are not implemented by the firmware must return
EFI_UNSUPPORTED.

Table 12. Boot services used

Service UEFI § Compliance

EFI_INSTALL_CONFIGURATION_TABLE 6.5 Required

Ubuntu BIOS/UEFI Requirements

25

Service UEFI § Compliance

EFI_LOCATE_PROTOCOL 6.3 Required

EFI_LOCATE_HANDLE 6.3 Required

EFI_OPEN_HANDLE 6.3 Required

EFI_STALL 6.5 Required

EFI_EXIT 6.4 Required

EFI_SET_WATCHDOG_TIMER 6.5 Optional, watchdog is disabled

EFI_ALLOCATE_PAGES 6.2 Required

EFI_FREE_PAGES 6.2 Required

EFI_GET_MEMORY_MAP 6.2 Required

EFI_EXIT_BOOT_SERVICES 6.4 Required

EFI_UNLOAD_IMAGE 6.4 Required

EFI_START_IMAGE 6.4 Required

EFI_LOAD_IMAGE 6.4 Required

Table 13, “Boot protocols used” lists the boot protocols that may be referenced by the Ubuntu
bootloader.

Table 13. Boot protocols used

Protocol UEFI § Compliance

EFI_DEVICE_PATH_PROTOCOL 9.1 Required

EFI_GRAPHICS_OUTPUT_PROTOCOL 11.9 Required

EFI_DISK_IO_PROTOCOL 12.7 Required

EFI_BLOCK_IO_PROTOCOL 12.8 Required

EFI_GRAPHICS_OUTPUT_PROTOCOL 11.9 Required

EFI_SIMPLE_NETWORK_PROTOCOL 21.1 Optional, required for netboot

EFI_PXE_BASE_CODE_PROTOCOL 21.3 Optional, required for netboot

9.3. UEFI runtime services

Table 14, “Runtime services used” lists the runtime services that the Ubuntu bootloader and kernel
may use, after ExitBootServices() has been invoked. Any optional services that are not imple-
mented by the firmware must return EFI_UNSUPPORTED.

Table 14. Runtime services used

Service UEFI § Compliance

EFI_GET_TIME 7.3 Required

EFI_SET_TIME 7.3 Required

EFI_GET_WAKEUP_TIME 7.3 Optional, required for RTC wakeup

EFI_SET_WAKEUP_TIME 7.3 Optional, required for RTC wakeup

EFI_SET_VIRTUAL_ADDRESS_MAP 7.4 Required

EFI_GET_VARIABLE 7.2 Required

EFI_GET_NEXT_VARIABLE_NAME 7.2 Required

EFI_RESET_SYSTEM 7.5.1 Required

Ubuntu BIOS/UEFI Requirements

26

Due to issues with existing UEFI implementations, the memory used for EFI boot services is not
reused by the operating system until after EFI_SET_VIRTUAL_ADDRESS_MAP has been invoked.
However, runtime services should not depend on the presence of boot-services memory for any
other runtime services.

9.4. UEFI configuration tables
The Ubuntu kernel currently makes use of the ACPI20 and SMBIOS configuration tables; these
must be present and correct.

Usage of the ACPI table (ie, EFI_ACPI_TABLE_GUID) has been superseded by the ACPI20 table
(ie, EFI_ACPI_20_TABLE_GUID). If both are present, the ACPI table will be ignored by Ubuntu.

9.5. Secure boot
Section 27 of the UEFI specification [UEFI 2.3.1] defines “Secure Boot”, a mechanism for authenti-
cating boot images loaded by UEFI firmware. Although the description of the secure boot mecha-
nism is comprehensive, it does not define any policy for ownership of authentication information.

Canonical, in conjunction with industry partners, has released a whitepaper [UEFI-SB] detailing the
issues surrounding UEFI secure boot and Linux-based operating systems.

Canonical will provide keys and signed boot images for use with secure boot functionality. The sign-
ing key will be provided as an x.509-encapsulated 2048-bit RSA public key. OEMs must embed this
key in the KEK and db signature databases, as an entry of type EFI_CERT_X509_GUID. The PK is
left for the OEM to define.

Any machine shipped with Ubuntu must support reconfiguration of the keys used in the secure
boot process, to allow users to use secure boot with their own keys and custom boot images.
The firmware interface should allow a physically-present user to enter the machine in to setup
mode, or manually load KEK, db and dbx entries from disk or removable storage. This require-
ment is compatible with the Windows 8 Hardware Certification Requirements [WIN8HCR], §
System.Fundamentals.Firmware.UEFISecureBoot, item 20.

Any machine shipped with Ubuntu must allow a physically-present user to disable and re-enable se-
cure boot verification functionality. This requirement is compatible with the Windows 8 Hardware
Certification Requirements [WIN8HCR], § System.Fundamentals.Firmware.UEFISecureBoot, item 21.

Systems shipping with secure boot enabled must not use a CSM module for legacy BIOS compatibil-
ity.

Due to the very limited availability of UEFI implementations with secure boot functionality, Canon-
ical requires additional testing effort for any SKUs that are required to support secure boot. We re-
quire that a sample SKU be provided early in the enablement process, to allow for this additional
testing.

For more information on enabling Ubuntu on a system supporting secure boot, please contact
Canonical.

9.6. Graphics output protocol
The Ubuntu boot process relies on the UEFI Graphics Output Protocol (GOP) for early access to dis-
play hardware. Therefore, UEFI firmware must implement this protocol for proper functionality dur-
ing system boot.

Firmware GOP drivers should not rely on legacy-BIOS compatibility to function. Legacy VGA drivers
that implement communication between software and GPU using interrupts (INT10h) and the VGA/

Ubuntu BIOS/UEFI Requirements

27

VBE interface, should be ported to use the UEFI Protocols as per UEFI 2.3.1 specification § 11.9,
“Graphics Output Protocol”.

References
[ACPI 4.0] Advanced Configuration and Power Interface Specification. 4.0. Hewlett-Packard Corpora-

tion. Intel Corporation. Microsoft Corporation. Phoenix Technologies Ltd.. Toshiba Corpora-
tion. December 6, 2011. http://www.acpi.info/spec40a.htm.

[SMBIOS 2.71] System Management BIOS Reference Specification. 2.71. Distributed Manage-
ment Task Force. January 26, 2011. http://dmtf.org/sites/default/files/standards/docu-
ments/DSP0134_2.7.1.pdf.

[UEFI 2.3.1] Unified Extensible Firmware Interface Specification. 2.3.1. United EFI, Inc. April 6, 2011.
http://www.uefi.org/specs/.

[UEFI-SB] UEFI Secure Boot Impact on Linux. Jeremy Kerr. Matthew Garrett. James Bottomley. Octo-
ber 28, 2011. http://ozlabs.org/docs/uefi-secure-boot-impact-on-linux.pdf.

[WIN8HCR] Windows 8 Hardware Certification Requirements. Microsoft. December 16, 2011. http://
msdn.microsoft.com/library/windows/hardware/hh748188.

[UDEV] udev(7) manual page. Greg Kroah-Hartman. Kay Sievers. July 11, 2011. http://
manpages.ubuntu.com/manpages/precise/man7/udev.7.html.

A. Contacting Canonical
Canonical has offices in the United States, China, Taiwan, the United Kingdom, Canada, Brazil, and
the Isle of Man.

For questions about this document, or clarification on technical items, send email to
<hwe-docs@lists.launchpad.net>.

For sales and other enquiries, contact us via https://forms.canonical.com/sales/, or contact one of
our local offices:

Boston office

 Canonical USA Inc.
 Suite 212 Lexington Corporate Center
 10 Maguire Road
 Lexington, MA 02421
 USA

 Phone: +1 781 761 9080
 Fax: +1 781 862 5514

Shanghai office

 Canonical China

http://www.acpi.info/spec40a.htm
http://dmtf.org/sites/default/files/standards/documents/DSP0134_2.7.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0134_2.7.1.pdf
http://www.uefi.org/specs/
http://ozlabs.org/docs/uefi-secure-boot-impact-on-linux.pdf
http://msdn.microsoft.com/library/windows/hardware/hh748188
http://msdn.microsoft.com/library/windows/hardware/hh748188
http://manpages.ubuntu.com/manpages/precise/man7/udev.7.html
http://manpages.ubuntu.com/manpages/precise/man7/udev.7.html
https://forms.canonical.com/sales/

Ubuntu BIOS/UEFI Requirements

28

 Unit 2763, 27th Floor, K.Wah Center
 No.1010 Huaihai Zhong Road
 Shanghai, 200031
 China

 上海市淮海中路1010号嘉华中心27楼2763单元

 Phone: +86 21 6103 1234

Taipei office

 Canonical Limited Taiwan Branch
 Room d, 46F
 No. 7, Xin Yi Rd., Sec. 5
 Taipei 101
 Taiwan

 台北市信義路5段7號46樓D室 (台北101大樓)

 Phone: +886 2 8729 6888
 Fax: +886 2 2723 9288

For additional contact information please see http://www.canonical.com/about-canonical/contact.

B. Existing hotkey mappings
The following tables are a selection of the current scancode to key symbol mappings used by Ubun-
tu. The tables are generated directly from the keymap data used in the latest version of Ubuntu.

Each table is preceeded by the conditions that are checked before loading the keymap. If the condi-
tions match the device, then the keymap is used. Otherwise, the keymap is not used. Details about
the format of these conditions are available in the udev documentation [UDEV].

1. Hotkey mapping tables

dell

ENV{DMI_VENDOR}=="Dell*"

scancode keysym notes

0xe0 0x01 KEY_PLAYPAUSE Play/Pause

0xe0 0x02 KEY_STOPCD Stop

0xe0 0x03 KEY_PREVIOUSSONG Previous song

0xe0 0x04 KEY_NEXTSONG Next song

0xe0 0x05 KEY_BRIGHTNESSDOWN Fn+Down arrow Brightness Down

0xe0 0x06 KEY_BRIGHTNESSUP Fn+Up arrow Brightness Up

http://www.canonical.com/about-canonical/contact

Ubuntu BIOS/UEFI Requirements

29

scancode keysym notes

0xe0 0x07 KEY_BATTERY Fn+F3 battery icon

0xe0 0x08 KEY_UNKNOWN Fn+F2 Turn On/Off Wireless - handled in hard-
ware

0xe0 0x09 KEY_EJECTCLOSECD Fn+F10 Eject CD

0xe0 0x0a KEY_SUSPEND Fn+F1 hibernate

0xe0 0x0b KEY_SWITCHVIDEOMODE Fn+F8 CRT/LCD (high keycode: "displaytog-
gle")

0xe0 0x0c KEY_F23 Fn+Right arrow Auto Brightness

0xe0 0x0f KEY_SWITCHVIDEOMODE Fn+F7 aspect ratio

0xe0 0x10 KEY_PREVIOUSSONG Front panel previous song

0xe0 0x11 KEY_PROG1 Wifi Catcher (DELL Specific)

0xe0 0x12 KEY_MEDIA MediaDirect button (house icon)

0xe0 0x13 KEY_F23 Fn+Left arrow Auto Brightness

0xe0 0x15 KEY_CAMERA Shutter button Takes a picture if optional
camera available

0xe0 0x17 KEY_EMAIL Tablet email button

0xe0 0x18 KEY_F21 Tablet screen rotatation

0xe0 0x19 KEY_NEXTSONG Front panel next song

0xe0 0x1a KEY_SETUP Tablet tools button

0xe0 0x1b KEY_SWITCHVIDEOMODE Display Toggle button

0xe0 0x1e KEY_F21 touchpad toggle

0xe0 0x22 KEY_PLAYPAUSE Front panel play/pause

0xe0 0x24 KEY_STOPCD Front panel stop

0xe0 0x6d KEY_MEDIA MediaDirect button

0xe0 0x58 KEY_SCREENLOCK Tablet lock button

0xe0 0x59 KEY_F21 touchpad toggle

dell-latitude-xt2

ENV{DMI_VENDOR}=="Dell*"
 && ATTR{[dmi/id]product_name}=="Latitude XT2"

scancode keysym notes

0xe0 0x1b KEY_UP tablet rocker up

0xe0 0x1e KEY_ENTER tablet rocker press

0xe0 0x1f KEY_BACK tablet back

0xe0 0x23 KEY_DOWN tablet rocker down

lenovo-ideapad

ENV{DMI_VENDOR}=="LENOVO*"
 && ATTR{[dmi/id]product_version}=="*IdeaPad*"
ENV{DMI_VENDOR}=="LENOVO*"
 && ATTR{[dmi/id]product_name}=="S10-*"

Ubuntu BIOS/UEFI Requirements

30

scancode keysym notes

0xe0 0x01 KEY_RFKILL does nothing in BIOS

0xe0 0x03 KEY_DISPLAY_OFF BIOS toggles screen state

0xe0 0x39 KEY_BRIGHTNESSUP does nothing in BIOS

0xe0 0x3a KEY_BRIGHTNESSDOWN does nothing in BIOS

0xe0 0x71 KEY_CAMERA BIOS toggles camera power

0xe0 0x72 KEY_F21 touchpad toggle (key alternately emits f2 and
f3)

0xe0 0x73 KEY_F21

lenovo-thinkpad_x200_tablet

ENV{DMI_VENDOR}=="LENOVO*"
 && ATTR{[dmi/id]product_version}=="ThinkPad X2[02]* Tablet*"
 && ATTR{[dmi/id]product_version}=="* Tablet"

scancode keysym notes

0xe0 0x5d KEY_MENU

0xe0 0x63 KEY_FN

0xe0 0x66 KEY_SCREENLOCK

0xe0 0x67 KEY_CYCLEWINDOWS bezel circular arrow

0xe0 0x68 KEY_SETUP bezel setup / menu

0xe0 0x6c KEY_DIRECTION rotate screen

lenovo-thinkpad_x6_tablet

ENV{DMI_VENDOR}=="LENOVO*"
 && ATTR{[dmi/id]product_version}=="ThinkPad X6*"
 && ATTR{[dmi/id]product_version}=="* Tablet"

scancode keysym notes

0xe0 0x6c KEY_F21 rotate

0xe0 0x68 KEY_SCREENLOCK screenlock

0xe0 0x6b KEY_ESC escape

0xe0 0x6d KEY_RIGHT right on d-pad

0xe0 0x6e KEY_LEFT left on d-pad

0xe0 0x71 KEY_UP up on d-pad

0xe0 0x6f KEY_DOWN down on d-pad

0xe0 0x69 KEY_ENTER enter on d-pad

module-lenovo

ENV{DMI_VENDOR}=="LENOVO*"
 && KERNELS=="input*"
 && ATTRS{name}=="ThinkPad Extra Buttons"

Ubuntu BIOS/UEFI Requirements

31

scancode keysym notes

0xe0 0x01 KEY_SCREENLOCK Fn+F2

0xe0 0x02 KEY_BATTERY Fn+F3

0xe0 0x03 KEY_SLEEP Fn+F4

0xe0 0x04 KEY_WLAN Fn+F5

0xe0 0x06 KEY_SWITCHVIDEOMODE Fn+F7

0xe0 0x07 KEY_F21 Fn+F8 touchpadtoggle

0xe0 0x08 KEY_F24 Fn+F9 undock

0xe0 0x0b KEY_SUSPEND Fn+F12

0xe0 0x0f KEY_BRIGHTNESSUP Fn+Home

0xe0 0x10 KEY_BRIGHTNESSDOWN Fn+End

0xe0 0x11 KEY_KBDILLUMTOGGLE Fn+PgUp - ThinkLight

0xe0 0x13 KEY_ZOOM Fn+Space

0xe0 0x14 KEY_VOLUMEUP

0xe0 0x15 KEY_VOLUMEDOWN

0xe0 0x16 KEY_MUTE

0xe0 0x17 KEY_PROG1 ThinkPad/ThinkVantage button (high key-
code: "vendor")

0xe0 0x1a KEY_MICMUTE Microphone mute

