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Abstract

Resources management, and thus also energy saving, has become a high priority

design goal for embedded multimedia mobile devices such as smartphones. Such

devices are usually based on platforms using a System-on-Chip (SoC), which em-

beds a number of peripherals sharing some resources and competing on their us-

age. Each one of these many embedded devices are usually characterized by a set of

working modes, each one corresponding to different profiles of power consumption

and corresponding performances.

Modern consumer electronics products provide also multiple functionalities,

ranging from classic phone calls to more complex use-cases which could involve

network access and multimedia data processing such as audio-video decoding and

playback. These multiple usage scenarios are usually characterized by a competi-

tion on the limited resources available and thus could also involve conflicting re-

quirements on the underlying hardware. Therefore, a proper resources and power

management of such new generation platforms has become a more and more com-

plex added value.

The ultimate goal of such a management is the search of the optimal trade-off

between power saving and performances perceived by the user. Thus, it is worth to

treat it as an optimization problem and investigate on the definition of solutions that

are easily portable among different products.

In the light of these considerations, to effectively support the optimization of a

complex platform, it is necessary (i) to have an updated and system-wide view of

the available resources, (ii) to collect and aggregate QoS requirements defined by

the multiple running use-case scenarios and (iii) to exploit these information within

a dynamic system-wide optimization policy.

This problem is not effectively solved by current approaches. A number of

frameworks has been developed that focus on specific subsystems or even single

devices. These approaches result in multiple optimization strategies being imple-

mented within the same system, with the consequent risk of overlapping control

actions and conflicting decisions. Thus, these specialized frameworks used alone

cannot grant system-wide optimizations.
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The user-space approaches that have been investigated solve this problem by means

of a centralized resource and power manager which is implemented as a middle-

ware between the applications and the operating system. Unfortunately, these ap-

proaches require to modify applications, which is not always possible. Moreover,

being implemented outside the operating system they are to much abstract to effi-

ciently exploit all the underlying hardware capabilities.

Finally, the cross-layer frameworks implemented in the past are too complex to be

effectively used in production devices or too simple to produce interesting results.

In this work, I propose a novel methodology which is able to efficiently sup-

port both resources management and power optimizations without affecting user-

perceived performances. With the proposed approach, we avoid to design a cen-

tralized system-wide controller and to completely re-design it once the architecture

or some of its hardware components changes. Instead, a single global optimiza-

tion policy is designed to provide a coarse-grained tuning for already existing low-

level and device-specific optimization policies. Indeed, this policy is designed to

find a system-wide solution to the power consumption vs perceived performances

problem. The solution is configured as a set of constraints that are notified to the

multiple underlying device-specific and fine-tuning policies.

This methodology leverage a hierarchical design where specific domain experts

could concentrate only on the definition of local optimization policies, targeting

single subsystems or devices, by exploiting run-time information coming from the

global policy. This global optimization policies take care also of collecting and

aggregating resources requirements from applications, thus providing a complete

and efficient in-kernel implementation of the cross-layer approach.

A framework implementing the proposed methodology has been developed and

integrated within the mainline Linux kernel. Its design has been defined both to

be efficient and to simplify the integration of both new and existing local control

policies. The experimental results show that our implementation exhibits negligible

run-time overheads while allowing to track correctly resources usage and identify-

ing opportunities for power optimizations that do not impact on perceived perfor-

mances.

2



Estratto in lingua italiana

La gestione delle risorse, ed in particolare il risparmio energetico, sono fra gli aspetti

critici nella progettazione di dispositivi embedded multimediali portatili come i te-

lefoni cellulari di nuova generazione. Tali dispositivi sono di solito basati su piatta-

forme System-on-Chip (SoC), costituite da una serie di periferiche che condividono

alcune risorse e competono per il loro utilizzo. Ciascuna di queste periferiche inter-

ne al SoC è generalmente caratterizzata da più modalità di lavoro, corrispondenti a

diversi profili di consumo energetico e prestazioni.

Questi moderni dispositivi portatili supportano ormai un numero sempre mag-

giore di funzionalità, e non si limitano più alle classiche attività correlate alla ge-

stione delle chiamate telefoniche. Scenari di utilizzo ben più complessi sono ormai

all’ordine del giorno e possono coinvolgere l’accesso ad Internet e l’elaborazione

di dati multimediali, come nel caso della riproduzione di contenuti audio e video.

Questo tipo di applicazioni sono generalmente caratterizzate da una maggiore com-

petizione per l’uso delle limitate risorse a disposizione, addirittura potrebbero an-

che implicare requisiti contrastanti sull’hardware sottostante. Pertanto, sebbene la

gestione delle risorse e della potenza sia indubbiamente un valore aggiunto per i di-

spositivi mobili di nuova generazione, una sua corretta implementazione sta anche

diventando sempre più complessa e richiede lo sviluppo di adeguate metodologie.

Alla luce di queste considerazioni, al fine di supportare efficacemente l’ottimiz-

zazione di piattaforme complesse, è necessario (i) avere una visione complessiva ed

aggiornata dello stato del sistema e delle risorse disponibili, (ii) raccogliere e aggre-

gare opportunamente i requisiti di qualità di servizio definiti dai molteplici scenari

d’uso in esecuzione, ed infine (iii) utilizzare queste informazioni all’interno di una

opportuna politica di ottimizzazione globale del sistema. L’obiettivo finale del si-

stema di gestione sarà la ricerca del compromesso ottimale tra risparmio energetico

e prestazioni percepite dall’utente. Si tratta quindi di un problema di ottimizzazione

che richiede soluzioni che siano non solo efficaci ma anche facilmente adattabili a

differenti ambiti applicativi e dispositivi.

Purtroppo, questo problema non è ancora stato risolto in modo soddisfacente.
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Un certo numero di politiche di ottimizzazione sono già state sviluppate, princi-

palmente concentrandosi su sottosistemi specifici o addirittura singole periferiche.

Questi approcci hanno comportato l’impiego di strategie di ottimizzazione multi-

ple all’interno di uno stesso sistema, con il conseguente rischio di sovrapposizione

delle azioni di controllo o ancora peggio della possibilità di decisioni contrastanti e

quindi potenziali instabilità del sistema. Altri approcci hanno cercato di affronta-

re il problema in spazio utente per lo più proponendo dei controllori centralizzati

realizzati da uno strato software che si frappone fra le applicazioni ed il sistema

operativo. Tali tecniche richiedono però generalmente un’opportuna modifica delle

applicazioni, cosa non sempre possibile. Inoltre, essendo esterni al sistema operati-

vo l’elevata astrazione rispetto alla piattaforma sottostante non consente di sfruttare

appieno le capacità offerte dall’hardware. Infine, gli approcci così detti cross-layer

implementati in passato sono troppo complessi per poter essere utilizzati profi-

cuamente in dispositivi commerciali oppure troppo semplici per garantire risultati

interessanti.

Questo lavoro propone una nuova metodologia in grado di supportare efficace-

mente il problema di ottimizzazione energetica e gestione delle risorse senza im-

pattare negativamente sulle prestazioni percepite dall’utente. L’approccio proposto

evita di dover progettare un nuovo sistema di controllo centralizzato ogni volta che

si cambia piattaforma o anche un solo suo componente. Infatti, una singola poli-

tica di controllo centralizzata può essere progettata per interagire con pre-esistenti

politiche di controllo locale di più basso livello fornendogli dei parametri di cali-

brazione. Infatti, tale politica centralizzata è definita per l’individuazione di una

soluzione ottimale globale del problema di bilanciamento dei consumi energeti-

ci rispetto alle prestazioni percepite dall’utente. Tale soluzione si configura come

un insieme di vincoli che possono essere notificati alle sottostanti politiche locali

deputate invece al controllo fine dei singoli dispositivi.

La metodologia proposta si basa quindi su un approccio gerarchico al problema

di controllo. In tal modo gli esperti di ciascun dispositivo possono concentrarsi

sulla definizione delle relative politiche di ottimizzazione locale che possono però

sfruttare durante la loro esecuzione le informazioni rese disponibili in modo traspa-

rente dalla politica di ottimizzazione globale. La politica di ottimizzazione globale

si occuperà inoltre di raccogliere ed aggregare opportunamente le richieste d’uti-

lizzo delle risorse avanzate dalle applicazioni, realizzando quindi una completa ed

efficiente implementazione in kernel-space degli approcci cross-layer.

Un framework che implementa la metodologia proposta è stato sviluppato ed

integrato nell’ultima versione del kernel Linux. Tale implementazione è stata pro-

gettata in modo da essere efficiente e semplificare l’integrazione di politiche di

controllo locali sia nuove che pre–esistenti. I risultati sperimentali mostrano che

la nostra implementazione ha un trascurabile impatto sulle prestazioni del sistema

in esecuzione, consente di tracciare correttamente l’utilizzo delle risorse ed anche

di identificare correttamente le opportunità di ottimizzazione energetica che non

impattano sulla prestazioni percepite dall’utente.
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Chapter 1
Overview

“ Engineering is the art of directing the great

sources of power in nature for the use and

convenience of man. ”

Thomas Tredgold

T
his chapter provides an overview of this thesis, including its goal, its moti-

vation, its fundamental approach and the benefits it offers. It first motivates

why embedded systems’ designers need a new generation of system-wide

power and performances optimization techniques, on the basis of the current con-

text. From this context I will derive the requirements that such techniques must

meet. Finally, I will show how these requirements derive precise research choices,

leading to a specific technique, which I will adopt.

1.1 Designing embedded systems is getting more and

more difficult

In the last fifty years we have assisted to a sustained growth in the ability of sili-

con manufacturers to fit more and more transistors in the same area, and to raise

the clock frequency of their devices. The processing power made available by mi-

croprocessors and programmable devices grew accordingly. Gordon E. Moore was

the first, in 1965 to recognize [1] that the transistor density was growing exponen-

tially over the years, and to capture this observation in his famous “law”, originally

formulated as: «The complexity for minimum component costs has increased at a rate of
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roughly a factor of two per year»1.

When Moore’s Law remained in lockstep with classical Dennard scaling [2],

which predicts faster, lower-power transistors at each fabrication node, the architec-

tural focus on big, fast processors made sense. However, Dennard scaling ceased to

provide big gains in speed and big reductions in power dissipation starting at the

90nm node [3]. Since then, CMOS circuits continue to get smaller but they don’t get

faster or drop in power consumption nearly as fast as they did before IC lithogra-

phies hit 90nm. Consequently, power dissipation and energy consumption started

to become unmanageable at this node [4]. The problem is getting worse with each

new process node. Embedded systems’ designers must now adopt design styles

that reduce system clock rates if they are to meet power and energy consumption

goals.

Since some year big semiconductor vendors already offer multicore, symmetric

multiprocessing (SMP) processors [5]. Each SMP core can run multiple, concurrent

applications’ threads. Such multicore processors were found first in large servers

and laptops to run applications based on the “SAMD” (single application, multiple

data) model. Nowadays a lot of interest, excitement, and worries are stimulated

by the application of those same SMP multicore architectures also to embedded

designs [6], where at a first instance we could believe that only few applications are

actually “embarrassingly parallel”.

The current performance improvement trend uses parallelism to motivate the

development of architectures that combine both fine grained and coarse grained

parallelism in systems with tens or hundreds of processors. These systems can be

considered “manycore” processor systems, with the goal of achieving higher paral-

lel code performance [7]. Manycore processor systems have tremendous potential

for high-performance computing and scientific applications. However, these archi-

tectures are going to be explored not only to be used as accelerators in the design

of tera-flop or peta-flop computers, but also in the domain of mobile multimedia

embedded system [8]. Indeed, the significant increase in parallelism within a pro-

cessor can lead many benefits including higher power-efficiency and better memory

latency tolerance.

1To read reprints of Gordon Moore’s 1965 and 1975 papers along with recent commentaries on

Moore’s Law, see the September 2006 issue of the IEEE Solid-State Circuits Society Newsletter.
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Asymmetric multicore architectures Multi-core technology is presently massively

used on embedded systems addressed to the multimedia mobile market such as that

of ’nettops’ and ’smartphones’. In the embedded system world, by expanding archi-

tectural thinking beyond SMP multicore architectures, it was even before possible

to uncover at least two kinds of easily used concurrency that exploit heterogeneous

rather than homogeneous architectures.

The first sort of parallelism is referred as “compositional concurrency” where

various subsystems are woven together into a product. Each subsystem contains

one or more processors optimized for a particular set of tasks. Communications

within this architectural design style are structured so that subsystems interact only

when needed. Figure 1.1 shows a block diagram of a Super 3G mobile phone that

illustrates this idea. Compositional concurrent design offers many advantages:

• distributing computing tasks over several on-chip processors trades additional

transistors in exchange for a lower clock rate to reduce overall power and

energy consumption.

• dedicated subsystems can be powered down when not needed;

• application-specific instruction set processors (ASIPs) that are much more area

and power efficient than general-purpose processors can be designed for each

task processor;

• avoids the complex interactions and the synchronizations required between

subsystems that are frequently associated with SMP hardware designs and

multithreaded code;

The second form of convenient concurrency is referred as “pipelined dataflow”,

which is possible every time the computation can be divided into a pipeline built

from individual task engines. Each pipelined task engine accepts, processes, and

then emits data blocks. Once a processing task completes, the processed data block

passes to the next engine in the chain. Such asymmetric multiprocessing algorithms

appear in many signal and image processing applications2. Pipelining permits sub-

stantial concurrent processing and also allows even sharper application of ASIP

principles because each processor in the pipeline can be highly tuned to just one

part of the task.

These two types of convenient concurrency complemented each other. By com-

bining the compositional subsystem style of design with pipelined, asymmetric

multiprocessing (AMP) in each subsystem made it possible to built products in the

consumer, portable, and media spaces with thousands of processors. Since many

concurrent algorithms can be individually accelerated using compositionally con-

current design, and because many subsections of a single algorithm can be acceler-

ated using pipelined design, the system problem becomes many pieces of code, all

individually open to acceleration. The overall benefit of using multicore design has

2e.g. from cell phone baseband processing to video and still image processing
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Figure 1.1: The block diagram of a Super 3G mobile phone. There are 18 identified

processing blocks (shown in gray) in the figure, each with a clearly defined

task. It’s easy to see how one might use as many as 18 processors (or more

for sub-task processing) to divide and conquer this system design.

been therefore much greater than Amdahl’s Law predicts, while the requirements

for software development do not substantially change.

Of course there was a downside for these benefits. The cost for cleanly separat-

ing and accelerating multiple algorithms is an increase in the number of transistors

per design, as realized through the use of multiple processors. That has always

been a fundamental cost of the “divide-and-conquer” design approach. However,

Moore’s Law, which trumps Amdahl’s Law in this situation, has ensured that the

cost of more transistors is very low – and likely advantageous – with respect to the

much higher costs associated with high system energy consumption and develop-

ment complexity arising from multithreaded software.
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Figure 1.2: ITRS 2007 SoC consumer portable and stationary design complexity trends.

Trend for the number of processing elements (PE’s) predicted over the next

15 years in consumer portable devices, and the number of Data Processing

Engines (DPE’s) in consumer stationary devices.

Emerging symmetric architectures Programming AMP applications is far easier

than programming multithreaded SMP applications because there are far fewer

inter-task dependencies to worry about. Experience shows that it is possible to

cleanly write software in this manner because many optimization issues arising

from the use of multithreaded applications running on a limited set of identical

processors are simply avoided. Therefore, by exploiting the two forms of “conve-

nient concurrency” previously described it is possible to substantially free software

developers from the need to think in terms of parallel operations because the vari-

ous concurrent tasks are not so closely linked.

Nevertheless, even if is has granted increased performances in this few past

years, asymmetric parallelism seem to be no more sufficient to support the require-

ments for the more and more advanced applications of next generation devices. The

International Technology Road-map for Semiconductors [4] has estimated, over the

next 15 years, that the number of processing elements (PE’s) will grow up to 1435

in consumer portable devices (Figure 1.2a), such as mobile phones with extensive

media capabilities or digital cameras. According to the same report, the number

of Data Processing Engines (DPE’s) in consumer stationary devices, such as high

end game playing machines, will grow up to 407 with one main CPU every 8 DPEs

(Figure 1.2b).

To feature hundreds or even thousands of processing cores on a single-die many-

core processor, the challenges of energy consumption and performance scalability

must be addressed within a given die area budget. Current commercial designs

focus on MIMD-style multicores built with rather complex cores. While such de-

signs provide a degree of generality, they may not be the most efficient way to build

processors for applications with inherently scalable parallelism.
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Increased power consumption threats One of the main threat to the feasibility

of products exploiting the new technologies and applications presented above is

the increased importance of their computational requirements, which immediately

impacts on their energy consumption. Energy consumption has always been a

parameter of extreme criticality in the design of all the embedded systems which

depend on a limited source of energy.

First digital embedded system employed no or little software (written in assem-

bly language), their consumed power depending on the different possible operating

conditions was relatively negligible. Nowadays, the energy demands of an innova-

tive application is increased a lot with respect of than it used to be years ago.

Embedded system comprise large software components, written in high level lan-

guages, including a complete operating system with many different network stack

and a middleware layer. The load imposed on the system by modern applications

such as the decoding of natural or synthetic video sequences, is extremely depen-

dent on the data, and largely variable over different conditions.

In the above scenario, the energy-efficiency of the software components is dra-

matically more important than in the past. The degree of energy optimization of the

software running on a battery-powered embedded device can determine its com-

mercial success, and in some cases indeed its feasibility. It is out of question that

even a feature-rich portable product would be scarcely appealing to the customers,

if its battery lifetime is short enough to makes it unusable.

Adequate SW support is required to properly exploit the complexity of new sys-

tems Nowadays one has to have really good eyesight to understand the trend

analysis described so far. In the last couple of years the big “multicore” and MPSoC

question has been - how we program these devices? What programming models,

tools and methods will exist to let us cope with 1400 processors? Will only the

un-embarrassingly parallel applications be able to take use of this SoC complexity?

Or can we find ways to make use of all this concurrent processing resource?

Rather than worrying about how to program a device with so many cores using

today’s thinking, we must be propositional and ask the questions - what kinds of

new applications might be enabled with this kind of computing resource? Are there

computational models impossible to implement effectively today that this kind of

resource might enable?

All these open questions require to deepen invest on software. Has it always

happens, hardware support anticipate some possibilities and than software design-

ers are required to improve the system’s software counterpart. This time the chal-

lenge is particularly tricky because of the different requirement that I have high-

lighted in the previous section.

Upcoming architectures need specifically designed multi-threaded software to

exploit all the potentialities of their hardware parallelism. Multi-threaded software

in turn will generally increase the overall applications complexity and relaying on

abstraction layers seem to be the straightway to keep that complexity under control.
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This two aspects: software parallelization and layered abstraction are two of the

most hot topic on actual system’s software research.

Software engineers are not parallel thinkers Some researchers have created

entirely new software languages that implicitly incorporate parallel programming

structures [9]. But in this case the industry has proved itself highly resistant to

the adoption of new programming languages. It appears to be very hard to train

software programmers to think in terms of parallel, threaded operations.

More appealing appears to be the approaches that investigate on the automatic

transformation of single sequential applications into multi thread at run-time [10].

These solutions allow not only to fit well to the large base of legacy software, but

can also better support different evolving platforms thanks to their on-line tuning.

The recourse to a virtual execution environment, running on a multi-core pro-

cessor, which is able to run complex, high-level applications and to exploit as much

as possible the underlying parallel hardware, is going to be investigated on some

recent works [11] and appears to be a promising approach to effectively tackle the

problem of software parallelization.

Operating System should better support user-space To the Operating System

(OS) is reserved a special role in the new architectures. Since the early days, the

OS has always been the fundamental piece of abstraction from hardware. Being

in the midway between more and more complex user-space applications and the

upcoming multi- and many-core underlaying hardware architectures it can play an

interesting role on better supporting layered abstraction.

In the recent evolution of OS like Linux we noticed the introduction of quite

advanced and sophisticated sub-system’s specific controls based on local optimiza-

tion policies. Tools such as CPUFreq [12], CPUIdle [13], the Clock framework [14]

and the Voltage Control [15] frameworks are some of the most recent examples of

fine detail but almost local controls available in recent kernels. These frameworks

are able to enforce quite efficiently a precise control on specific platform subsys-

tems such as CPUs or clock signals. Since the missing of a system-wide view of

system resources and requirements, it could happens that these control take local

decisions that produce side-effects on some other system components. Side-effects

could compromise the quality of control either enforcing only sub-optimal config-

urations or, even worse, potentially introducing instability on the feed-back control

loop.

The burden of bridging the gap, between the low level optimizations and the

system complexity, and making possible system-wide optimizations, is entirely on

the platform system developer’s shoulders. In this regard, system-wide controls

have been shown to produce the highest energy gains while hierarchical control

systems are considered to be more safe and scalable.
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1.2 Requirement for Power and Performances optimiza-

tion techniques

In the previous section, I clarified and motivated the needs for this research starting

from the market and technology’s trends. This section is devoted to deriving the

requirements starting from designers’ needs.

Modern embedded system, especially those targeting multimedia mobile appli-

cations are base on more and more complex hardware platforms, providing many

functionalities to support multiple and different usages of the same device. When

designing and engineering these products, designers are required to provide sup-

port for system-wide optimizations that allow to get always good performances and

energy consumptions trade-off considering all the competing running applications.

Supporting system-wide optimizations is crucial for many purposes, most no-

tably: to allow multiple functionalities with different competing requirements to

peacefully coexist on the same device, and to simplify the development of both

applications and device drivers, by concentrating mainly on their functionalities.

One of the crucial component interested on providing support for system-wide op-

timizations is for sure the Operating System (OS). This thesis deals with this very

problem:

Define a possible system-wide power vs performances optimization strat-

egy, to be implemented at Operating System level, that is sufficiently

portable among different platforms without compromising too much its

accuracy and efficiency, in all possible different device usage scenarios.

There are two reasons why I focus my attention to the Operating System level

rather than trying to achieve the same optimizations at a different abstraction level:

the first reason is that more abstract approaches usually have a lower efficiency and

portability; the second reason is that for some specific subsystems the state of the

art already provides support for effective local optimizations. I will motivate this

claim in the following chapters.

As far as system-wide management is concerned, a platform–independent and

general support is still missing and thus a new generation of high-level optimization

tools is needed. Applications are becoming larger, more complex and dynamics,

and then available optimization solutions are not keeping the pace. I will provide

details for all of these claims in the next sections.

With respect to the problem of having a system-wide power vs performances

optimization management, new designs need solutions which satisfy the following

requirements:

1. system-wide;

2. fine detail;

3. dynamic;
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4. scalable;

5. low-overhead;

The following paragraphs clarify what I mean by each of the above require-

ments. Chapter 2 will show that none of the current approaches satisfies all the

above requirements at the same time. Throughout all this thesis, the choices I

will make while designing my methodology will be guided and constrained by the

above requirement.

System-wide optimization: modern embedded systems, especially those de-

signed for multimedia mobile applications, are based on complex architectures,

with many hardware subsystems, and they provide multiple functionalities com-

peting for shared resources. Techniques that only locally optimize each subsystem

can be of little practical effect. To get overall system benefits, instead a system-

wide approach is required, providing a suitable level of abstraction that don’t lim-

its portability while still allowing to keep under control all the specific platforms

available resources.

Fine detail: usually different platforms have different subsystems with different

available resources and capabilities. Tools that don’t fit well with the underlaying

system cannot be able to properly exploits its behaviors. Thus a rougher platform

detail is insufficient to achieve good control performances because of the risk to miss

some optimization opportunities. Tools must be able to exploit detailed description

of platform capabilities while still avoiding to become platform-specific.

Dynamic: multimedia mobile devices are becoming more and more dynamic in

nature. Different functionalities are provided by the same device which change its

role quite frequently depending on the user needs. Moreover we can notice also

increasing variability in the behavior of algorithms; the behavior of multimedia

encoders and decoders depend more and more on the contents of the streams they

process, and applications from many other domains like wireless and gaming show

the same trends. Accordingly a good optimization tool must be able to smoothly

adapt to frequently changing working scenarios (use-cases) and must be able to

keep the actual input data into account.

Scalable: the complexity of devices is increasing continuously, many-core archi-

tectures are on the horizon and thus in the future the number of either symmetric

and asymmetric processing engine within a single die is set to increase. New gener-

ation tools must be designed to be scalable to provide control solutions that can be

easily adapted to increasing complex systems without compromising performances.

Low-overhead: optimization techniques should be sufficiently lightweight on

monitoring the system and enforcing control decisions on it. Tools that impact

too much on system behaviors risk to introduce high latency between system state

observation and control actions. This could invalidate optimization actions or even

worse it could cost more than what it try to optimize. Low-overhead tools are

required, even at the expense of inferior accuracy.
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All of the above constraints must be met while keeping reasonable good per-

formances for the control problem of trade-off power vs performances. Relative

control accuracy is important especially when designers need to compare alterna-

tive solutions. Absolute accuracy is important especially when designers want to

evaluate the performance of a control solution on different architectures.

Unfortunately, as the sections dedicated to the related work will show, none

of the approaches currently available tackle appropriately all the above require-

ments at the same time. For example, drivers based approaches does not fulfill the

dynamism and system-wide requirements. Current user-space approaches do not

satisfy the detail requirement. An informal summary of the above considerations is

given by the table below:

Abstraction System

wide

Fine detail Dynamic Scalable Low

overhead

drivers 7 3 7 3 3

centralized 3 3 7 7 3

application 3 7 3 3 7

Table 1.1: How existing techniques fit the requirements for a good power and perfor-

mances optimization tool

All these reasons motivate the crucial need for system-wide, fine-detailed, fast, dynamic

and accurate operating system support for power and performances trade-off optimizations.

This thesis is dedicated to the research of a system-wide power vs performance

optimization control which fulfill the above requirements.

1.3 Why we focus on Linux

The choice of an Operating System in which implement our proposal for a new

system-wide optimization techniques is a crucial element for this work. I don’t

want just to provide yet-another-theoretical algorithm but instead I want to show

how the proposed technique can be effectively implemented on a real system.

The technique I propose is largely independent from the Operating System

which it is applied. Although I show an instance of this technique which is imple-

mented as a Linux kernel framework, the technique does not rely on any specific

feature which is provided by Linux only. Porting the same technique to another

operating system, especially those written in C languages, in most cases is just a

matter of few interface changes.

Nevertheless, the choice of the Linux kernel for the particular instance of the

technique which I show in this thesis demands some justification. I choose Linux

because it is OpenSource and because Linux, in all of its flavors, is one of the
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Figure 1.3: Actual and planned Linux use in the development of embedded systems

may converge by 2012. Source: LinuxDevices.com.

leading operating systems in the embedded design community, and more and more

embedded systems feature some Linux distributions.

Figure 1.3 present an interesting outcome from a study that covers the world-

wide market for Linux employed in the development of embedded systems. This

study has been conducted by the authoritative LinuxDevices.com website, dating

back 2007 and compare the planned Linux use over the next two years, as well as

actual use over the previous two. The study comments on the increasing use of

Linux and forecast that this predominance is not to arrest soon, and motivate why:

«[. . . ]in the early days, planned use far surpassed actual use. To-

day, as more and more project teams succeed in executing their

Linux migration strategies, the Linux "uptake gap" has narrowed

dramatically. Trend lines on the chart below suggest that by 2012,

actual and planned Linux use will converge, at about 70 per-

cent[. . . ]

Interestingly, last year’s survey data suggested that embedded

Linux’s uptake gap would close between 2009 and 2010 at closer

to 60 percent. However, some 61 percent of this year’s respondents

plan to use Linux within two years, compared to 58 percent in

the past two years – an increase that suggests Linux adoption may

not level off as quickly as previously believed, and may achieve a

greater overall market penetration than originally thought.»

The above figures and comments suggest that the diffusion of Linux kernel us-
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age on embedded systems is still long, and that a system-wide power and per-

formances optimization technique based on this Operating System, like the one

proposed here, will be of great practical usefulness still for a long time to come.

1.4 Many techniques are possible, just one is chosen

First, from now on I will generally use the term framework to denote an operating

system’s component that provide system-wide support for both power and per-

formances optimizations. Carefully reducing overall system’s power consumptions

require a system-wide framework. Running concurrently resource-competing user-

space programs while ensuring expected and perceived Quality-of-Services can take

advantages from a system-wide framework support. All this thesis is about the def-

inition of a system-wide framework, in this sense.

The goals for a system-wide power and performances control framework can

be carried out in a variety of ways. The very purpose of such a framework is

to “build a model” of the target system that can be used to identify the optimal

system configuration according to run-time informations on resources availability

and application’s requirements. This is generally a complex process, which may

involves also modeling how the underlying architecture works on different usage

scenarios (use-cases).

The properties of a model basically depends on the abstraction level we consider.

More detailed models are more complex (therefore more difficult to build and to

maintain, and slower to execute), but they may ensure better accuracy. All the pos-

sible modeling choices can be represented and compared in a complexity/accuracy

space. Among these models, the ones which are non-Pareto-optimal do not deserve

any further attention, because they are surpassed by some other model in both the

objectives. The remaining ones generate a discrete (very large) set of models which

I intuitively represent in Figure 1.4.

The Pareto-optimal solutions have been classified according to some evaluation

indexes. I chose to focus on some index which are someway related to require-

ments identified in the previous section. The ’simplicity’ index is an evaluation of

how simple it is to “use” the framework both from the user-space perspective and

the platform integration. The ’control precision’ is quite self-explaining, it measure

how good is the framework on approximating the real optimization goal avoiding

local sub-optimal ones. The ’run time efficiency’ is directly related to the ’low over-

head’ requirement, a framework is as much run-time efficient as much it don’t affect

on system performances which is trying to optimize. The ’platform independence’

and ’scalability’ indexes describe how well the framework can easily adapt to dif-

ferent platforms with almost minor modifications required and how it can easily

scale with increasing system complexity. Finally the ’simplicity’ index is an abstract

evaluation of the framework implementation complexity. This last index has been

explicitly considered because it is undoubted that conceptual simpler framework
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Figure 1.4: Even after discarding the non-Pareto-optimal ones, many techniques to de-

velop a system-wide optimization framework are possible. They exhibit dif-

ferent trade-offs between simplicity and accuracy. In this thesis I choose one,

which is particularly suitable for multimedia mobile embedded systems.

are more probable to be endorsed by community and thus have higher probabilities

to be well accepted and integrated within existing systems, e.g. the Linux kernel.

In the Figure 1.4 are compared with regard to these indexes, the main Pareto-

optimal techniques which can be identified in bibliography. Techniques based on

a ’system model’ (dash-dotted curve with rhomboidal points) are those that grant

an overall maximum accuracy. These techniques usually relay on an off-line built

model that capture the system behaviors and that can be used at run-time as a

black-box controller where application requirements are the inputs and the opti-

mal system-wide configuration is the output. Accuracy can be further improved,

as indicated by a better ’use-case adaptability’ index, when using a variant of these

techniques which is based on ’use-case model’. In this case a system model is built

for each use-case and selected at run-time by the control policy according to the

specific working context. The main downside of these techniques is the complex-

ity: building a system-wide model usually require extensive simulations in order

to collect enough profiling data for post-process with some mathematical or statis-

tical tool. The validation of a model also require an extensive work. Moreover, the
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models obtained are typically highly platform dependent and substantially unmod-

ifiable without redo all the simulations. The end complexity is so high that usually

these techniques are hardly adopted for multimedia mobile devices and are instead

used on mission-critical embedded systems with longer life-time.

A significant complexity mitigation without compromising too much accuracy

can be obtained using techniques based on a ’platform model’ (dashed curve with

triangular points). These techniques in the past have been effectively developed

also for multimedia mobile devices, although they have not had a big spread. In

this case the model is build as part of the platform-code and thus, being a software

defined model, it can be modified and adapted to different platforms more easily.

The main limitation is still the complexity because building the model require a

detailed knowledge of all hardware subsystems.

The simpler techniques are those based on a ’user-space model’ (dotted curve

with round points). In this case the control policy is usually highly abstract from the

underlying hardware and thus they require to trade accuracy for a reduced com-

plexity. These techniques are easily portable among different platforms, usually

even operating system independent and running as simple user-space applications.

On the other hand, unfortunately these techniques usually show a too small accu-

racy to effectively support the aggressive optimization required by modern multi-

media mobile devices.

A quite good trade-off between complexity and accuracy can be obtained using

techniques based on a ’constraint model’ (continuous curve with squared points),

usually based on a distributed control policy that allows to reduce the complexity.

Indeed, utilizing the principle of "divide and conquer", the complexity could be

distributed on multiple modules such that each single one turns to be more simpler

to define. This approach imply a modular design which improve scalability and

portability too. The accuracy of that models with respect to the system-model based

ones is reduced but still acceptable for multimedia mobile devices. This is mainly

due thanks to the relatively high fine-details level that are still possible to reach

with such kind of solutions.

The space and time allowed by a doctoral thesis permits the complete analy-

sis of just one of these many techniques. I choose to focus my attention on the

“constraint model” approach. This choice has to main motivation: the lakes of

an established and well defined framework of this type for the mobile multime-

dia embedded devices application context, and secondly because it show the most

promising application possibilities in this specific application fields. In instance,

the fundamental approach presented here can be extended and refined to support

some levels of HW accelerations. Anyway these possibilities are just going to be in-

vestigated deeply and I will not support these claim in this documents, as it would

require too much time and space.
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1.5 The fundamental approach of this thesis

In this section I provide a quick overview of my approach. I summarize its funda-

mental steps and motivate their choice in terms of the requirements expressed in

Sec. 1.2 on page 12. The same reasoning is also summarized in Fig. 1.5.

The ’system-wide’ and ’fine detail’ requirements motivate the decision to have

an in-kernel framework. A framework at this level, which sit in between user-

space applications and the bare hardware, can easily exploit the overall view on

the system state while still not loosing too much details of the actual platform.

Moreover kernel space already offers a set of highly efficient and optimized support

functionalities that can be used for the implementation of a sufficiently lightweight

optimization framework.

The low level details about the specific platform resources and capabilities are

provided by both platform code and drivers, which are directly accessible by an

in-kernel framework. The platform code, i.e. the architecture specific code that

a kernel like Linux require to implement in order to have a very basic level of ab-

straction from the underlying hardware, can define a set of platform-specific metrics

(PSM). These metrics represent platform configuration parameters to tune system

behaviors and that are usually directly controlled by some drivers. Drivers in our

view play a central role because they provide both some data to the optimization

framework, where are used to reconstruct the specific system-wide view on capabil-

ities and resources, and also implement highly efficient local optimization policies,

which allow to have a fine control on the specific hardware.

The in-kernel framework is the perfect point to make a “divide and conquer”

operation. Although it is not generally true that the coordination of local optimiza-

tion policies leads to the same performances of a single centralized optimization

control, this assumption leads to negligible worse while to the contrary show in-

teresting benefits for overhead reduction and scalability of the solution. This moti-

vate the decision to opt for a hierarchical control architecture, which has two kinds

of control policies at different abstraction levels. Each driver implement its own

low-level control policy, which is ’fine detailed’ and ’low overhead’. A more ab-

stract control policy is implemented by the in-kernel framework, which in turn is

’system-wide’ and grants the ’scalable’ requirement.

The framework’s system-wide optimization policy satisfy the ’dynamic’ require-

ment. This policy allows to implement a coarse-grained control that identify the

high-level system-wide optimization strategy; which in instance could be either

a performance boost or power reduction or even a mix between these two goals.

Policies that are local to each driver provide fine tuning, within some operating

mode enforced by the global policy, with very low run-time overhead and exploiting

the ’fine details’ knowledge about the controlled hardware. Moreover, the system-

wide policy allows to dynamically adapt to changing working conditions by simply

changing accordingly this policy. Different optimization goals can thus be enabled

at tun-time.
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design scenario.
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From all these considerations and consequently decisions I have derived the

fundamental approach of the technique developed in this thesis. This fundamental

approach: accept inputs, yield outputs, and is composed as I describe below.

The technique shall get as inputs:

• a platform description, in terms of platform-specific system-wide metrics

• the driver capabilities, which define how each device mode maps on system-

wide metrics

• an optimization policy, which can be changed at run-time and define the op-

timization goal

• QoS run-time requirements, either from user-space applications or platform

subsystem, which define some constraint for the optimization problem

It shall yield as output an estimation of the optimal Feasible System-wide Con-

figuration (FSC), taking into considerations resources availability and applications

requirements.

It shall be composed of three fundamental phases:

• FSC identification

• FSC ordering

• FSC selection

More detailed explanations of the above steps follow.

In the ’FSC identification’ phase, the platform specific information collected both

from platform-code and drivers are processed in order to automatically identify all

the possible system-wide configurations which are feasible (FSC) for the specific

platform. A FSC is defined by constraining a set of system-wide metrics while

granting that all devices have an operating mode compatible with those constraints.

This step is, in fact, one of the more complex topics of this work. I will show how

this problem could be tackled and solved with different levels of efficiency.

In the ’FSC ordering’ phase, a weight is associated to each identified FSC accord-

ing to the running coarse-grained optimization policy. This weight is a measure of

the optimality of an FSC with respect to that policy. Since policies can be changed

dynamically to better adapt to different working conditions, in turn the weights

also can change at run-time with respect to the new optimization goal.

In the ’FSC selection’ phase, among all valid FSC just one is chosen, according to

actual resource availability and optimization goal, and then enforced as the optimal

system-wide configuration. At run-time, not all FSC identified during the first

steps could be valid at any specific time. Applications or subsystem requirements

could invalidate some of them. During this step the framework should be able to

efficiently identify still valid FSC and select the optimal one.



22 Chapter 1. Overview

1.6 The final objective of this thesis

In the light of all the above considerations,

this thesis researches a system-wide, fine-detailed, dynamic use-

case adaptive, scalable and low-overhead framework to support

the identification of an optimal trade-off between expected perfor-

mances and reduce power consumptions on mobile multimedia

embedded systems running a general purpose operating system.

The framework must be implemented on updated Linux kernel, exploiting al-

ready existing common facilities, and provide a simple interface that facilitate in-

tegration within existing device drivers. The define user-space interface should

be platform-independent in order to support portability and minimize needs for

modifications by developers. The framework should be able to suggest which

are the optimal system-wide configurations according to actual available resources

and competing use-space requirements. Moreover, as a further extension, the core

framework should support design and configuration exploration which allow the

inspection of eventually sub-optimal working modes and drive either software or

platform redesign choices.

1.7 A bird-eye-view on the proposed technique

In this section I provide an high-level view of the proposed approach.

The distributed control approach allow assumptions which facilitate modeling,

more precisely: local policies are able to identify optimal device configurations

give a set of constraints which usually change only at use-case changes. These

assumptions are quite reasonable, especially when we look at multimedia mobile

applications. In this specific case it’s common to have highly specialized device

drivers running fine tuning optimization policies and the typical usage of the device

change during time but with a slower dynamics when compared to that of each

single device.

These assumptions justify the recourse to a distributed control model, which is

based on different levels of abstraction. Moreover, a distributed approach allows

very good run-time accuracy, both in term of precision and overhead, while still

not increasing to much the framework complexity, and thus avoiding to reduce

scalability or portability.

In Figure 1.6 is showed how different elements of the technique I propose cor-

respond to different abstraction levels. The main elements are: control policies, op-

erating system’s elements and the entities introduced by the proposed framework.

The lower level component is represented by the platform code, which could define

some platform specific control parameter (i.e. Platform System-wide Metric, PSM)

in addition to platform independent ones (i.e. Abstract System-wide Metric, ASM)
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Figure 1.6: The proposed technique is developed at different abstraction levels. Lower

levels exploit HW details to allow fine tuning while higher levels ensure

system-wide optimization by exploiting run-time informations to derive

coarse grained requirements for the lover levels. The different abstraction

levels can be identified both on policies, operating system’s components and

framework defined entities.

defined by the proposed framework. At an higher level of abstraction we find lo-

cal optimization policies, which are strictly related to device drivers. Each device

driver could have its own fine tuning optimization policy and refer to System-wide

Metrics (ASMs and PSMs) to define its operating modes (i.e. Device Working Re-

gions, DWR). The maximum abstraction level is completely platform and devices

independent and define global optimization policies. These policies, whit respect

of local ones, are system-wide and thus will allow to exploit a complete system

state view in order to identify the better trade-off between power consumptions

and system performances. The framework code is in charge to run global optimiza-

tion policies and enforce decisions to underlying drivers which could use them as

some coarse grained optimization requirements. To properly run global policies the

framework exploit the knowledge of all of the system feasible configurations (i.e.

Feasible System-wide Configuration, FSC), which can be automatically identified

starting from some informations about drivers and theirs working modes.

An overall view of the architecture for the proposed approach is showed in Fig-

ure 1.7, where: policies, operating system’s components and entities are localized

within the different software abstraction levels of a generic operating system. The

framework along with the platform code define the set of available system-wide

metrics (ASM/PSM), which in turn drivers refer to define theirs operating modes
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Figure 1.7: A bird-eye-view of the proposed system-wide control architecture. The main

system components are represented by platform code, drivers and the opti-

mization framework code itself. These components either define or use some

entities: system-wide metrics (ASM/PSM), device operating modes (DWR)

and feasible system configurations (FSC). Policies are both locally and glob-

ally defined and are implemented as modular components so that can be

changed at runtime.

(DWRs). Local policies can be associated directly to each driver while a global opti-

mization policy is provided by the framework itself. Such an architecture provide a

single and well defined interface to the userspace that can be used to collect Quality-

of-Services (QoS) requests directly from a generic “execution context”. The execu-

tion context is represented by applications, usually defining different use-cases, or

better it can be represented by software libraries and buses. The eventually instru-

mentation of these last software components is particularly interesting because it

allows to extend transparently the benefits of using such an optimization frame-

work to all application using them.
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1.8 Advantages of this approach

The approach proposed here offers a number of advantages with respect to its

competitors:

• distributed control:

the framework I propose support a system-wide optimization based on a dis-

tributed control model. This approach allows to split frequently device spe-

cific fine tuning controls from less frequent coarse grained controls related

to use-case changes. Single devices’ fine tuning is demanded to drivers lo-

cal policies which can exploit fine details knowledge about the underlying

hardware. These local policies are constrained by system-wide requirements

identified by a global optimization policy running at an higher abstraction

level. The global optimization policy provide a coarse grained but system-

wide control which ensure to identify global optimum configuration while

still not impacting to much on overall system performances.

Moreover, distributed control allows also to allot control complexity on dif-

ferent components, basically on each device drivers, and support their local

policies with just some constraints coming from a system state overall view.

The distribution of the complexity also allows you to implement solutions

that are modular and support composition and reuse of code. This at the end

improve the simplicity and the portability of the final solution.

• improved portability:

the modular implementation of a distributed control model improve the porta-

bility to different platforms and systems, of an existing solution adopting the

framework I propose. Indeed this requires to change only low-level compo-

nents, usually drivers and their policies, to match the target system, while its

possible to reuse the code for common components. Since the control model

don’t use a predefined system-wide model, but instead is able to automati-

cally build such a model at run-time, the modeling effort is also reduced and

substantially limited to drivers’ local policies. This effort is worth done be-

cause at this level of abstraction not only it is possible to exploit fine-details,

producing highly device-specific and optimized policies, but also the pro-

duced code will be reusable on all platforms using the same device. This is

possible thanks to a properly defined interface between the proposed frame-

work and drivers.

A domain expert could claim that in practice it is very difficult to extract

the FSCs for all the components and the inter-dependencies between them,

also considering that they all come from different vendors. Regarding this

point it is worth to notice that, one of the main advantages of the proposed

framework compared to others is rights its ability to compute automatically

all these information. Moreover, this is done starting from much more simpler
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information which require only a restricted knowledge on single subsystems

or device drivers.

• simple integration:

while the drivers’ interface support code reuse on different platforms, a prop-

erly defined interface that the framework I propose expose to the user-space

allows to increase even more platform independence for this side. The use

of well defined interfaces to decouple software components simplify the in-

tegration of both drivers and user-space with the framework. Each software

component will be required to implement only few and specific extensions in

order to correctly take part to the optimization control.

• different level of abstraction:

the technique proposed exploits different levels of abstraction in order to im-

plement a “divide and conquer” approach. The low levels of abstraction refer

to specific components and can utilize their knowledge in order to finely ad-

just devices’ operating modes. The more abstract components can instead

use a comprehensive system view to ensure the achievement of a global opti-

mization. The “different levels of abstraction” approach has been extensively

adopted in the proposed techniques for the definitions of all its elements. Poli-

cies have been spitted in locals and global. Operating system’s components

range from low level platform code trough drivers up to the framework code

and user-space applications. And finally, entities defined by the proposed

techniques corresponds to different levels of abstractions with platform spe-

cific metrics (PSM) defined by the platform code, abstract metrics (ASM) and

devices operating modes (DWR) defined by the drivers and finally the fea-

sible system configurations (FSC) which are automatically identified by the

framework.

The layered design of the proposed approach allows also to improve its run-

time efficiency. Indeed, the framework require to run algorithms of different

complexity ad different timeframes. The more complex operation is FSC iden-

tifications, but it is run just on time after system boot. An average complexity

function is the FSC ordering, but it happens only when the optimization pol-

icy changes and this is a quite infrequent event. Moreover, this operation

allows to speedup the most critical operation: the FSC selection. This is also

the most efficient algorithm, with a very limited run-time overhead. Experi-

mental results show that we could aim to handle a real system with a million

of FSC with a negligible impact on performances.

• maintainability:

all the previous points contribute to simplify the maintainability of an imple-

mentation. Either changing/upgrading a single system component or con-

sidering a new use-case does not require extensive software modifications

but only adjustments limited to the specific driver or corresponding software
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component. The framework then provides all the mechanisms to correctly

reconstruct an updated system-wide state view and thus ensure the global

optimization policy to run correctly.

• different working mode:

the proposed technique support different working modes to better fit target

platform capabilities and progressive integration. A best-effort mode allows

rapid prototyping when porting the framework on a platform with not all

drivers integrated. In this mode the framework is still able to feed require-

ments to already integrated drivers supporting their local policy but not grant-

ing global optimization. A distributed-agreement mode instead can be enabled

when all interested drivers are integrated with the framework and is able to

identify global optimum and force drivers to always agree on a new feasible

configuration once the use-case or system requirements changes.

• integration with operating system:

an implementation of the proposed framework has been developed and com-

pletely integrated within the Linux kernel. This will ensure a maintained

code-base implementing the main mass of the whole framework, constantly

revised and improved by the community. Moreover, new drivers policies, once

developed end integrated are always available and ready-to-use for new plat-

form’s development thanks to the modular approach provided by the frame-

work design.

1.9 Frequently raised objections

When working in a research area which is populated and commonly approached

with a quite different mentality with respect to the relatively new approach you are

advancing, it is often difficult to convince one’s own audience about the novelty of

his approach and its soundness. Power and performances trade-off for embedded

system is for sure such a field. Additionally, in the specific topic covered by this

thesis, research papers are relatively few and often “overclaim” their accomplish-

ments in their titles, with respect to the actual contribution described in their texts.

This practice pollutes the research concept space, inducing the idea that a problem

was effectively solved when it was in fact just described, or tackled incompletely.

Most of the time the complex problems we are facing is dissected and the research

focus is only on specific subsystem, without considering the overall effects, or even

worst basing the solution on a set of hypothesis which ten turns to be too much

constraining to have a realistic and usable solution.

This section is designed to help reviewers not being mislead by these practices,

and to anticipate criticism. It is therefore structured as a “Frequently Asked Ques-

tions” section of a manual. It is written in an informal, straight-to-the-point style.

The reader will indulge me, as long as my claims are correct and motivated.
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1.9.1 «Your novel contribution is not quite clear»

This work has novelty in its objective, in its method and in its results. The scientific

merit is obviously in the method. This technique is the first work which attempts

the definition of a system-wide framework, for distributed control of the trade-off

between power consumption and performances, actually implemented and veri-

fied, which accomplish that objective. The framework comprehensively considers

all system’s elements, at any abstraction level, without compromising neither per-

formances nor precision thanks to a proper modular design.

1.9.2 «CPM has already been implemented!»

Yes and no. The matter is ambiguous. It all depends on how you define “con-

strained power management”. Since this ambiguity is a potential danger to under-

standing the contribution of this thesis, then I prefer to disambiguate the term.

I motivated above why new platform design need a technique to support the

optimization of power consumption vs performances trade-off, and such technique

must relay on a system-wide approach (i.e. it must identify global optimum). Be-

cause of this need, I define “constrained power management” the ability to identify

system-wide optimal configurations, considering both different low-level capabili-

ties and changing high-level resource requirements at the same time.

According with this definition, this thesis present the first constrained power

management technique. No other techniques before have provided fine-grained

control without resorting to lower level platform models (typically built by off-line

profiling and usually considering only a limited number of sub-systems). On the

other hand, all the techniques which addressed system-wide optimizations, were

unable to consider neither fine-details for the configuration of devices or dynamic

use-cases.

The terminology is debatable, you may apply broader definitions of the “con-

strained power management” term. In this case, a number of works in literature

may be considered to have already applied this technique. Nevertheless, the above

considerations must be kept clearly in mind, otherwise the novel contribution of

this work is neglected just for lack of precision in terminology.

1.9.3 «Your approach is too limited»

This thesis presents a broad methodology which define many components and

some platform specific extensions, but it details only the core framework, the global

optimization strategy and the interface for the extension. This instance is incom-

plete to be effectively used on a real-system but it completely define the overall

common components so that the definition of extensions is simple and precisely

defined. I did that because I want to stick to a good principle: do one thing, do it

well.
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I claim that a solid but narrow theoretical foundation which may be extended

with some effort is more desirable than a set of broader but less solid foundations.

It is clear that in the scope and duration of a single Ph.D. thesis it is impossible to

achieve breadth and solidity at the same time. That is obviously the ideal goal, but

not practically achievable. To some extent, generality can be traded with accuracy,

and I have chosen to privilege accuracy.

1.9.4 «Your approach is too difficult to actually use it»

I hardly tried to keep simple the proposed techniques, indeed the integration sim-

plicity is reasonably considered a key factor for the success of any new proposal.

Nevertheless too much simple solutions hardly can grant good performances espe-

cially regarding control accuracy. All that considered one of my design constraints

has been to better support a “divide and conquer” approach in order to spread the

complexity too.

The main complexity of the proposed approach has been located within the

framework core, where the global optimization policies and proper interfaces to-

ward both user-space and drivers are implemented. What still remains on the

platform designer’s shoulders is just the platform specific code and the low-level

device drivers’ policies. It is worth to notice that those components are completely

independent each other thanks to the modular design of the proposed approach.

This allows to assign specific extensions to different and well prepared subsystem

experts: each one could share his better knowledge of a specific device working

modes with others by simply providing a self-contained integration to the frame-

work. The framework itself will then provide all the necessary support to collect all

those fine-detailed informations and exploit them the better is possible, compatibly

to run-time available resources and use-case requirements, to ensure system-wide

optimization in an almost completely transparent way.

1.10 The organization of this thesis

This thesis is organized as follows.

In this chapter, I have proposed a fundamental approach to the power and per-

formances trade-off control for multimedia mobile systems. The fundamental ap-

proach is broad and may lead to a large number of specialized instances, targeting

narrower domains and internally relying on different sub-approaches.

In Chapter 2 I present, for the research areas related with the main objectives

of this thesis, the most important works present in the literature. For the works

which present competing approaches, I try to give a critical comparison, illustrating

advantages and shortcomings.

In Chapter 3 I present the complete details of one of the possible instances of

techniques inspired by my fundamental approach. The Chapter discusses the ideas

which are at the basis of proposed technique, and all the steps which allow to realize
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it. A possible implementation for the proposed approach is presented in Appendix

A. Here I give also an implementation of the extension point of the framework to

show how it can be effectively used by a real embedded platform.

Chapter 4 presents experimental results which prove the accuracy and utility

of the technique presented, it draws final conclusions on the quality and breadth

of the theory and results proposed here, and it sketches the current and future

developments on the topic.



Chapter 2
Background

“A man who knows how little he knows is well, a

man who knows how much he knows is sick.”

Witter Bynner

I
ncreasing computer performances has always been a main research topic. Al-

though the main concept of MOSFET transistor is the same since its invention

by Frank Wanlass, in 1963 [16] the semiconductor production technology has

been evolving constantly, particularly in the direction of miniaturization.

Despite advances in semiconductor technology fueled the tremendous increase

in transistor density, power dissipation constraints coupled with limits in the in-

struction level parallelism (ILP), have caused the high performances computing

architectures roadmap to enter the multi-core and many-core era. The era of chip

multiprocessing (CMP) started with a step-back in core operating frequencies, using

multi-core chips with shallower processor pipelines [17, 18]. This allowed affordable

powers while still not constraining to much the multi-core throughput to increase.

However many crucial application domain still require single-thread performance

increase and the growth in singe-chip’s cores number cause a super-linear growth

in total core area. This two aspects determined a corresponding power consump-

tions increase and thus the power consumption problem did not disappeared in the

new era of multi-core.

Modern computing architectures are far more powerful and versatile than their

predecessors but they also require a lot of power. Power densities have increased

rapidly and correspondingly have increased concerns about chip reliability and

their life expectancy, cooling costs and even environmental aspects, posing new

challenges in the design techniques of chips.

Nowadays, although other constraints like chip I/O bandwidth and inter- and
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Figure 2.1: An high-level taxonomy of prominent power management mechanisms, ap-

proaches and policies. Mechanisms and approaches can be implemented at

different abstraction levels: architectural, middleware and software. Cross-

Layer techniques are approaches that try to exploit mechanisms from differ-

ent abstraction levels at the same time. Policies instead allows to implement

different instance for the same approach-mechanism pair.

intra-chip data bandwidth begin to emerge as new secondary limits, power and

peak temperature still continue to be the key performance issues. These lim-

iters pose even more serious issues for small battery powered mobile devices.

The growth in the scale, complexity and flexibility of the applications required on

portable, battery-powered embedded systems, is even more impressive. Unfortu-

nately battery technology has not and cannot keep pace with the demands that new

generations of mobile devices [19].

Power management is a multidisciplinary topic, that involve many complex as-

pects (e.g. temperature, reliability, battery duration, . . . ) at different abstraction

level. Techniques to reduce power consumption in computing systems range from

physical layers design up to higher software abstraction levels. An high-level tax-

onomy of prominent techniques is illustrated in Figure 2.1. Cost-effective solution

for the power reduction problems require to tackle it at all the abstraction levels

simultaneously. Despite that the lowest level of abstraction I treat is right over the

physical layer of a system and deals with the design of chips. Thus I don’t discuss

the physical properties of materials used in the production of chips, which is the

matter of advanced and specific research field. Anyway some elements belonging

to the circuit layer, namely transistors and logic gates, play an important role on

both understanding where power is consumed and how some techniques could be

effectively applied to reduce energy wastage.

In the rest of this chapter, some basic concept about power consumption are

briefly presented, and then I will review only the layers which are more relevant for

my work, while I forward the reader to the available bibliography [20, 21, 22] for a

presentation on the lower layers optimization techniques.
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2.1 Defining Power Consumption

Power and energy are commonly defined in terms of the work that a system per-

forms. Energy is the total amount of work a system performs over a period of time,

while power is the rate at which the system performs that work. By defining P the

power, E the energy and W the total work performed in a specific time interval T,

we can write:

P = W/T [Joules] (2.1)

E = P ∗ T [Watts] (2.2)

In the context of a computing system: the work is defined by the activities

associated with running programs, energy is the total electrical energy required

(or dissipates as heat) by the system and power is the rate at which the system

consumes electrical energy while performing its activities.

The distinction between power and energy is important because techniques that

reduce power do not necessarily reduce energy. For example, the power consumed

by a computer can be reduced by halving the clock frequency, but if the computer

then takes twice as long to run the same programs, the total energy consumed will

be similar. Whether one should reduce power or energy depends on the context. In

mobile applications, reducing energy is often more important because it increases

the battery lifetime. However, for other systems (e.g. servers), temperature is a

larger issue. To keep the temperature within acceptable limits, one would need to

reduce instantaneous power regardless of the impact on total energy.

The total power consumed by a computing system can be differentiated into two

components: static power consumption and dynamic power consumption. These two

components have different nature [23] and corresponding optimization techniques.

2.1.1 Dynamic Power Consumption

Dynamic power consumption arises from circuit activity such as the changes of

inputs in a gate or values in a register. It has two main sources, switching power

and short-circuit power.

Switching power is the primary source of dynamic power consumption, which is

the power required to charge and discharge the output capacitance of the gate of a

transistor as depicted in Figure 2.2a. This power component can be formulated as:

Pdyn−switch = Energy/Transition · f = CL ·V
2
DD · Ptrans · fclock (2.3)

where the Energy/Transition is defined by the product of:

• CL - the load capacitance

• VDD - the supply voltage
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Figure 2.2: The main components of dynamic power consumption. Switching power (a)

is the primary source of dynamic power consumption and arises from the

charging and discharging of capacitors at the outputs of circuits. Short-circuit

power (b) is a secondary source of dynamic power consumption and accounts

for only 10-15 consumption.

while the transitions’ frequency f is defined by the product of:

• Ptrans - the probability of an output transition

• fclock - the system clock frequency

Since switching power is not a function of any specific physical parameter, but

rather a function of the activity a load capacitance, it is data dependent.

Internal power is a secondary source of dynamic power consumption Fig. 2.2b,

and is related to the short-circuit current. This current arises because circuits are

composed of transistors having opposite polarity, negative or NMOS and positive

or PMOS. When these two types of transistors switch state, there is an instant when

they are simultaneously on, creating a short circuit which correspond to a current

flow. Internal power is given by the equation:

Pdyn−internal = tsc ·VDD · Ipeak · fclock (2.4)

where the two new components that appears represent:

• tsc - the duration of the short circuit current

• Ipeak - the total internal switching current

Summing these two main components, we obtain this formulation for the dy-

namic power consumption:

Pdyn = Pdyn−switch + Pdyn−internal

= (CLV
2
DDPtrans fclock) + (tscVDD Ipeak fclock)

∼ aCV2 f (2.5)
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As this equation shows, the more dominant component of dynamic power de-

pends essentially on four parameters namely, supply voltage (VDD), clock frequency

( fclock), load capacitance (CL) and an activity factor (a) that relates to howmany tran-

sitions occur in a chip. Instead, the internal power component can be neglected as

long as the duration of the ramp of the signal switching is kept short because the

short circuit current occurs only for a short time for each transition, so the dynamic

power is dominated by the switching power component of the last equation.

Parameters that can be manipulated in order to reduce dynamic power con-

sumption are voltage, frequency and the data-dependent switching activity. Partic-

ularly, observing the expression of Pdyn, the reader may note the quadratic depen-

dence of power on the supply voltage, thus, decreasing VDD is a widely used way

to reduce dynamic power even if this technique should be use with care because the

speed of a gate decreases with the supply voltage. In instance, this technique could

be used for circuit blocks that do not have to run particularly fast, like in peripheral

devices, introducing the use of different voltages for different areas (subsystems) of

a SoC, this approach is also know as multi-voltage. Instead, for fast circuit like host

processors and accelerators, designer can provide variable supply voltage with re-

spect to the load on the chip and to the computing requirements in every moment:

higher voltage, and related faster clock for high performances tasks and lower sup-

ply voltage with lower frequency for less performance demanding tasks, this ap-

proach is called voltage-scaling. Another approach for reducing dynamic power is

clock gating which stands on the concept that bringing the clock frequency fclock to

zero, set dynamic power to zero too.

2.1.2 Static Power Consumption

Static power is the power consumed when the device is powered up, but no signals

inside the transistors of a circuit are changing value. CMOS technology is char-

acterized by low static power consumption, and significant power is drawn only

when the transistors in the CMOS device are switching between on and off states.

Therefore, CMOS based devices do not generate as much waste heat as other circuit

logic like TTL or nMOS.

Leakage current is the main reason for static power consumption in CMOS gates

and can have four possible sources [23]:

Sub-threshold Leakage (ISUB) is the current which flows from the drain to the

source of a transistor working in the weak inversion region, it appears when

the CMOS gate is not completely off, its value is give by the formula:

ISUB = µCoxV
2
th

W

L
e
VGS−VT

nVth (2.6)

where the equation’s parameters represent:

• µ - the mobility of electrons in nMOS, and electron holes in pMOS
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• Cox - the capacity of the gate oxide

• Vth - the thermal voltage

• W and L - the dimensions of the transistor

• VGS - the gate-source voltage

• VT - the threshold voltage of the transistor

• n - a function of the fabrication process and ranges between 1.0 and 2.5

This equation indicates that this component of the leakage current depends

exponentially on the difference between VGS and VT , hence, as VDD
1 and

VT are scaled down to avoid dynamic power, leakage increases generating

a trade-off.

Another problem that greatly complicates the design of low power systems

is that Sub-threshold Leakage increases exponentially with temperature and,

while leakage can be acceptable at room temperature, in critical environment

or under not so uncommon situations, like a device being exposed to the sun,

leakage may bring to miss design goals of the chip.

Gate Leakage (IGATE) is the current which flows from the gate to the substrate

through the oxide, it occurs because of tunneling current through gate oxide

which, in 90nm and below productive process is just few atoms thick. There-

fore, from the advent of 90nm technology, the gate leakage rose to about 1/3

of ISUB and with lower processes like 65 and 45nm it can equal Sub-threshold

leakage.

Gate Induced Drain Leakage (IGIDL) is the current which flows from the drain to

the substrate induced by a high field effect in the MOSFET drain caused by

high VDG.

Reverse Bias Junction Leakage (IREV) is caused by minority carrier drift and gen-

eration of electron/hole pairs in the depletion regions

There are several approaches to face the problem of leakage current. One is the

well known and highly used Multi-VT [24] which consists in using high VT cells

with worse timing performances when design goals allow and low VT cells when

is necessary to meet timing constrains. Similar to clock gating for dynamic power

reduction, power gating is another technique that consists in shutting down the

power supply to blocks of logic that are not active, this avoids any leakage but is

not drawbacks-free.

1VDD is the supply voltage of the gate.
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2.1.3 Some Observations on Power Reduction

Some conflicts could rises when the designer wants to reduce both static and dy-

namic power in CMOS technology. When VDD is lowered in order to reduce dy-

namic power, IDS is consequently reduced too, which results in slower chips. The

drive current can be expressed as:

IDS =
µCox

2

W

L
(VGS −VT)2 (2.7)

Therefore, to maintain high performances while lowering the supply voltage, it is

necessary to lower also the threshold voltage VT as VDD (and so VGS) are lowered.

Unfortunately, as we discussed in Par. 2.1.2 on page 35 lowering the threshold volt-

age results in an exponential increase in the sub-threshold leakage current (ISUB)

which is a great drawback as semiconductor technology is going from 90nm and

below.

2.2 How to Reduce Power Consumptions?

Energy saving is the result of a series of solutions: some of these occur in the hard-

ware design phase, involving architectural and technological solutions, while others

may only be implemented when the final device is used and often need support of

software to exploit best power saving techniques. As depicted in Fig. 2.1 at page 32,

the mechanisms can be implemented at different abstraction levels: architectural,

middleware and software.

Architectural Mechanisms

Architectural and technological mechanisms such as: clock-gating, multi-voltage

and power-gating are at the base of almost all techniques for aggressive power

management. Thus in this section it is worth to review the basic concept behind

these mechanisms. In Fig. 2.3 is depicted how these mechanisms relate each other.

2.2.1 Clock Gating

Clock gating is a well-known technique to reduce dynamic power consumption.

Since in a SoC, individual subsystems are used depending on the running appli-

cation, not all the circuits are used all the time, giving space to opportunities to

reduce power consumption. The distribution network of the clock in a chip can be

a substantial percentage of total power of the SoC (30-35%, and up to 50% of the

dynamic power) [25]. This is due to the fact that the clock signal has to be applied

to most of the circuit blocks in the chip and it switches at every cycle.

Clock gating exploits these considerations and aims at disabling the clock to a

portion of a circuit whenever that circuit is not used, preventing power dissipation
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Figure 2.3: An overview of main architectural mechanisms, and their hierarchical rela-

tionship, that can be exploited for aggressive power management.

due to unnecessary charging and discharging of the unused circuits. Clock gating

is usually applied by ANDing the clock with a gate-control signal.

The main challenge of this method stands in the detection of which circuits can ll

not have transaction and thus can be gated, when and for how long [26]. If a circuit

block is clock-gated while its functionalities are needed for the correct operation

of the whole chip, an hardware error may occur; on the opposite, if the enabling

signal (clock gating signal) is driven too frequently it may result in a higher power

consumption than in the case the method is not applied to the circuit. Another

aspect to be evaluated is the circuit area overhead which results by adding the

necessary control components. In some cases it may happen that the introduction

of the additional logic may overcome the benefits provided by its use. In these cases

it is suggested to group the logic blocks with respect to their switching activity, in

order to limit the circuit overhead.

An experiment [27, 23] produced some interesting results that suggest to use clock

gating only on registers with a bit-width of at least three, since on lower width,

the method is not silicon area efficient; moreover, the technique is more effective

whether clock gating cells are placed early in the clock path.

Clock gating can be implemented not only at circuit level, during the phase

of design and synthesis, but also at level of Operating System. In this case some

drivers exports the software knobs that directly control the configuration of clock
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gates and are exported to a power management software or firmware. An example

of this high level implementation of clock gating can be found in the Linux Clock

framework, the in-kernel framework presented in Par. B.2.4 on page 145, which

offers centralized control for all clock management related functionalities.

2.2.2 Multi Voltage

Lowering the supply voltage on selected blocks is a way to reduce power consump-

tion caused by dynamic power and is the concept which hints multi voltage design

techniques. The drawback of this method is that the delay of the gates increases

as VDD lowers, so one of the challenges on multi voltage design is to consider this

trade-off and to find the best compromise.

In multi voltage design the internal logic of a microchip is partitioned in sev-

eral blocks called voltage regions where, as the name suggests, each block has its

own power rails characterized by a specific voltage. Voltage regions are also named

voltage domains and it is common that in modern SoC the chip is divided in many

subsystems with different goals, performance requirements and timing constraints.

Then, this partitioning allows to apply dedicated supply rails to each block in order

to satisfy its performance requirements and to observe its timing constraints, as a

consequence of this fine tuning both static and dynamic power are commensurate

with each single block and, considering the entire SoC, total dissipated power re-

sults significantly lower.

In Fig. 2.4 is reported as an example an overview of the voltage domains which are

present on a commercial OMAP35xx SoC. This architecture define up to eight dif-

ferent voltage domain and every hardware block is composed by a logic block and

an array block. This decomposition allow to host the bare combinatorial logic in a

voltage domain that can be switched off once the device is not in use. To the con-

trary, the content of the array logic, which define the configuration of the device, is

preserved by placing it on a separate voltage domain that is kept powered, perhaps

exploiting some static power reduction technique such as reverse body biasing.

Although all premises let think multi voltage can be an effective way to reduce

power consumption, it presents some important issues the designer has to cope

with. First of all every block must be equipped with proper I/O pins and related

power rails, so the complexity in designing the power grid increases, furthermore

level shifters must be inserted in the chip to allow signals’ driving among different

power domains.

Level shifters are buffers that translate a signal from one voltage level to another

in order to allow correct signal interpretation between two voltage regions [29]. It is

clear that whether two connected power domains are respectively at 1V and at 3.3V,

i.e. at radically different voltage levels, shifter are mandatory, at least to reach the

transaction threshold. However, in modern chips, internal voltages are set around

1V, for instance the lowest voltage in a SoC block is 0.8V and the highest 1.2V,

hence it may be not to immediate to understand the needed of level shifters, but
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Figure 2.4: Overview of voltage domains in an OMAP35xx SoC. The device is split into

eight voltage domains. This partition ensures independent voltage control

of each voltage domain through dedicated SMPS or LDO. Functionally, how-

ever, voltage control of a voltage domain may depend on the voltage level

of another voltage domain; for example, VDD1 voltage-level control may

depend on the VDD2 voltage level. Source: OMAP35xx Technical Reference

Manual [28]
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if the 0.8V signal is used to drive a 1.2V gate, it impacts of both pull-up (pMOS)

and pull-down (nMOS) networks generating crowbar currents that cause leakage.

Usually level shifters are unidirectional, that means they translate either high to low

or, in reverse, low to high voltages. Details about level shifter design can be found

in [23].

Multi voltage strategies can be subdivided, with respect to the number of voltage

levels that can be found inside each block of the SoC, in four main categories: static

voltage scaling, multi-level voltage scaling, dynamic voltage scaling and adaptive

voltage scaling.

Static Voltage Scaling (SVS) is used when different fixed supply voltages are

assigned to different blocks of the chip [30]. This is the simplest design approach

which does not pose particular matters with level shifting, but in modern complex

microchips it does not guarantee optimal results as reported in [31].

Multi-level Voltage Scaling (MVS) can be considered an extension of SVS, where

each subsystem of the SoC is supplied with a limited number of fixed and discrete

voltage levels [23]. This approach allows to set different operating modes for each

block and to save power by switching to the less power consuming mode, with

lower voltage, when the block is idle or the workload is low.

Dynamic Voltage and Frequency Scaling (DVFS) is an evolution of MVS, where

the fixed, discrete number of voltage levels is replaced by a larger number. In litera-

ture [32] [33] it is often found simply as Dynamic Voltage Scaling (DVS), but chang-

ing the voltage dynamically implies to change also clock speed as a consequence of

the tight relation between the two dimensions which imposes a minimum voltage

to guarantee that the transaction speed of logic gates can support the block oper-

ating frequency set by the clock signal. Therefore, voltage scaling acts in synergy

with the frequency regulating the supplied power depending on the requirements

of each block workload. Hybrid solutions are also supported and widely used: in a

SoC, a subsystem like the host CPU may implement DVFS, while other blocks like

the bus controller may exploit a MVS or SVS approach.

Since DVFS is the most effective technique to reduce power consumption in modern

microchips, there exist several algorithms to implement DVFS which usually take

advantage of software control.

Voltage scaling is done at circuit level via DC-DC converters which, taking an in-

put voltage and a control signal, are able to output a set of different voltages which

are then used to feed the SoC’s subsystem. The switching time between a voltage

level to another, called voltage ramp can be very slow (up to some milliseconds)

and thus it could limit the frequency at which is possible to do voltage scaling.

When frequency is scaled down the consequent voltage scaling can be performed

immediately without any dependency, but in the opposite case the target frequency

must be supported by the appropriate voltage level, hence voltage scaling must be
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performed before actually changing frequency with the resulting introduction of

voltage ramp delay.

Frequency scaling is usually achieved via a Phased-Locked Loop (PLL) that, ex-

ploiting a reference clock source, scale up or down the frequency using multipliers

and divisors for each controlled subsystem. If the target frequency of a subsystem

requires a scaling-up, the DVFS is achieved through a procedure usually composed

of the following steps:

1. the firmware or software, usually running at Operating Sys-

tem level, programs the new target frequency;

2. the processor programs the new supply voltage, and wait for

it to be stable;

3. all clock dependent devices are suspended (e.g. self-refresh

mode is enabled for external memories);

4. when the new voltage has been set by the power supply, the

processor programs the new frequency;

5. if the new frequency requires just to change the multiplier/-

divider value, this is accomplished and the subsystem can

continue to operate without any pause;

6. if, instead, the new frequency requires a change of the PLL

base frequency, the processor programs the PLL at the new

frequency. In this case, clock signals mus be interrupted until

the PLL is re-programmed to operate at the new frequency;

7. previously suspended device are now reconfigured and re-

sumed;

The last step introduces a delay in the frequency scaling process that can be avoided

inserting at least two multiplexed PLLs, in the way that while one is re-programmed

to work at the new frequency, the other can continue to provide the correct clock

signal without interrupting subsystems’ operations.

The just discussed latency issues, suggests not to abuse of DVFS for two major

reasons. First, at design time the set of discrete voltage/frequency pairs for each

subsystem must be defined, this choice is not trivial and is a key point of the design.

If the number of levels is high, it may happen that the system spends a lot of time

choosing which is the best pair that satisfies the current power requirements, with

the risk to cancel, or at least lower, the benefits provided by DVFS. Instead, if the

number of levels is low, the voltage ramp delay increases, leading to overhead phe-

nomena. Secondly, scaling voltage and frequency has the side effect of increasing
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the clock period since

Tclock = f−1clock (2.8)

increasing the computing time independently by the number of clock cycles to ex-

ecute a piece of code. This increase in the total time for processing impacts on the

overall energy needed to complete a task which, as discussed in Section Sec. 2.1 on

page 33 is strictly dependent on the time. The problem is especially critical when

the chip is used in battery powered devices.

Adaptive Voltage Scaling (AVS) is an extension of DVFS which has been pro-

posed as an effective power management technique where the system clock fre-

quency and the supply voltage are dynamically adjusted, through a close-loop con-

trol, to meet the application throughput requirements [34]. The controller is usually

a dedicated chip which necessarily embeds a performances and system state mon-

itor, it is aware of the actual voltage delivered to different subsystems, it “knows”

which portions of the silicon are slow and which are fast, it keeps track of temper-

atures in different blocks and consequently adapts voltage dynamically. The Pow-

erwise technology [34] by National Semiconductor supports both closed-loop AVS

and classic DVS. The Advanced Power Controller (APC), which design is described

in [35], is a commercial chip supporting this technology.

2.2.3 Power Gating

Power gating is a technique to reduce leakage power when a subsystem is in sleep

or standby mode [36]. It has been used since the advent of sub-90nm CMOS tech-

nology where leakage power became a major issues in the design of chips. The

basic idea of such technique is to selectively power down some subsystems of a

SoC when their functionality is not required for the correct operation of the system,

while keeping other necessary blocks powered up [37].

Subsystems are then characterized by two power modes: an active mode and a

sleep mode (low power mode) and the goal of power gating is to switch between

these two states at the right time and in the correct manner to minimize power con-

sumption with the lowest impact on performances and user experience. Comparing

to clock gating, from an RTL design perspective, power gating affects inter-blocks

communication and is a more invasive technique.

The simplest power gating design includes:

• scheduler controls the shutting down and power up procedure of each subsys-

tem and can be a software component of the platform, usually programmed

as a Operating System device driver or as part of the OS idle task, or in alter-

native, a dedicated hardware chip, usually devoted to manage power for the

entire platform.

• power gating controller controls the CMOS switches that supply power to the

gated subsystems.
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• power switching fabric is a network of many CMOS switches distributed around

the power gated subsystem with the objective of driving power to the block

when active. It receive control signals by the power gating controller, which

is, in turn, managed by the scheduler.

One of the challenges of this technique is that leakage power saving is not in-

stantaneous and needs some time before reaching the target values, as depicted in

Fig. 2.5. This happens because of the non-ideal nature of power gating technology

and also as a result of temperature which introduces non-linearities in the switch-

ing process. This latency is critical not only from the performances point of view:

the outputs of the power gated subsystem spend a lot of time at threshold voltage

(VT) causing short-circuit currents to the blocks of the SoC which are powered on

and connected to the power gated subsystem. To avoid this phenomenon isolation

cells, which are special CMOS cells immune to crowbar currents, are placed on the

rail that interconnect a power gated with the powered-on block. Isolation cells are

activated “on-demand”, under instructions of the power gating controller.

State retention A major issue that is introduced by power gating techniques is the

preservation of the internal state of a subsystem when it is powered off and the con-

sequent restoration are wake-up. Preserving the state is important for some power

gated blocks because it allows to save the time needed to reload registers from

memory in case the state is not saved internally. Internal state saving and restoring

is performed through different methods which include a software approach and a

register-based approach.

The software approach consists in reading the state of a block before gating

its power, saving the state in memory and when the block is powered-up again

restoring data via a copy operation. This approach is slow and depends on the

bus bandwidth and traffic, moreover conflicts on the bus may make state restora-

tion non-deterministic and leave the woken-up block in a non operational state.

Software is strictly platform dependent and lead to non-reusability and hard main-

tainability issues.

The register approach uses retention registers, which are special registers equipped

with a shadow register that can preserve the register state during sleep time and

restore it at wake-up. The shadow register is always powered by the supply voltage

rail and is controlled with “save” and “restore”, or alternatively to the formers a

“retain” signal. The latter is an edge-sensitive signal that controls the operation of

moving the state of the original register to the shadow register. The drawback of

using retention register is the silicon area overhead that their use introduces, usu-

ally between 20% and 50%. A second disadvantage is the complexity added in the

power controller design.
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Figure 2.5: Realistic power consumption profile with power gating. The leakage power

savings are not perfect and instantaneous; the full leakage power savings

take some time to reach target levels. This is due partly to the (hotter) ther-

mal profile of the preceding activity and partly to the non-ideal nature of the

power-gating technology. Therefore the achievable savings are compromised

to some extent. Source: Low-Power Methodology Manual [23]
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Middleware Mechanisms

2.2.4 Resources hibernation (DPM)

Computer components consume power even when idle. As described in Par. 2.1.2

on page 35, the static power consumption can be reduced by properly tuning some

voltages or even completely eliminated by switching off components during idle

periods. Resource hibernation, frequently referenced also as Dynamic Power Man-

agement (DPM), exploits different hardware support, i.e. clock gating Par. 2.2.1 on

page 37, multi-level voltage scaling Par. 2.2.2 on page 41 and power gating Par. 2.2.3

on page 43, to control power consumption through the implementation of low power

states like sleep and suspend. In these particular states, the whole system or even

just a subset of its components are totally or partially deactivated, eventually re-

quiring, for some of them, the user interaction to bring back the system fully oper-

ational.

The ACPI specification [38] provides an open standard for unified operating

system-centric device configuration and power management. This standard define

the set requirements for the global states (G–States), the system states (S–States),

the processor states (P–states) and the device states (D–states). While for each set

of states, the state zero (e.g. P0) represent a working condition, all the remaining

stats define a reduced functionality condition. The basic idea of these states is that

the system (or the processor or a device), when it’s not providing some service, can

save power in several ways. Each of those ways has a different trade-off in terms of

power-saving versus latency and performance. Thus, the higher the state number,

the less amount of power consumed. While the power is reduced for higher number

(deeper) power states, this power reduction comes at a price. The deeper the state,

the longer it takes to leave the state, and the more energy this transition costs. In

the light of these considerations, the smartest optimization approaches for resource

hibernations can not ignore the concept of break-even time. The break-even time [39]

is the amount of time a device must be in a lower power state, once entered, to

effectively save some energy. This metrics is usually defined as:

tbe =
Ewake

Pon − Po f f
(2.9)

where Ewake is the awakening energy, Pon is the power consumption in the active

state, and Po f f is the power in the sleep state.

The decision that leads to a state transition has to be taken considering a simple

set of metrics, for instance: the user inactivity on peripherals like keyboard and

mouse in a PC or the touchscreen in a PDA, the pattern of device access requests

issued by applications and so on. Disk drivers, networking cards and display, not

only are some of the main power consuming devices in a computing system, but

thanks to their common usage patterns are well interesting for the application of

DPM optimizations. Different devices present unique challenges for the application
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of resource hibernation techniques.

In disk devices most of the power loss stems from the rotating platter. To save

energy, an OS could spin-off the disk after a certain inactive period has expired and

restart it during the next access. Of course, the decision of when to spin-down an

idle disk involves a trade-off between performances and power saving. Network

cards pose another challenge: since the naive solution to south down a network in-

terface when not in use would possibly also disconnect the host from other devices,

proper synchronization protocols are usually required to support proper communi-

cation among devices in a network. Applying DPM techniques to displays, which

are usually the major source of power consumption, it is also interesting and could

lead to significant reduction in energy consumption. Anyway also in this case the

simple approach to dim a display after a sufficiently long interval of user inactivity

may not coincide with user’s intentions. Different approaches and corresponding

heuristics have been proposed in past researches to successfully exploit resource

hibernation on these kind of devices, I will review some of them in the following

section.

2.2.5 Resources tuning (DVFS)

Modern computing systems, ranging from workstation multicore platforms down

to embedded System-On-a-Chip based devices, provide advanced power manage-

ment features to judiciously use energy. For instance, modern processors such as

Intel’s Atom and Core 2 Duo and ARM’s Cortex A8 and A9 platforms, among

others hardware technologies, incorporate also support for Dynamic Voltage and

Frequency Scaling (DVFS). This technique allows to control the CPU operating fre-

quency, by dynamically varying its speed according to the current workload, in

order to reduce energy consumption during periods of low utilization [40]. All ap-

proaches essentially implement DVFS, to reduce energy consumption, by exploiting

the non-linear relationship between the rate at which the CPU performs its works

and the power required. Thus these techniques are addressed at reducing the dy-

namic power consumptions as defined in the previous section. Although a task will

take longer to complete, the greater reduction in instantaneous energy consumption

leads to an overall decrease of the total energy amount required to complete it.

Through this power optimization technique appears straightforward, serious

real world complexities must be considered. A careful design is required to prevent

the processor slowdown from degrading the user perceived applications responsive-

ness. From a theoretical standpoint we could minimize the energy consumption by

setting the system service rate of the processor to be equal to the arrival rate of the

new work. However this simple rule cannot be always applied: if we have only

sporadic and short bursts of CPU load this simple approach could create very long

response time for the user. Thus a perfect DVFS system must try to balance current

demands with predicted future workloads. In general:
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the more the knowledge that the system has about acceptable ser-

vice level and workload demand, the more the energy that it could

reduce.

Two are the main complexities related to the implementation of DVFS techniques,

the unpredictable nature of workloads and the indeterminism of real systems. Let

me review them shortly.

Unpredictable nature of workloads - How to predict workload with reasonable

accuracy is a first order problem that require to exactly know: what task

will execute at which time and the amount of work required by this task. This

problem is complicated by the fact that a task could be preempted (e.g. due

to I/O operations) and also because of the well known ’Turing Haling Prob-

lem’ [41] it is not always possible to predict the runtime execution time of an

algorithm. There has been many efforts to solve this problem, especially in

the context of real-time systems, where anyway only the worst-case execution

time (WCET) could be [42, 43, 44, 45] accurately estimated. In real systems

and with best-effort application the problem could not be efficiently solved be-

cause either the WCET is not the more probable case and also because micro-

architectural innovations (e.g. out-of-order execution and hypertrading) make

it difficult to apply statistical approaches.

Indeterminism of real systems - Real system’s indeterminism make it difficult to

determine the correct processor frequency even if we would be able to effi-

ciently determine task workloads. Don’t considering this indeterminism could

lead to some risky misconceptions. First of all: it is not generally true that the

total system power is quadratic in supply voltage. This is true for single tran-

sistors if we remain in the CMOS model context, but still there is not precise

way to estimate the power dissipation of an entire system. If we consider

modern multi-voltage domain designs, where the total dissipation is domi-

nated by larger supply voltages (e.g. I/O banks), even if the smaller CPU’s

supply voltages are allowed to vary this will not reduce quadratically to over-

all system power [46, 47]. This lead to another common misconception: it is

more power efficient to run a task at the minimum speed that grant to meets

its deadlines. This is not always true since we must consider system-wide

effects of DVFS: slowing down some applications could lead to keep active

more time some peripherals thus consuming more power than that saved by

the application [46]. And finally it is not exact to consider the execution time

inverse proportional to the clock frequency. Indeed in instance DVFS could

affect the way task are scheduled (e.g. due to preemption) and this could

affect caches state end thus it could have side-effects on performances [48].
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Software Mechanisms

Software mechanisms refer to the set of optimization that can be introduced into

the code or performed by the code itself in order to optimize power consumptions.

Thus, these mechanisms could be essentially classified as compiler based or applica-

tion based. The former are optimization addressed by the compiler, either statically

or at run-time, while the latter concern the software architecture itself. In this sec-

tion it is worth to review the basic concept behind the compiler based optimizations.

To the contrary, the application adaptation mechanisms are discussed in detail in

the next section, which present the prior art, because these are the mechanisms and

techniques of main interests for this research work.

2.2.6 Compiler based optimizations

Compilers can help on different ways to the reduction of power consumption,

regardless of whether the target system support software–controlled power opti-

mizations. Aside from the approaches to add code instrumentation that control

the power mode of a system and its devices, they can also apply the common

performance–optimization techniques to get benefits also from the perspective of

energy saving, for instance by reducing the execution time. However, sometime

performance optimizations increase code size and parallelism, thus augmenting the

pressure on shared resources and peak power dissipation. Thus, even in the case

of compiler based approaches, there is always the need to consider the trade–off

between performance gain and power efficiency.

Basically the mechanisms available for compiler assisted power optimization can be

traced to static compilation and dynamic compilation approaches.

Static compilation approaches could reduce energy consumption by optimiz-

ing the usage of some sensible resources. For instance the compiler could reduce

the memory accesses by eliminating redundant load and store operations. Other

optimizations could address the improvement of caches usage or perform aggres-

sive register allocation in order to keep data as close as possible to the processor.

A proper assignment of data memory locations and different loops transforma-

tions could help on improving the correct usage of the memory hierarchy to reduce

power consumptions.

The main drawback of the static approaches is that the compiler has only a static

view of the source code. Thus the compiler cannot exploit runtime informations on

the execution context. Moreover, this kind of static compilers usually treats the

source code as it is the only one running in the target. Instead, most of the real

systems (excluding specialized embedded systems) are much more complex with

many tasks running concurrently and competing for the available resources and

with certain asynchronous events that introduce another level of indeterminism in

the execution context. For example, context switches could have side effects on

the memory hierarchy utilization regardless of the attempts of static compilers to
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Power Optimization
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Figure 2.6: An high-level taxonomy of power optimization techniques. The main pro-

posals that can be in literature can be classified according to two different

perspective: the abstraction level or the domain of the optimization strategy.

improve its usage.

Some of these problems by dynamic compilation techniques, which are basically

based on the exploitation of a feedback loop in order to optimize code at run–time

according to the changes in the execution context. As the changes at runtime of

some resources’ usage could impact on the program behaviors, dynamic compilers

are designed to recompile the program code in order to properly adapt to these

changes. Of course, a dynamic compiler must be aware of the trade-off between the

energy required for the recompilation and the energy saved after the optimization.

The dynamic compilation has been explored a lot in the past, mainly for opti-

mizing performances. However, the continuous compilation can be exploited in a

number of scenarios also to improve power efficiency. For example, monitoring the

battery level a dynamic compiler could trade the data quality of processed data for

a reduced power consumption by exchanging expensive floating point operations

with integer ones. Beside the monitoring of some environment conditions, such as

resource usage, there are other attempts that try to exploit some power model to

address the compiler. For instance, is has been showed that a system-wide power

model can be related to the usage of hardware event counters with a certain level of

accuracy. Such a power model can be effectively exploited within a dynamic com-

piler to associate a power profile to the code and thus enable selectively at run-time

different kind of optimizations.

2.3 Prior-Art Techniques

This section summarizes the state of the art for the research areas related with the

main objectives of this thesis. It compares the most relevant works, also illustrating

their advantages and shortcomings. The contents presentation follows the abstrac-

tion levels classification defined at the beginning of the chapter.
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The power optimization techniques proposed so far in the literature can clas-

sified according to different perspectives, as depicted in Fig. 2.6. If we consider

abstraction level they can be grouped into four main categories. In order of increas-

ing application specific knowledge, and corresponding increasing performances,

we have these approaches: pure hardware, pure operating system, cooperative

application-OS and application level. Another possible classification could be pro-

vided considering the domain of the optimization strategy, in this case we have:

interval based and application based techniques. Latters could be further subdi-

vided in inter-task and intra-task techniques.

In the rest of this section, I’ll consider the abstraction perspective to review in details

some of the main past contributions that can be found in literature.

2.3.1 Pure Hardware Techniques

These techniques are based on specific hardware support, embedded within the

processor, that measure the current CPU load and configure the processor frequency

according to the inferred system utilization. One of the very first implementation of

this approach has been the LongRun technology [49] used in the Crusoe processors

[50] by Transmeta. This is a purely reactive and memoryless system belonging to

the interval based methods: it simply measure the CPU load in a predefined time

interval and scale the processor frequency according to the percentage of idle time.

The final objective is to keep the CPU utilization near to 100%. Such methods

are the simplest one to use because they don’t require any modification of the

operating system or to applications. A number of other commercial systems has

been developed by main processor production companies.

The Intel’s Enhanced Speedstep Technology [51] features some processor model spe-

cific register (MSR) that allow the software to influence the CPU clock which can

transition between 6 different pairs of frequency and voltage settings. The Intel’s

Wireless Speedstep power manager [52] is an enhanced version of this technology

which is embedded into PXA27x processors’ family. In this case the processor’s

power modes are managed by an idle profiler and a performance profiler. The first

monitor the idle thread while the latter exploit hardware performance counters to

estimate how much memory bounded is the current workload. This is done by

means of some statistics build around: caches usage, TLB misses, executed instruc-

tions and pipeline stalls.

The ARM’s Intelligent Energy Manager (IEM) technology is a comprehensive

hardware and software solution to scale core frequency a voltages which can be

found on recent ARM cores [53]. This approach is based on an advanced hard-

ware support provided by a dedicated SoC’s embedded microcontroller, named

Intelligent Energy Controller (IEC), and a three-level decision hierarchy of software

policies. The IEC provide a closed-loop control on both processor power and perfor-

mances, exploiting performance counters and internal/external SoC sensors. This

hardware controller can be tuned by the hierarchical software policies: the bottom
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level provide workload estimation based on sliding window system monitoring, the

top layer is specifically devoted to take care of interactive and multimedia applica-

tions requirements, and the middle layer allows other applications to communicate

their workload requirements directly. Each policy tag its own performance predic-

tion with a confidence rating which is used to compare decisions from different

layers among them and decide the input to provide to the underlaying hardware

controller.

The IEM technology is usually coupled with the Powerwise technology [34] by

National Semiconductor, to support Adaptive Voltage Scaling (AVS). Conventional

DVFS approaches determine the appropriate voltage for a clock frequency using a

worst-case model with respect to the fabrication variations. As a result, the voltages

chosen are often higher than they need to be. Powerwise gets around this problem

by adding a feedback loop that continually monitors variations in temperature and

other ambient effects through performance counters. These information are used to

dynamically adjust the supply voltage for each clock frequency. This results in an

additional energy savings, up to 45% [54], over conventional voltage scaling.

An online hardware approach for modern multiple clock-domain (MCD) mi-

croprocessors platforms has been proposed in [55]. The authors propose a for-

mal analytic approach driven by dynamic workloads, where the MCD processor is

modeled as a queue-domain network and the online DVFS as a feedback control

problem with issue queue occupancies as feedback signals. The proposed online

DVFS scheme, compared to prior approach, thanks to its automatic regulation abil-

ity seem to be more effective. Unfortunately the proposed DVFS schema has been

evaluated only through a cycle-accurate simulation and, at best of my knowledge,

no real-hardware implementations are known to exist.

Some main drawbacks of these techniques are:

• single system-wide frequency configuration: individual tasks do not have any

direct control over the CPU power settings. Instead, a single CPU setting is

determined, and thus it turns out to be typically based on the needs of the

most resource hungry application. This could lead to sub-optimal configu-

rations when a mix of applications is executing on the same processor or on

multi-core systems where it’s difficult to exploit optimal load balancing.

• estimation error: the OS needs to infer the processing needs of the applications

by using on-line measurements and this could incur estimation errors.

• workload regularity hypothesis: it is very difficult, if not impossible, to predict

irregular workloads using history information alone. Thus it is also difficult

to achieve good results using only statistics from the operating system level

when applications show bursty (unpredictable) behavior.
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2.3.2 Pure OS-Based Techniques

These techniques try to improve the memoryless hardware approaches in two main

directions: by exploiting OS scheduler knowledge and by allowing software system

designer to compare different optimization policies.

Basically they are designed around the idea to determine a system-wide CPU

frequency setting, based on the current task’s processor demand. Workload infor-

mations, such as ready task’s queue length and patterns of individual applications’

I/O requests, can be easily collected at run-time by the scheduler and made avail-

able to a modular optimization policy, along with hardware performance counters

too. Optimization policies basically exploit these data to identify how much busy

is the processor, over a predefined time interval, and than estimate how much busy

it will be in the next time frame to adjust accordingly the CPU speed. Thus these

methods, as long as the hardware’s one, could be classified as interval-based.

Different optimization policies has been developed, which basically differs on

the amount of informations exploited and consequently on the way they estimate

future workload. The earliest algorithm developed in this class was PAST [56]

which simply define an hysteresis cycle based on the CPU idle time: if the processor

idles longer than a lower-threshold, its speed will be decreased, otherwise, when

it remains busy longer than an upper-threshold, its speed will be increased. This

policy is pretty simple and, even if it is error prone since it makes decisions based

only on the most recent informations, is also very reactive and with few variations

and a more parametric approach is the default one used in recent Linux kernel

by the CPUFreq framework [12]. A number of algorithms has been developed to

extend PAST and better exploit available informations in order to save more energy.

The AVGn [57] approach in instance consider many measurements collected over a

larger time window and estimate the CPU usage for the next interval as a weighted

average of usage measures in a certain amount of previous intervals.

In [58, 59] is presented Vertigo: a power management extension for Linux. This

framework also makes its decisions automatically, without any application-specific

involvement, but exploit a hierarchy of workload’s specialized performance-setting

algorithms. Each algorithms operate independently from one another and has a

set of specific configuration parameters. The main goal of this framework is to

transparently perform performance reduction without causing the software to miss

its deadlines.

The Processor Acceleration to Conserve Energy (PACE) algorithm [60, 61] is a

scheduler modification which increase the CPU speed as a task progress if deadline

missing becomes more likely. This technique depends on the capability to estimate

the probability distribution for the work requirements of a task. The authors show

how is possible to make such an estimation and also how it is possible to approx-

imate the perfect schedule with one that limits the number of frequency changes

in order to reduce run-time overhead while still getting substantial CPU energy

saving.
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A number of works has focused on DPM techniques, based on pure OS solu-

tions, for the power optimization of peripherals, mainly: disks, network cards and

displays. Disks optimizations are usually based on Adaptive Dynamic Threshold Ad-

justment, a technique to adjust at runtime the idleness threshold before a idle disk

can spun down. Based on this technique, in [62] is presented an approach to cluster

disk access requests, thereby lengthening idle periods. To create opportunities for

clustering this algorithm adopt a double strategy of both delaying non-urgent disk

requests and aggressively pre-fetching disk data into memory. In large scale server,

with continuously processing workload, disks idle periods are almost absent and

cannot be successfully exploited to spin down disk. In this specific context an in-

teresting approach has been proposed in [63] where is investigated an alternative

optimization strategy based on dynamic RPM control (DPRM). The authors pro-

pose to modulate the plate rotational speed according to the workload demand. An

adaptive threshold algorithm is at the base of another proposal [64] for power opti-

mization of wireless network cards. In this approach the authors define a heuristic

that use timers to track idleness of devices. An idle timer is used to enter the device

into listening or sleep mode for a run-time tuned hibernation time. When network

activity is detected, the algorithm decrease the hibernation time acceptable, which

instead is increased on idle periods detection.

The Homogeneous Architecture for Power Policy Integration (HAPPI) [65], is one of

the most recent works on OS level DPM targeting multiple devices. This proposal is

interesting because, starting from the evidence that a policy can outperform another

under different conditions, tackle the problem of finding the “best” policy for all

systems. Thus the work advances the proposal for an OS architecture that support:

the integration of multiple policies, their simultaneously run-time comparison and

the independent selection of the best one for each specific controlled device without

user or administrator intervention. The work show how different predefined and

well-known DPM policies can be effectively switched at run-time to better control

each device based on workload demand.

Some main drawbacks of these techniques are:

• run-time overheads: the software control is more flexible but require some

work to be performed by the optimization policy, thus the energy consump-

tion vs benefits tread–off must be carefully evaluated and considered.

• no direct input from applications: these techniques infer the control actions

from the analysis of the operating system state only. Thus, only indirect infor-

mations from the applications can be exploited; for instance: if an application

open a device then it is highly probable it will be used. However, even if these

approaches are not purely re-active the analysis of the system state and its

processing require some work that should be considered in the evaluation of

the control trade-off.

• disjoint policies proliferation: within the operating system we could find gen-
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erally multiple policies for the optimization of different subsystems. Unfor-

tunately, it is not possible to grant a system-wide optimization considering

only the overlapping of multiple and disjoint controllers. Indeed, the most

promising approaches within this class propose the design of a certain kind

of centralized controller.

• complexity of centralized controllers: the centralized supervisor based ap-

proaches are usually based on a modeling framework which is more complex

than a system integrator would like to see. Thus, in practice these approaches

have showed very limited applicability in real products.

2.3.3 Cooperative-OS Techniques

In cooperative approaches the Operating System try to exploit some domain-specific

informations communicated directly by the applications. These “application hints”

increase event further the level of knowledge about tasks’ requirements and opti-

mization algorithms could exploit them to better identify optimal CPU frequency

configurations.

The Milly Watt Project [66] was one of the early attempts to explore the definition

of a power-based API supporting cooperation among applications and the operating

system on setting an energy-use policy. One of the main contribution of this work

was the focus posed on the need to raise the importance of the energy consumptions

reduction, among performance goals on designing new software.

In the context of this project project was also the definition of ECOSystem [67]:

a prototype energy-centric OS. This framework defined a powerful mechanism to

formulate energy goals, based on a “currency model” abstraction [68], to model

power resources as a monetary unit. Essentially different system resources has a

cost to be used and applications must pay to use them. The ECOSystem operat-

ing system periodically distribute currency to applications according to the power

optimization goals. This was an interesting example of a powerful mechanism to

formulate energy goals and to unify resource management policies across diverse

competing applications and spanning device components with very different power

characteristics.

Many other approaches proposed the usage of a proper API to exchange infor-

mations from user-space to kernel. In [69] a simple two layer software architecture

is proposed. In [70] a more complex interface is designed where applications are

allowed to chose when access I/O devices, based on their relative cost, while still

hiding devices’ details. While giving applications a fine-grained control on devices,

this approach is particularly interesting because of the introduction of “ghost hots”

mechanism that allow devices to learn when applications require them and adapt

consequently their own optimization policies. A similar work is proposed in [71]

where a compilation technique is used instead. Suitable application’s code trans-

formations are operated in order to cluster device accesses, in instance to increasing

the opportunities for spinning down a disk.
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In [72] is proposed an integrated power management approach that unifies low

level architectural optimizations (CPU, memory, register), OS power-saving mecha-

nisms (Dynamic Voltage Scaling) and adaptive middleware techniques (admission

control, optimal transcoding, network traffic regulation).

The approach proposed in [73] require that applications are power-aware and

specify their average execution time (AET) and the deadline to the scheduler. This

approach define an energy priority scheduling (EPS) algorithm to support such

power-aware applications. The scheduler orders tasks according to their deadlines

and tasks overlapping level. Indeed this algorithm does not always yield the opti-

mal schedule, it has a very low complexity and for very bursty applications show

processor power consumption reduction up to 50% without missing any specified

deadline.

Some main drawbacks of these techniques are:

• application modification: it is generally required to integrate the applications

within the framework by modifying them in order to pass the required infor-

mations to the in-kernel framework. Unfortunately, even when this is possible,

generally it is not always something welcomed by developers which prefer to

focus on application functionalities instead to power management stuff.

• reduced application portability: modifying an application to integrate on a

framework could impact on its portability since it is not conceivable that all

systems use the same framework.2

• communication overhead: inevitably the information exchange between the

OS and the applications introduce some overheads in the control policy. More-

over, faulty applications or even worse malicious ones can interfere with the

control policy conditioning its effectiveness.

2.3.4 Application-Level Techniques

Rather than a partnership between the OS and the applications, these techniques

try to exports the entire burden of power management to the user level. The basic

idea it that: since applications best know their processing requirement, we should

allow them to make decisions on power management. The OS’s role, on these

approaches, it is solely that to enforce protection and isolates applications from

the power settings of other applications. Thus these approaches resembles mainly

the philosophy of the Exokernels3 [74]. Since the Exokernel project successfully

demonstrates the benefits of application-level networking, memory management,

2Unless it is a well defined standard, such as ACPI. But up to know this kind of standard has been

defined only for lower abstraction levels concerning the OS interfaces towards the hardware.
3An Operating System architecture where the kernel grants complete control of various resources to

the applications and only enforces protection to prevent applications from harming one another
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file systems, and CPU scheduling[75], these approaches try to extends this notion

to application-level power management too.

A low-power application design methodology is proposed in [76]. This approach

adopt an “architecture-centric” view, where each application can be decomposed

into fundamental elements (e.g. process, communication mechanisms, handlers).

Thus, an application can be represented as a software architecture graph (SAG),

and power consumption is related to interactions among its basic components. The

authors describe than a simulator based estimation of basic application power con-

sumption. This estimation is used to compare energy consumptions when the ap-

plication is modified by transformations operated on the SAG, such as: merging

processes to reduce communication energy or redistributing computation among

processes. A greedy approach is proposed for the exploration of SAG transforma-

tions, where they keep applying modifications until no more energy could be saved

or no more known transformations exists.

A number of work has been done on the field of application-controlled DVFS

techniques for multimedia application.Video decoding has been the reference use-

case of these techniques, which relay both on off-line estimation of CPU decoding’s

demands [77], or its on-line estimation [78, 79, 80, 81, 82].

The approach proposed with Chameleon [83] is an application-level power man-

agement architecture to support applications embedding power management poli-

cies. The authors argue that applications best know their resource and energy needs

and consequently they should be able to define better power management policies

too. In a Chameleon enabled kernel, a complete control over the CPU power settings

is given to the power-applications, which are allowed to specify their CPU power

setting independently of each another, while the OS enforce only isolation between

an application and the settings used by another one. The authors show also how

simple it could be to develop effective application-level power management policies

for commonly used applications belonging to different application classes such as

soft real-time, interactive and batch.

Many other application level techniques belong to the class of application adap-

tion, where power consumption is treaded with quality or data fidelity. In [84] a

video encoder is presented which can tune its compression efficiency by trading

computations’ accuracy for reduced energy consumption. This is also an exam-

ple of mixed hardware and software approach because the solution is based on

two algorithms that work side-by-side: one exploit DVFS support to tune hard-

ware parameters, while the other tune the parameters of the video encoder. Other

techniques for application adaption of video applications are presented in [85, 86],

while in [87] and [88] similar techniques for application adaption are applied in the

office application’s context.

The Odyssey operating system [89, 90] is another example of OS controlled ap-

plication adaptation. This framework, especially designed for multimedia and WEB

applications, monitor resource usage and notify applications when they fall below

the required level. In turn applications lower the required quality of service until



58 Chapter 2. Bakground

resources are still available.

An experimental face recognition system, Face-off [91], has been proposed for

the DPM control of displays. This application level approach is based on an al-

gorithm of face recognition running periodically on a snapshot of the monitor’s

perspective. This allows to better capture user intentions but a drawback is the

repetitive polling for face detection. The usage of a proximity sensor is foreseen

as an interesting optimization to trigger the face recognition algorithm only when

user is detected.

The main drawback of these techniques is:

• application specific: the implementation of a power control in user-space can

be approached only considering application specific contexts. Otherwise, the

complexity required to make cooperating many different applications, con-

sidering also the protection mechanisms enforced by the operating system,

makes impossible to implement effective solutions.

2.3.5 Cross-Layer Techniques

As noticed in the introduction of this chapter, power consumptions depends on de-

cisions that span all layers from transistors up to applications. The development of

holistic approaches, that aggregate data from multiple layers into power manage-

ment decisions, is a popular research topic. Indeed, a number of approaches based

on cross-layer adaptations have already been proposed.

Forge [72] is an infrastructure based solution, targeting power optimization for

networked multimedia applications. The proposed multi-layer architecture consist

of an hardware layer with a set of tuning parameters, an operating system and

compiler middle-layer and a distributed middleware in the upper layer supporting

running applications. The proposed architecture integrate multiple levels of adap-

tations. The hardware layer support DVFS and DPM techniques as well as a set

of architectural tuning parameters. Local middleware monitor available resources

and send informations to the centralized portion of the middleware running on

a proxy. Remote off-line profiling, based on simulation, along with the collected

informations allows the proxy’s middleware to tune the served data stream.

Another cross-layer approach targeting the power optimization of mobile de-

vices that primarily run multimedia applications is the Grace OS [92] project. This

is an attempt to integrate DVFS, power-aware task scheduling and QoS demands

for the power optimization. Even more interesting this framework is based on a

hierarchical two layers of adaptations. A global policy act as a central coordinator

that monitors resources availability and respond on widespread changes. On the

other hand, local policies respond to smaller workload variations for resource us-

age fine tuning. The proposed solution is based on three local policies controlling

CPU frequency, task scheduling and QoS parameters. Unfortunately, even being

effectively implemented into a Linux kernel by extending the traditional real-time
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scheduling, this framework has been designed only for the energy optimization of

real-time multimedia tasks with fixed periods and deadlines.

Another multilayer framework for multimedia applications power optimization

is presented in [93]. The main innovation is a middleware layer in user-space that

perform admission control on application and their QoS demands. This control

is supported by run-time informations collected via an OS interface and by meta-

information that each application entering the system should provide to the mid-

dleware. These meta-informations comprise QoS levels accepted by the application

and corresponding power consumptions profiles.

In [94] is explored the possibility to exploit compilers and OS cooperation to

save energy. Still the target is on real-time applications with predefined dead-line

and worst case execution time (WCET). The compiler instruments the code adding

WCET informations that can be used run-time by the OS to perform DVFS.

A compilers based approach has been proposed also for the DPM of wireless net-

work cards [95]. This technique target a simplified scenario where a device has

its virtual memory on a proxy server, and page faults are exploited to trigger the

wakeup of the network interface. The compiler is used to identify program re-

gions, with an array access patterns to memory, and simulating a least-recently-

used memory access algorithm it can understand where to instrument the code

with the proper control network interface status.

These are for sure the most promising techniques for implementing a power

optimization framework which satisfy all the requirements discussed in Sec. 1.2 on

page 12. However, the solutions proposed in literature show still some limitations,

most notably:

• application modification: to better take advantages from an holistic approach,

the compiler support is required on some proposals in order to instrument

the application code. The instrumentation allows to collect better and more

complete informations at run-time about the application requirements.

• reduced scalability: no frameworks has been proposed which considered the

scalability of the control as one of the main requirements. The scalability

can be compromised by both: the complexity to support the framework, for

instance on a general purpose platform, and the run-time overhead increase

due to the increasing number of components being added to the system.

• limited application: even the frameworks which has had a real implemen-

tation, on used operating system such as Linux, are limited to specific and

well defined working contexts. This is mainly due to the complexity of the

approach proposed and it is a consequence of the previous point too.
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Chapter 3
An Instance of the Technique

“True optimization is the revolutionary

contribution of modern research to decision

processes. ”

George Bernhard Dantzig

I
n the overview I introduced a fundamental approach to construct distributed,

fine-grained, dynamic and fast techniques, to support both power consump-

tions and performances estimations of embedded systems when running on

given use cases. This fundamental approach may derive many techniques, depend-

ing on which modeling choices are taken. This chapter presents one instance of

these possible techniques, which is especially suited for multimedia mobile embed-

ded systems.

This chapter discusses the models on which this technique relies, the basic steps

which compose it, the activities which it involves and the people which are sup-

posed to carry them out.

3.1 Focusing the Reality

We are interested in controlling the energy-performance trade-off of SoC based mo-

bile platforms. These systems are composed of several perhaps complex devices1,

some internal and others external of the SoC, that interact by exchanging informa-

tions and data to provide some kind of service. Operating conditions evolve over

1In this part of the work we call device a component of the system: a device can be a CPU, the main

memory, DMA controllers, network interfaces, some storage, etc. The reader should not confuse this

meaning with the notion of device as that of a product, e.g a mobile phone or a GPS navigation system.
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time and user required services can be different time-to-time, thus devices usage

and their configuration must be changed accordingly. Usually the entity in charge

to manage devices is the Operating System (OS), more precisely device drivers, that

have the necessary knowledge to understand how to reconfigure devices based on

the required service to support.

Ensuring a proper energy-performance trade-off on such complex systems is

a challenging goal. The great number of devices and related control parameters,

along with the variability of application requirements in terms of Quality of Services

(QoS), makes it difficult to understand how to define a suitable system-wide set-

point.

Finite discrete parameters

The state of a device can be described by its configuration. This configuration de-

fines how the device behaves: what services it provides as well as how they are

performed, for instance in terms of achievable performances and power consump-

tions. Therefore, controlling the state of a device thus requires to identify a suitable

configuration to achieve expected system behaviors.

A device configuration is described by a set of registers that allow to define the

values of its tunable parameters. The device is the object to be controlled and can be

associated to the target system, tuning parameters are the actual control points we

can use in order to provide a control input to a device.

It is worth noticing that these tuning parameters can accept a finite number of

possible values and, for the specific devices we are considering, control input is

represented only by discrete values. So, control inputs of systems we are interested

in, will be represented by a finite number of discrete values. Device drivers know

exactly the set of values that a control input can accept and how these affect device

behaviors. This is an important property of the systems of our interest and should

be considered to properly design the controller.

Discrete event system (DES)

The state of a target system is defined by the values of its state variables. This state

may generally be not directly observable, but in our specific application context,

where the system is constituted by a collection of devices, this state is known in

every moment of the evolution of the system and corresponds to the collection of

device’s configuration registers.

Operating conditions of the entire system can change with time, either due to

user interaction, running different applications or requiring different services (e.g.

switching from loudspeaker to earphone), or to mutating environmental conditions

such as different network access channels availability. Therefore these changes in

operating conditions can be considered as asynchronous discrete events over time.

When such an event occurs, usually a system reconfiguration is required to

better support the new status. A system reconfiguration typically involves a change
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of the internal settings of one or more devices in order to support the requested

service while optimizing the performance and energy efficiency trade-off. Hence,

according to the discussion on Par. 3.1 on page 62, each reconfiguration will move

the system to a new discrete state defined by the contents of all of configuration

registers.

From the above considerations we can observe that our application scenario is

a discrete-state and event-driven system (i.e. discrete event system), since the state

evolution depends entirely on the occurrence of (perhaps asynchronous) discrete

events over time. The design of a controller for such kind of systems is supported

by the theory of discrete control [96].

Configuration overheads and benefits

Changing the state of a device requires some processing time, not only to execute

the software routine that effectively reconfigures its registers, but also to understand

what are the correct values to load in a new configuration. This time is largely

considered an overhead since it requires some power without producing useful work,

but only to move the system to a possibly better operating state.

Since reconfiguring a system is a resource consuming task, in order to have

benefits from a system reconfiguration it is generally required that the system will

remain in the new state for a minimum time amount of time. This is especially

true if we consider power optimizations: when the system is moved to a lower-

consuming state, since energy is spent to reach this state, in order to have benefits

the system should remain in such state at least for the time necessary to compensate

the energy consumed to activate it.

The design of the controller of system configuration should consider these as-

pects and take into account both overheads and benefits associated to each device

in order to understand when a reconfiguration is feasible and convenient according

to power and performances requirements.

3.2 Abstracting the Reality, Modeling the Abstraction

The objective of this technique is to provide support for system-wide power and

resource management policies. The real path which leads from user-space QoS re-

quirements down to an optimized system-wide configuration, in therms of energy

reduction and performances tuning, involves a large number of steps. Many of

these steps show great complexity, as I detail below. For reasons of effort, perfor-

mance and generality, it is not convenient to account completely and exactly for

this complexity at all the abstraction layers. Instead, a convenient trade-off between

effort, performance, generality and accuracy should be chosen.

For example, a specific’s device hardware capability should be modeled exactly

when the effort is acceptable, it leads to a model which is general enough to be

easily tuned and used on different systems, it has acceptable run-time overhead
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and it leads to a significant increase in optimization accuracy. Otherwise, it is more

convenient to model its behavior in a statistically-consistent way. It may be a rea-

sonable idea to even completely neglect the effect of a specific hardware feature, if

the incremental added accuracy is negligible.

In the light of the above considerations, this section discusses how to obtain

a model of a real system and the corresponding power vs performances trade-off

problem, which presents an acceptable trade-off among the accuracy it can provide,

how easily can be generalized, the design effort it involves and the run-time over-

head it causes. I derive my technique by abstracting the platform and obtaining

an abstract description of its capabilities and resources. Then I model this abstract

description to obtain a solution for the power and performances optimization prob-

lem. The two terms “abstracting” and “modeling” are used in this context in the

following sense:

• abstracting an object means replacing it with a simpler object, which is func-

tionally equivalent and numerically consistent (either exactly or statistically)

with the original one, but it exhibits a behavior which is easier to model. An

abstraction is an operation which reduces complexity. For example, abstract-

ing a real network card device may means describing it as a simpler virtual

network card, such that the real and the abstract devices exhibit statistically-

similar working modes measured in activation latencies, resources utilization

and power consumption. The original object and its abstraction are function-

ally equivalent: in the example, both support the same working mode, both

exhibit a deterministic behaviors. Abstracting some working mode of a de-

vice, for example the connection speed of the network interface, may mean

replacing it with another description where some details (e.g. the required

frequency by the radio-cell’s clock) are not considered, or described at an

higher abstraction level (e.g. the network connection standard used). As just

suggested, introducing an abstraction at a given stage induces a simplification

not only on that stage, but also on its output information and, consequently,

on the following stages in the flow. This means that not only behaviors but

also information flows are subject to abstraction, and that abstraction of ob-

jects which belong to the same information-flow chain must be consistent

with each other. Device drivers already provide an abstraction level within

an OS. We need to identify how to eventually extend this abstraction so that

to be able to provide consistent informations to the up-standing optimization

framework;

• modeling an object which takes some input and yields some output means re-

placing it with a function which estimates the cost (in a general sense) of the

output from the cost of the input. Modeling is an operation which replaces

a behavior with a function which accounts for the cost of that behavior. The

model of an object is not functionally equivalent to the original object: a real

device works in a certain configuration using some resources and consuming
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some energy, whereas the model of a device yields an estimate of the work-

ing mode’s energy consumption and resources requirement. An application

require some QoS to the OS, whereas the model of the system yields an esti-

mate of the cost of executing that application on different configurations;

Here I examine a real embedded system architecture, and I define how is possi-

ble to give an abstract representation of its components which can be properly used

for our optimization problem. Finally, I present a model which allows to determine

the optimal system-wide configuration, considering both to available resources and

required QoS, based on a configurable global optimization policy. Figure 3.1 repre-

sent the details of where we apply abstractions and where the model lays. I will not

implement all the abstraction of a real system, since it would require the complete

definition (down to drivers level) of a platform, its devices, and the development of

associated drivers and local optimization policies. Such an implementation is not

useful for the purposed of this research. Instead, I do implement the system-wide

optimization model. This model is the fundamental goal of this thesis.

3.3 From Reality to the Abstract Layer

3.3.1 Resources Abstraction

A modern computing system comprises different resources at different abstraction

levels. Resources can be both hardware defined, such as a quantity of memory or

the throughput of a bus, or can have a more software-related meaning, such as the

system latency or the type of audio codec used by an application. Whatever its

nature is, generally a resource is provided by someone, in our context it is usually

an hardware device, and required or expected by another entity, either a software

application or another device. Requiring and correspondingly providing a certain

resource is strictly related to the Quality-of-Service (QoS) an application can offer:

quite often it happens that the better the quality levels required is the better the

performances we get but also energy consumptions increases, while reducing the

QoS level preserve energy with a corresponding performances degradation.

From the above considerations it is clear that considering resources is important

to tackle the problem of power and performances optimization. Since resources can

have different nature and representation it is convenient to abstract and represent

them use a single concept. This abstraction if the first one I introduce and should be

sufficiently general to represent any kind of hardware or software resource and to

track their availability and requests. Even if not all resource can be represented by

a continuous range of values and thus measured, surely at lease it is possible enu-

merate them. In instance the audio-codecs required by an application or provided

by an hardware accelerator can be represented by a finite discrete enumeration. For

this reason I adopted the term “metrics” to refer to them, more precisely I define:
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Figure 3.1: A real computing system, with many different devices and applications, is

so complex that it is not convenient to model all this complexity in order to

solve the consumption and performances optimization problem. Therefore

I perform an abstraction and modeling (see Sec. 3.2 on page 63). This figure

represent where abstraction and modeling are done.
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System-Wide Metric (SWM) - an abstract information shared among

all entities of a system, either devices’ drivers and applications. It

represents a “system’s resource”, which usually has a provider and

one or more clients, and it is used as a “global parameter” of the

optimization framework proposed. A minimum and maximum

value are associated to each SWM defining a range over which

the corresponding parameter can take either continuous or discrete

values.

In this definition I use “system’s resource” based on the quite general meaning

provided before, i.e. a resource can be both an hardware or software-related mean-

ing. The “global parameter” refers instead to the independence that such metrics

have with respect to both their clients and provides, i.e. there are not SWM which

are specific to a device or an applications, conversely they can be referred by any

other system entity.

Ad I will better explain on the following sections, these entities are used to pro-

vide a complete and consistent description of the whole system’s requirements that

could be deduced both from device’s drivers and from informations grabbed from

running applications.

Example of SWMs are: the latency of the whole system, the bandwidth of a com-

munication channel, the power state of the device, the environmental conditions

coming by sensors devices, etc.

A SWM can be classified with respect to two attributes which allow to better

define some propertied of the abstraction they represent:

Composition: define howmultiple requests on a SWM should be aggregated. Since

a SWM represent a resource it can have multiple clients, and thus it becomes

particularly important to define how to handle multiple requests of the same

resource. This is a typical resource management problem: a system-wide

metric represents a resource and quotes of it can be assigned to one or more

clients. To grant an always updated view of resources already reserved and

resources still available: multiple requests issued on the same resource should

be properly aggregated. This is where the composition attribute of an SWM

is used to understand how to properly aggregate multiple requests.

A SWM is defined to have an additive composition when a new request as-

serted on it should be composed to the current value via an addition. This

is the case of shared resources like bandwidths and throughputs where the

composition of a new value requested on them cannot ignore the current sit-

uation.

In instance, considering am hardware communication channel, if the system

is already using a certain amount of bandwidth on the channel and an ap-

plication express its own requirement of bandwidth, this request must be

composed starting from the current utilization level of the channel and sum

the new request to that level. This assumption allows to keep the system in a
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safe situation by setting the conditions to be able to react when a requests on

an SWM would cross the resource’s limit values.

A SWM is defined to have a restrictive composition when a new request as-

serted on it should be composed to the current value via comparison function,

i.e. maximum od minimum, eventually overwriting the current value of the

SWM with the new one.

his is the case of system-wide parameters like latency: if an entity requires

a certain system latency the value that should result after the composition is

given by the minimum between the current latency value and the requested

one. Hence, the aggregation is not performed via an addition but with an

overwriting of the old value.

Type: defines how a SWM behaves with respect to the corresponding QoS. I already

described at the beginning of this section how resources are strictly related

to QoS. The quantity of a certain resource, and thus the value of the SWM

abstracting that resource, has a certain relation with the corresponding quality

level. In instance a low-latency system is defined to be more responsive to

interrupt that a system with larger latencies. Thus, considering the ’system

latency’ a metrics of QoS, in this specific case the first system is better that

the latter. Conversely, if we consider ’power consumption’ as a QoS metrics

and in the previous example we experiment that the low-latency system is

more power hungry than the second, than from the perspective of the ’power

consumption’ metrics the second system is the best one.

A SWM is defined to have Greater is Better (GiB) type when higher values of its

parameter correspond to an increased QoS. In instance, the bandwidth on a

network interface is GiB because as much as bandwidth is available, as much

as QoS is achievable from the user perspective.

A SWM is defined to have Lower is Better (LiB) type when smaller values of

its parameter correspond to an increased QoS. In instance, the latency on a

memory transfer is LiB because a lower latency allows to have better perfor-

mances.

3.3.2 Architecture Abstraction

In the definition of SWM I used the attributes ’global’ to stress the independence

that such metrics should have with respect to any specific applications and hard-

ware. To better address both the ’scalable’ and the ’fine-details’ requirements of

modern computing system (Sec. 1.5 on page 19) I refined the concept of SWM to al-

low the abstraction of platform and architecture specific metrics while still not com-

promising the portability of the final solution proposed by the technique I defined.

To achieve this result, the framework I propose support two classes of system-wide

metrics:
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Abstract System-wide Metrics (ASM): are SWM completely platform independent.

Metrics belonging to this class grant portability to the proposed solution be-

cause, begin present in any implementation of the framework, can be used

by any application regardless of the actual hardware platform they will run

on. This metrics should be sufficiently abstract and thus they can be used

to represent high-level of abstraction resources, e.g. the network bandwidth

or connection mode, the backlight power-saving mode, the expected memory

usage, etc.

Platform System-wide Metrics (PSM): are SWM that could be added to the frame-

work to better model some platform-specific resource. Differently from the

previous metrics, the ones belonging to this class cannot be used by applica-

tions because of the reduce portability. Anyhow they are available within the

platform specific components of the framework. This allows to easily take ad-

vantages from the framework provided interfaces and optimization strategies

wherever it is considered profitable to improve the framework precision.

It is worth to notice that this to classes of metrics are functionally equivalent

from the perspective of the framework and the how it handle them for the opti-

mization purposes. The only significant difference is on who can access ad interact

with them. In the case of PSM this is reserved to some platform-specific code

(either in kernel or user-space), while ASM can be used by any entity and are espe-

cially useful to build a really portable solution since they define a framework’s API

which is completely platform independent. In the following sections I will explain

also how this two classes of metrics can be better exploited to built both ’scalable’

and ’fine-detail’ optimization solutions, by properly defining relationships between

metrics belonging to the two different classes.

The collection of SWM available on a system, both ASM and PSM, do not define

only a convenient abstraction to represent resources. As I will better explain in

the following sections, they identify also a multi-dimensional space which can be

properly used to state and solve a multi-objective optimization problem. From now

on, I define:

System-Wide Configuration Space (SWCS) - an N-dimensional space,

associated to a specific computing platform, and defined by the col-

lection of SWMs available on the considered platform, represented

by the set M = {mi}. The dimension N of this space corresponds

to the number of SWMs defined, i.e. N = |M|. A Cartesian coordi-

nate system can be defined in this space where each axis represents

a single SWM, i.e. an element mi ∈ M.

I use the term “system-wide” because effectively this space allows to represent all

the meaningful metrics defined by a system, and thus it allows to represent in a

single space all the available “system’s resources”, with the meaning defined at the

beginning of this section.
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3.3.3 Devices Abstraction

I already discussed about the structure of modern embedded systems, almost based

on SoC, which are composed by multiple different and complex devices, some inte-

grated within a single chip and others external. One of the purposes of an Operating

System is just to provide an abstraction of these devices to upper software layers. A

device driver manages the complexity of the corresponding device and integrate it

within the OS providing a standard interface towards the rest of the system, and to

the user-space especially. In instance, within the Linux kernel we can have basically

three kinds of device’s interfaces: char devices, block devices and network devices.

This abstraction allows both applications to transparently access and use devices

and at the same time grant portability and interchangeability. Thus: applications

do not depend on how a device exactly work, and it is possible to replace a device

with another of the same class, without requiring modifications to applications.

The kind of abstraction from bare hardware that device drivers interface pro-

vides, and its benefits with respect to user-space interaction, it is a concept that

I taken inspiration from when defining a new concept for the proposed solution,

more precisely I define:

Device Working Region (DWR) - an abstract representation of a de-

vice “working mode”, defined by the range of values that it sup-

ports for each “sensible” SWM. This representation is defined by

the corresponding device’s driver and identify a “functional map-

ping” between device-specific working modes and a region of the

SWCS.

A device generally could have different working modes, which correspond to

different resources usage and supported QoS. Working modes could be as simple

as ’device on’ and ’device off’, or even more complex such as all the different op-

erating frequencies of a CPU or the different connection protocols supported by

a 3G modem. What exactly are the working modes of a device is defined by the

corresponding driver. In the technique I propose this corresponds to extend the OS

interface that a device driver is required to implement in order to integrate within

the system providing a proper hardware abstraction. Actually, it is worth to no-

tice that the implementation of this OS interface extension in not mandatory for the

drives, and thus a device could still be used in a system implementing the technique

proposed even if it don’t define its DWR. Instead, of course the implementation is

required if we want the device to take advantages from the optimization frame-

work.

For the convenience of the following discussion, I define D = {dj} to be the set of

devices available on a platform, each one with a specific set of supported working

mode represented by a set Cdj = {cjk}. This means that: every device available in

the system is represented by an element dj belonging to the set D, and has a set of

available internal configurations represented by the elements of the corresponding

set Cdj . Thus cjk is the kth configuration of device dj. Using ∆ = |D| to denote
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the number of devices present in the system, I can represent the set of system-wide

configurations by:

Γ ∈ {Cd1 × Cd2 × . . .× Cd∆
} (3.1)

that correspond to the combination of the configuration of every single device

present in the target system. Of course not all of these system-wide configura-

tions are feasible, in the sense that do not correspond to a usable configuration

of the system, e.g. because of hardware dependencies between different subsys-

tems. I will discuss in the following sections how the proposed framework support

the identification of the feasible configurations among all these theoretical possible

ones.

A device is “sensible” to a SWM when its behaviors are somehow related to the

value that this metrics could assume. In instance a CPU with frequency scaling

support is sensible to a ’CPU frequency’ metric, which model the processor clock

frequency as a resource, or a network interface is sensible to the ’Internet Band-

width’ metric, which instead model the network bandwidth as a resource. Among

all the metrics that could be defined in a system, each device could be sensible

to just a subset of them; in instance the CPU may not be sensible to the ’Internet

Bandwidth’ metric. Again, as in the case of the working modes, the role to identify

sensible metrics for a device, is assigned to the corresponding driver.

Two kinds of relationship between a device and an ASM can be identified:

• a device is influenced by a SWM: when its behavior depends on the actual

value (or a range of values) of that metric or it is somehow constrained by

it. In this case a device dj depends on the SWM mi; I formally express this

relationship with:

in f luence(pi, dj); (3.2)

• a device affect a SWM: when its configuration, and thus the services it pro-

vides, somehow defines the value (or range of values) allowed for that metric.

In this case a SWM mi depends on the device dj; I formally express this rela-

tionship with:

a f f ect(dj,mi); (3.3)

These two kinds of dependency are not mutually exclusive, we can have devices

that are both influenced by a SWM and at the same time affect it. If we consider the

’Internet Bandwidth’ metric, for instance, this can be either a system requirement

for a Wi-Fi network device driver or a system constraint asserted by the device itself

based on its actual configuration. In the first hypothesis the device is influenced by

the metric, i.e. the device configuration is constrained by the required bandwidth,

while in the latter the metric is affected by the device, i.e. the available bandwidth is

constrained by the driver configuration. It is also possible to have a SWM depending

on a device while the contrary does not happen. In instance, this is the case of a

sensor device which state directly affect an hypothetical metric ’Environment Light’

while the contrary has not meaning.



72 Chapter 3. An Instane of the Tehnique

����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������

��������������������������������

��������������������������������
µ’

cj1

cj2

cj3

cj4µmax

µ1

µ2

UWR

mi

Figure 3.2: Example of working modes of a device dj mapping on a SWM mi. Each

working mode could maps on a single point (e.g., cj1), an upper/lower

bound (e.g., cj2/cj4) or a range (e.g., cj3).

The working modes of a device and its sensible metrics, identified by the driver,

are strictly related. More precisely, the sensible SWM are used to formally define

the device’s working modes:

DWR Mapping - the formal representation of a Device Working Re-

gion as a set of constraints, one for each device’s sensible SWM.

A constraint being a range of values, possibly collapsed on a sin-

gle value, an upper-bound or a lower-bound defined on a specific

SWM.

This mapping could be easily represented within the SWCS, where it identifies for

each device’s working mode a region, eventually unbounded, of this space.

Graphical representation of mappings

In Fig. 3.2 is represented a convenient graphical representation of the relation-

ships that we can have among the configurations of a device and a SWM mi, i.e.

affect(dj,mi). Generally each device configuration can support different values of

the metric, e.g. different settings of a network interface corresponds to various

bandwidth values available. Therefore we can identify a mapping between each

device internal configuration cjk and the metric mi. More precisely, a configuration

could correspond to a range of supported values for the parameter (e.g. c13), and

eventually just a single value (e.g. c11). Ranges can also be single-side limited. In this
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case, we could have a lower-boundwhen the configuration limits the minimum value

of the parameter (e.g. c14), or to the contrary, an upper-bound if the configuration

limits the maximum value of the parameter (e.g. c12). If we consider a specific value

µ′ for the metric mi, a configuration cjk of the device dj is considered feasible with

respect to that value if the value is inside the range defined by the configuration’s

mapping. If this condition holds we write:

satisfy(cjk, µ
′) (3.4)

It is worth noticing that mappings can overlap, e.g. if we consider the specific value

mi = µ′ in the figure, there are two feasible configurations: cj3 and cj4, thus:

satisfy(cj3, µ
′) ∧ satisfy(cj4, µ

′)

Mappings can also define unfeasible working regions (UWR) corresponding to ranges

of values for a metric which are not mapped by any device configuration, e.g. the

range of values defined by µ1 < mi < µ2 does not have a valid configuration, i.e.:

UWR : ¬satis f y(cjk, µ), ∀cjk ∈ Cj ∧ ∀µ1 < µ < µ2 (3.5)

I define: uwr(dj,mi) as the predicate that defines the UWR of the device dj with

respect to the metric mi.

Finally, to show how it is possible to represent DWR within the SWCS lets con-

sider the case depicted in Fig. 3.3 of a simple system with three devices: d1, d2 and

d3, and two metrics represented by m1 and m2. The mapping of device’s config-

urations with respect to each parameter is supposed to be the one represented in

Fig. 3.3a and Fig. 3.3b. It is worth to observe that, in this example, the device d1
maps only m1 but has no relation to the other parameter. On the contrary, d2 and

d3 have configurations that map on both of the metrics. We can also observe that a

device can map a parameter only for certain configurations and not for others, such

as in the considered example where d3 does not define a mapping on m1 for the

configuration c31.

It is possible to report mapping informations, represented by the diagrams of

Fig. 3.3a and Fig. 3.3b, in a single space representing the SWCS. In this example, it

will be a bi-dimensional Cartesian coordinate system whose axes correspond to m1

and m2. In Fig. 3.3 are represented the mapping defined by the working regions of

the device d3. As it is shown by the figure it is possible to associate each configu-

ration to a region, possibly unbounded, in the system-wide configuration space. In

the considered example device d3 defines three of these regions, of which one, i.e.

that associated to the configuration c31, is unbounded since, as previously noted, in

this configuration d3 does not impose any constraint on the value of the parameter

m1.
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Figure 3.3: Mapping between devices’ operating modes and system parameters: the ba-

sic mechanism that guarantees collaboration among drivers in achieving the

goal of control. Devices declare the mapping between their local configura-

tion and the system-wide parameters (ASM) by generating Device Working

Regions (DWRs). Figures (a) and (b) consider two ASMs on each axis and

show the mapping of devices configurations on such parameters. Figure (c)

depicts the resulting DWRs.
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3.4 The Model Layer

In this section I define how it is possible to exploit the abstraction defined so fare

to build a suitable model of a generic computing system which can be used to

efficiently solve the optimization problem of identifying the best trade-off among

power consumption and perceived performances.

The behaviors of a real system are defined by the configuration of its many de-

vices. These configurations change time by time, depending on the devices used by

user-space applications and the services required to them. Not all devices are al-

ways used simultaneously and the resources, either proper of each device or shared

among them, could constraint the service level that a device can support.

What I’m going to define now is a model of such a system. This model should take

as input the abstract information representing the system resources and capabilities,

exploiting the abstraction that I defined in the previous section. The output gener-

ated by the model should be an architecture independent representation of all the

feasible configurations available for the specific target system. This representation

should be sufficiently fine-detailed to keep into consideration important platform

specific aspects, e.g. devices inter-dependencies, but at the same time it should

be also sufficiently abstract to be used by any optimization policy for the system

configuration that we could imagine to develop at an higher level of abstraction.

3.4.1 Tracking devices inter-dependencies

In the application context that I consider, where the system is composed by mul-

tiple devices both within the SoC and outside of it, it is possible to have implicit

architectural and functional dependencies among different devices. This generally

imply that a particular configuration enabled on a device could have side effects on

another one, for instance when a device is a resource used by another, or when a de-

vice affect a metric which is also sensible for other devices, for instance the system

latency. More in general, a device configuration can have some sort of influence on

overall system behaviors and thus it could affect the services that some other device

provides or can expect from the system. In instance, on some embedded platform

it happens that slowing down the CPU frequency affects also the external memory

bandwidth, and this could have side-effects on others processing engines using the

same memory.

Inter-dependencies among different devices could be very difficult to identify

and track. When the dependency is defined by architectural design constraints and

has a hierarchical structure it is still possible to track them quite easily using ad-hoc

frameworks. A classical example of this kind of dependencies is the clock distri-

bution three within a SoC. In this case, the clock framework described in Par. B.2.4

on page 145 is an example of a quite simple framework that can be effectively used

to track hierarchical dependencies. Otherwise, if dependencies are not properly

tracked, they could lead to suboptimal system configurations or even worst to in-
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correct system behaviors.

Moreover, if we consider that devices can be added and removed at run-time, we

should consider also that inter-dependencies may be dynamic. Hence, in order to

improve driver adaptation to different working conditions and its portability among

different systems, it is preferable avoiding to have architecture dependencies em-

bedded directly within the driver’s code.

Use SWM to track dependencies. As I showed in the previous section, it is rela-

tively easy to identify how a system’s metric is related to the local configuration of

a device. Moreover, the usage of SWM is a mechanism that allows implicitly to con-

sider and to track devices inter-dependencies. This mechanism simply require to

define how the configurations of a device are related to the system metrics, which it

is easier than the effort required to trace all devices inter-dependencies in a central-

ized way. This approach thus introduce also a layer of abstraction among drivers

that both simplifies their development and also makes code more portable among

different architectures. Indeed, it is no more necessary to consider how a driver will

directly interact with all others in the system, and keep this information updated

as long as the system configuration changes over time, but it is required just to

statically define how a driver maps its configurations to a set of predefined system

metrics. Thus SWMs could be effectively used also as a mechanism to express and

track dependencies among devices.

To better explain how the mapping abstraction defined in Par. 3.3.3 on page 70

is suitable to tackle the issue of inter-dependency among device, I use another ex-

ample considering a simple system with only two devices d1 and d2 both having

a dependency on the same system metric mi. The configuration mapping, for in-

stance could be like the one depicted in Fig. 3.4.

Generally two devices could have a different number of configuration states and

different mapping between these states and the same system metric. In the exam-

ple depicted, device d1 has four configurations, with the mapping of c13 and c14
partially overlapping. Instead, the device d2 has only two states that define a dis-

continuous mapping on the system metric. It is worth noticing that the two devices

are not aware of each other. The only information shared somehow is the mapping

of their configurations on the metric mi.

Supposing that the initial system configuration is Γ1 = [c12, c21], then the system is

working on a configuration where mi can have the value µ1, i.e.:

satisfy(c12, µ1) ∧ satisfy(c21, µ1)

Starting from this configuration two different scenarios may happen: either a

device would be able to reconfigure itself, as a result of a local optimization policy,

or someone in the system requires to support a different value for mi, e.g. to have

mi ≥ µ2. Both these two events require a system reconfiguration: each device in

the system could have to update its settings in order to correctly support the new

working conditions.
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Figure 3.4: Example of two devices, d1 and d2, which are sensible to the same system

metric m1. Each device could have a different number of working mode;

here d1 has four states while d2 has only two. Every state “maps on m1”

defining the range of values for the system metrics that are feasible when

the corresponding device is in that state. The unfeasible working region

(UWR, ref Eq. 3.5 on page 73) is also represented.

Devices’ working mode change. Let us suppose that the optimization policy run-

ning locally to d1 find that there is the need, or simply the opportunity, to change

the configuration for instance to better satisfy the system requiring a different ser-

vice, e.g. we start to playback audio and since the audio-codec device must drive

the loudspeakers and mix input channels this affects the system metric m1 that need

to be updated. Let’s suppose that the driver identifies c13 as a possible new feasible

working mode. The mapping shows that this reconfiguration will have an impact

on the system property mi and thus will have a side-effect on the other device d2.

In this case it happens that:

range(c13,mi) ⊂ uwr(d2,mi)

that is: the range of the configuration selected by d1 falls completely within the

infeasible working region of d2, i.e. this last device can not be configured to adapt

to the new working conditions. When a situation like this happens, in order to

preserve the system in a FSC it is necessary that devices collaborate to find, if

possible, a new system configuration Γ where each one is able to satisfy the working

conditions. In the example considered the two devices may agree to move the
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system into the state Γ2 = [c14, c22].

How this agreement can be reached, and what are the mechanisms to support

this kind of cooperation among devices, will be better explained in the following

sections. What is important to better emphasize here is just that drivers are loosely

coupled: they are not aware of each other, but their mapping between their local

configurations and system metrics is the only information needed to support the

identification of system-wide configurations which satisfy all devices.

System metric’s change. Different working conditions, e.g. switching to battery

power supply, or changing user-space application, e.g. modifying the video quality

of a conferencing application, may require an update on some system metric. In this

cases, a change on one or more SWM can be adopted to enforce a new configuration

to devices that are required to have different behaviors. All the devices that are

sensible to an updated metrics may have to update their configuration to remain

compliant with the new working conditions. A proper identification and agreement

process, to be better defined in the following sections, must ensure that the new

system state will still grant a correct system behavior.

In the example reported in Fig. 3.4 we suppose that, while the system configura-

tion is Γ1 = [c12, c21], a lower bound constraint is somehow required for the metric

mi, let say it is required to be mi ≥ µ2. While driver d1 could grant the required

behaviors reconfiguring its device in c13, as observed before this configuration is

not compliant with the unique feasible configuration of d2 which is c22. Thus both

the devices will have to agree about a new system configuration like Γ2 = [c14, c22].

3.4.2 Modeling Feasible Configurations

I justified so far why it is important to properly track dependencies among devices

in order to keep the system in a feasible configuration. It is time now to introduce

a definition for this concept, thus I define:

Feasible System-wide Configuration (FSC) - a configuration of the

whole system where, given a certain value for each system met-

rics mi ∈ M, it is possible to find a DWR for every device dj ∈ D

which is feasible with respect to the given values for the metrics.

Formally:

FSC⇔ Γ = [c1,k1 , c2,k2 , . . . , c∆,k∆
] :

influence(mi, dj)⇒ satisfy(cj,k,mi), ∀mi ∈ M, j = 1..∆
(3.6)

According to this definition, when the system is working on a FSC we are

granted that each device in the system could be configured to operate in a work-

ing mode that don’t have any conflict with any other device. Thus, in a FSC any

inter-dependency among device is safely solved.

The main goal of the framework I propose is to identify a system-wide config-

uration which corresponds to the optimal trade-off between power consumptions
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and required performances. Thought a number of interesting theoretical techniques

could be defined to identify at run-time what is the optimal system configuration,

according to both the available resources and the required performance, every out-

come is useless if it cannot be actually applied to the real system because of implicit

inter-dependencies or hardware constraints ignored by the optimization policy it-

self. Indeed an optimized configuration cannot be identified regardless of its feasi-

bility. Thanks to their interesting property, the identification of all system’s FSC is

especially important for the definition of such a framework.

In the light of these considerations, the optimization technique that I propose is

based on the a-priori identification of all and only the system feasible configurations.

Thus, any optimization policy that will be developed on top of this framework, it

will be granted to operate on a set of real and valid configurations and consequently

each result can be safely applied to real system.

FSC identification and the proposed approach. As described in the overview,

where in Sec. 1.5 on page 19 is presented the fundamental approach of this thesis,

among the three main steps of the proposed technique the FSC Identification is the

really first one. This step allows to satisfy both the ’system-wide’ and ’fine-detail’

design requirements of modern systems. Indeed FSCs represent system-wide con-

figurations which take into considerations all the devices along with their resources

concurrently and, how I will discuss in the following, also the requirements coming

from all applications as well. Besides, the definition of FSC itself, which is based

on the abstractions of SWMs and DWRs, allows to consider platform-specific fine-

details such as device’s specific operating modes and inter-dependencies related to

architecture design constraints.

The identification of FSC is one of the main outcome of the model that I defined

on top of the underlying abstraction layer. This model use as input the DWRs

defined by device drivers and the SWCS defined by the set of SWM available in

the target platform. The output provided by this model instead is represented

by the set of all the FSC which can be identified. This model thus provides a

description of the feasible configuration of a real system according to the available

resources, the working mode of the devices sensible to these resources and all the

inter-dependencies that could occur among the devices. I will details how the FSC

can be used to solve the optimization problem in the following sections, in the rest

of this section instead it is worth to explain how all the FSCs can be identified, and

for simplicity I will do this using a graphical example.
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Figure 3.5: The FSC defined by the mapping of three devices on two system metrics m1

and m2. Each cdi area represents the i–th working region (DWR) of the d–th

device. If all DWRs are reported on the same graph, the existing overlap

can be highlighted. The overlapping of DWRs identifies a subspaces of the

SWCS that defines acceptability ranges for system-wide parameters for all

the corresponding devices.

Graphical identification of FSC. The FSC identification procedure can be effi-

ciently implemented with an imperative algorithm. For the detail of a possible

implementation I forward the reader to Par. A.5.2 on page 136. In this paragraph

instead, I will give an intuitive explanation of the identification procedure using a

graphical approach.

Lets consider the simple system initially described at page 72. The example con-

sidered only three devices and two metrics. In Fig. 3.3a and 3.3b was represented

the mapping defined by each device. Instead, in Fig. 3.3c, for clarity of exposition,

was represented only the DWRs for d3. If in this last figure I add the DWRs defined

by the device d1 and d2 along with the ones already present for d3, we get a repre-

sentation similar to the one depicted in Fig. 3.5. From now one I will refer to this

last figure.

First of all, it is worth noticing that generally we can obtain overlaps between

different DWRs, either between those of different devices or also referring to the

same device, e.g. as it is in the case of c21 and c22. Generally, the overlap of

two DWRs identifies a subspaces of the SWCS which defines acceptability ranges

for the system metrics. Thus, these subspaces correspond to a restriction of the



3.5 The Optimization Layer 81

acceptability ranges with respect to those defined by the individual overlapping

DWR. I define:

Overlapping DWRs (ODWR) - a regions of the SWCS in which they

overlap two or more DWRs corresponding to different drivers.

Therefore, on the base of this definition we must observe that, in the example de-

picted in Fig. 3.5, the region corresponding to the intersection between c21 and c22
is not an ODWR, since this two DWR belongs to the same device d2. But, if for the

same region, we consider also the overlap with the DWR c11 defined by d1 than this

could be considered an ODWR.

Deeper analyzing ODWR, we can notice that there are particular regions of the

SWCS where there exists the overlap for at least a DWR for each device. In Fig. 3.5

these regions have been represented with a white background. These regions are

particularly important since they identify ranges of system metrics that always cor-

respond to a valid configuration for each device; therefore they actually correspond

to the FSC as previously defined. Thus, I can give the:

Geometric definition of FSC - a FSC is geometrically represented in

the SWCS Cartesian space by an ODWR defined by the overlapping

of at least one DWR for each different device present in the system.

These regions are convex by definition.

In the simple example of Fig. 3.5 we can easily identify three FSC corresponding to

these combinations of devices configurations: FSC1 [c11, c22, c31], FSC2 [c12, c21, c32],

and FSC3 [c12, c23, c32].

3.5 The Optimization Layer

In this section I define how it is possible to exploit the model defined so far to

support both the definition and the usage of a set of policies to efficiently solve our

optimization problem, i.e. identifying the best trade-off among power consump-

tions and perceived performances.

A real system, especially those designed for multimedia mobile applications, are

subject to frequently changing working context. The usage of different applications,

the changes in resources availability (e.g. battery or wall powered) or environmen-

tal operating conditions (e.g. different network connections availability), usually

require a system reconfiguration to keep in pace with new usage requirements.

A system reconfiguration could be triggered also by a change in the optimization

strategy. For instance, passing from a power aware to a performance boost strategy,

in response to an increased power budget (e.g. the device has been connected to

the wall plug), usually change the optimization target and thus the system config-

uration has to be updated accordingly.

The optimization technique that I propose exploit the system view offered by

the FSC model and define a suitable strategy to assign a “weight” at each feasible
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configuration, according to the running optimization policy. How this weight could

be defined is the subject of this section, the basic idea anyway is to be a sufficiently

abstract metrics to easily adapt to a generic multi-objective optimization. The run-time

tracking of application requirements has been another goal of the optimization policy

I defined. One more time, the abstract system model based on the concept of FSC

and their representation in the SWCS defined so far, has been properly exploited

to translate application requirements on constraints for the problem of searching

the optimal configuration. Indeed, in this section I will show how it is possible

to formulate the optimization problem as a constrained optimization problem and

then how to solve it using an empirical but efficient approach.

Before to digg into the optimization layer details, it is worth to start with an

overview of the proposed control solution, which at the end it is configured as a

classical hierarchical distributed control system.

3.5.1 Hierarchical distributed control

This work advances the proposal for a control and optimization approach that im-

proves both implementation simplicity and portability without reducing too much

the control accuracy. Highly efficient and precise centralized controls solutions,

such as DPM [97] and many others among those reviewed in Sec. 1.4 on page 16),

exhibits some limitations mainly related to their implementation complexity. To

overcame these limitations the technique I propose use a “divide and conquer”

approach by splitting the system-wide control problem into two different sub-

problems: low-level devices local controls and an higher-level distributed agree-

ment control. An overall view of the proposed solution is depicted in Fig. 3.6.

In this model a driver can exploits the fine-detail knowledge on the capabili-

ties of the controlled devices to run a local optimization policy. This policy allows to

fine-tune the devices’ configuration based on the system requirements and working

conditions. It is worth to notice that drivers are usually autonomous entities devel-

oped independently from other system components. Nevertheless they should be

aware on the possible side effects that each local configuration could have on other

system components. The mode I propose simplify the implementation of such an

awareness with the introduction of the quite simple and sufficiently abstract con-

cept of SWM. These metrics not only allows to decouple the local policies among

them but also they introduce an abstraction level between local policies and the

higher optimization layers. Indeed, thanks to these metrics, drivers can indirectly

share informations by simply defining: a) how each local configurations could af-

fect these parameters and b) when an update on these should influence the device

configuration.

This exchange of informations allows not only the enforcing of system require-

ments down to local policies, but also the “collaboration” among devices in order to

move the system towards an optimized working configurations. This cooperation

among local policies is transparently achieved with a distributed agreement process,
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Figure 3.6: Hierarchical distributed control. The proposed solution splits the control

problem in two sub-problems: drivers’ local control and global agreement

manager. The drivers exploit fine-detail knowledge of controlled devices to

fine tune them according to a local policy. The management of devices inter-

dependencies and QoS requirements instead is handled by a distributed

agreement manager. This is implemented within an higher-abstraction level

framework which exploit a model of the underlying system based on the

description provided by FSCs.

which is the highest optimization level of the proposed hierarchical control. The

global optimization policy implemented by this higher abstraction level exploits

both low-level informations, related to resource availability and hardware capabili-

ties, and also high-level informations, related to applications’ QoS requirements.

All that reasoning motivate the classification of the proposed techniques as hi-

erarchical distributed control system, with a global system-wide optimization policy

in the upper layer and many local fine-tuning optimization policies in the lower

layers. The space and time allowed by a doctoral thesis permit the complete anal-

ysis of just one of these many layers. I choose to focus my attention on the upper

layer and thus in the rest of this section I discuss the definition of a global opti-

mization policy. This choice has a double motivation, on one hand it is the more

interesting part, on the other many local optimization policies have already been

investigated. The upper layer thus is the more interesting, also because, being the
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more abstract layer, the designed solution will be completely platform independent

and thus it can be directly implemented within the framework I developed. Instead,

lower layer’s policies must be strictly related to the devices and thus they require a

detailed analysis of each specific device class, which could itself require a complete

thesis work. Moreover, as I documented in the prior-art Sec. 1.5 on page 19, many

researches have already focused on the definition of local optimization policies for

different classes of peripherals. All these theoretical contribution could be easily

integrated within the proposed framework, just when a proper global optimization

strategy has been defined.

3.5.2 A theoretical approach to the optimization

The distributed control optimization problem described so far, can be conveniently

reformulated using an appropriate formal model. A transposition of this type not

only provides a rigorous description of the problem and a formal proof of the

solutions quality, but also allows to more easily identify possible alternative ways

for its solution by exploiting the particularities of the formulation instance. To this

purpose, I decided to use Linear Programming. This choice has two main reasons:

from one hand, the problem formulation that I’m going to describe was foreseen to

easily fit within an LP model, and from the other, LP is a well known and adopted

optimization framework.

Before proceeding with the description of how we could move towards an LP

formulation of the optimization strategy, it is worth to notice and stress a point.

Even if it could be possible to effectively solve an LP problem to identify the opti-

mal system configuration, I don’t want to adopt that approach in the framework I

propose. I am aware that it exist a number of libraries providing highly optimized

algorithms for the solution of different flavors of LP problems. However, my target

is just to show the it exist an established formalism for the verification of existence

of a solution and eventually its identification. Indeed, if I’m able to design a differ-

ent strategy which can be proved getting to the same results, than I’m granted that

also the solutions identified by this last strategy are optimal, without any additional

burden of proving. This is an important point to stress, because the actual imple-

mentation of the optimization framework I proposed is intended to be integrated

within the Linux kernel where, for reasons of efficiency and codebase generality, it

is not present any LP solving library and much probably it will never be integrated.

A second reason, but still not less important, for this my choice is the foreseen pos-

sibility to provide an hardware acceleration support to the optimization technique.

In the light of these considerations: for the effective design of the solution strategy,

which is the real subject of the following subsection, I choose to stick to the “design-

for-changes” paradigm and thus the implementation flexibility will be a key target

for the actual definition of the solution strategy.

The graphical representation of FSC described on Par. 3.4.2 on page 80 is par-

ticularly convenient to state our optimization problem in terms of LP. A problem
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of linear programming requires the identification of an optimal solution, given: a

solution space, a set of constraints on it and an objective function. Let me review in

details each one of these elements.

The solution space representation

The optimization space of the LP problem is represented by the SWCS. This is a

quite intuitive translation if we consider also the definition of SWM, given on page

67, and that I already observed that these metrics identify also a multi-dimensional

space which can be properly used to state and solve a multi-objective optimization

problem. Within this space an LP formulation require to identify a particular region

which correspond to the “valid solutions locus”, i.e. the region of point which are

the feasible solutions of the problem among which is the optimal solution. Let’s

show how such a region can be represented within our model.

We already know that the solution of our optimization problem is represented

by a point in the SWCS. We know that the regions corresponding to FSCs identify

the only valid combinations of device’s configurations of the system. Therefore, the

solution of our optimization problem must be a point in the SWCS that belongs to

one of its sub-regions defined by the FSCs. It is worth noticing that:

Def. 3.1: Every point within a single FSC’s region identifies a

unique solution for our optimization problem. Indeed, each region

represents a well defined combination of device’s configurations.

For instance, in Fig. 3.5 on page 80 every point belonging to FSC1 always corre-

sponds to the solution: [c11, c22, c31].

This means that every point of a FSC’s region is equivalent in terms of the prob-

lem solution. We can then assume that the optimal solution of our problem always

belongs to points that define the border of a FSC’s region. This assumption is par-

ticularly interesting if we consider that the optimal solution of a well defined LP

problem is always on the border of the solution space. From these considerations,

it is easy to be convinced ourself that:

Def. 3.2: The Solution Space (SS) of our problem is defined by

the smallest convex polygon that contains all the valid FSC’s. This

region is known in LP as convex hull.

Thus, in the considered example the convex-hull is depicted in Fig. 3.7a.
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Figure 3.7: Linear Programming formalization. a) FSCs are the only regions of the

solutions’ spaces that include system-wide configurations valid for each de-

vice. Every point within a single FSC region identifies an unique solution.

b) Due to system evolution, additional constraints on SWMs can be asyn-

chronously asserted by devices. They are generally represented by a surface

in the N-dimensions space. In the above example, where a two dimensions

space is considered, they correspond to a simple line. c) Constraints shrink

the solution space since some FSCs becomes invalidated.
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The constraints representation

In a generic LP problem the convex-hull’s border is defined by the constraints im-

posed for the resolution. In our particular situation such constraints are not ex-

plicitly given but instead are implicitly defined by the identification of the FSCs.

Indeed, starting from the FSC we can go up to the equations of the constraints that

define the convex-hull. Nevertheless this is not a limit but just a different way of

formulating the constraints of the problem to be solved. Seen from another per-

spective, this means that knowing FSCs is fully equivalent to know the constraints

that define the convex-hull within which to seek the solution. For that reason, I

define:

Def. 3.3: Implicit Constraints (IC) - the set of constraint on the

SWCS, which are deducible by the knowledge of FSCs, that iden-

tify a convex-hull corresponding to the smallest convex polygon

containing all the FSCs.

Discussing about the application context and its nature of being a discrete event

system, on Par. 3.1 on page 62, I observed it may happen, at some point in time, that

it is necessary or perhaps just possible to change the system configuration. Once

that happens, the identification of a new FSC will have to take into consideration all

the requirements on the system metrics which could be asserted by either applica-

tions and drivers. These requirements, in the case of problem’s formulation using

LP, are just like additional constraints on the solution space. To distinguish these

constraints form the previous ones, I define:

Def. 3.4: Explicit Constraints (EC) - the set of constraints on the

SWCS, which represent the requirements, that are expressed by

both user-space applications and drivers, on the values of SWMs.

An example of explicit constraints is shown in Fig. 3.7b, where three constraints v1,

v2 and v3 have been introduced to require that a valid system configuration satisfies

these inequalities:

(p1 ≤ π1M) ∧ (p2 ≤ π2M) ∧ ((p1 + p2) ≤ (π2M + π1c))

Considering constraints of this type does not invalidate the definition of solution

space, previously stated on page 85. But a better definition of what I mean by “valid

FSC” is still required:

Def. 3.5: Valid FSC (VFSC) - a FSC, or a restriction of it, which is

compatible with the current requirements on SWM, i.e. the con-

straints on the SWCS.

It is worth noticing that, according to this definition, an FSC is valid even if a

constraint partially cut it. In this case the what is valid is its restriction, which

is geometrically represented by the subtraction from the FSC region of the space
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invalidated by the constraint, and considering the remaining space as the new FSC.

A formal definition for that is:

Def. 3.6: Restricted FSC (RFSC) - with respect of a constraint vi, is

the new FSC that we obtain by the intersection of the original one

with the validity space defined by the constraint vi.

It is worth to notice that, according to this definition, the restriction with respect

of a constraint, of an FSC which is not cut by that constraint, is equivalent to the

original FSC. This means that during the identification of the convex-hull, for the

formulation of the LP problem, it is simply enough to consider only the restriction

of all FSC with respect to any current constraint.

For instance, in the situation depicted Fig. 3.7b, the FSC3 appears no longer

valid for the definition of convex-hull and thus it should not be considered. The

new convex-hull to solve the LP problem is represented in Fig. 3.7c and is built

considering only the regions associated to FSC1 and FSC2, that are still valid with

respect to explicit constraints.

Objective function identification

The last element to define to complete the formulation of our optimization problem

in term of LP is the identification of an objective function. In linear programming

the objective function is defined as a vector in the solution space that identifies the

optimization direction. The optimization direction lets us explore the solution space

in order to identify the optimal working points. It is worth to notice that this cor-

responds at performing a multi-objective optimization. Indeed, in the exploration

of the solution space for the research of the optimal configuration, we consider

simultaneously multiple directions, each one representing a goal.

By their definition, system-wide metrics represent resources and thus are strictly

related to QoS levels. For instance, we may consider that m1 is the ’CPU latency’

metrics, representing the maximum time allowed to respond an interrupt, while

m2 is the ’Bus bandwidth’ metrics representing the bandwidth required in the sys-

tem bus. Optimize the system, in this specific example, may require to find a

configuration which best satisfy this system-wide optimization goal: reduced CPU

latency consistently with having the highest bandwidth available on the system

bus. These abstract requirements define each one an optimization goals for each

individual metrics, and thus in turn they simply define a direction in the SWCS

that can be represented by a vector. These vectors can be mutually composed in

order to identify the overall system optimization direction, and thus representing

the aforementioned system-wide optimization goal. Moreover, we can also imagine

that we want to maximize the performance of our system using different efforts on

each optimization direction. In this case, the simple usage of a “weight” associated

to each single SWM allows to fine tune the optimization direction, giving greater

importance to certain metrics than others.
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Figure 3.8: Objective function and optimal solution. Objective function is represented

through a vector, opportunely oriented to indicate the direction of the opti-

mal solution which depends on the QoS metrics to be optimized.

These concepts are represented graphically in Fig. 3.8 where I depicted both

vectors −→o1 and −→o2 , corresponding to the optimization objective of each individual

metrics of the example, respectively: m1 and m2. In the same figure −→og , which is

the vector obtained by the composition of the previous two, represent the global

objective function. This last vector identifies an optimization direction, and thus I

define:

Def. 3.7: Improvements Direction Vector (IDV) - the vector −→og , rep-

resenting the optimization requirements, which define a direction

in the SWCS that correspond to improving solutions, with respect

to these optimization requirements.

The solution of the LP problem is obtained from the convex-hull, being defined by

implicit and explicit constraints, considering the direction defined by the objective

function. The points of the convex-hull that are farthest in the direction indicated

by the optimization vector −→og are the solution of LP. In the same example of Fig. 3.8

the direction of −→og indicate that O is the solution to the LP problem. It is worth

noticing that if the explicit constraints change so that FSC3 is not excluded in the

construction of the convex-hull, then the optimal solution, considering the same

objective function, would becomes O′
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Figure 3.9: Mapping of LP solution back to the original problem. The solution of an

LP problem is always located on the border of the convex-hull, and can be a

vertex (e.g., A) or a segment (e.g., AB). Whatever the solution is, it identify

always at least one FSC, which are indifferently the optimal solutions of the

original system-wide configuration problem.

From LP solution to the optimal configuration

The solution to a LP problem is proved to be always on the border of the convex-

hull, and it corresponds to a vertex if we have a single solution or to an entire

segment of the polygon in case of multiple solutions. However, our specific problem

requires the identification of one or more FSC that are optimal with respect to active

constraints. Therefore, it is required to understand how translate the solution of the

LP problem, which I described so far how can be obtained, on a FSC among those

defining the convex-hull.

It is easy to convince ourself that every vertex of the convex-hull belongs to

exactly one and only one FSC, this come from the definition of convex-hull. Thus,

if the solution to the LP problem corresponds to a single convex-hull’s vertex, the

solution of our problem simply corresponds to the FSC which the vertex belongs to.

For example, if we consider that the solution of the LP problem depicted in Fig. 3.9

is the single vertex A then this means that the only feasible configuration for our

system is the one corresponding to the FSC2.

Instead, when the solution of the LP problem corresponds to a segment of the

convex-hull we have two possibilities. If this segment belongs entirely to a single
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FSC region, then we fall back in the previous case, and this configuration is the op-

timal one. Otherwise, the solution’s segment will combine two different FSCs and

this means that both configurations are optimal. Indeed, in this case the solution

of the LP problem states that all points of the segment are equivalent in terms of

objective function, and hence the two FSCs turn to be equivalent.

This two cases are depicted in Fig. 3.9: if the solution is the segment AB, then we

still have that FSC2 is the only optimal system configuration, otherwise, if for in-

stance the solution of the LP problem turns to be the segment BC, then both FSC1

and FSC2 are equivalent optimal configurations.

3.5.3 An empirical approach to the optimization

The word empirical denotes information gained by means of observation, experi-

ence, or experiment2. A central concept in science and the scientific method is that

all evidence must be empirical, or empirically based, that is, dependent on evidence

or consequences that are observable by the senses. This is exactly the approach I

adopted: starting from the observation of an hypothetical optimization strategy,

implemented according to the theoretical approach previously described, I want

to derive an implementation which is empirical equivalent to it. The reason for

such an approach, as I discussed in Par. 3.5.2 on page 84, is mainly related to the

flexibility of the implementation.

In the overview chapter, talking about the fundamental approach of this thesis

and with the support of the Fig. 1.5 on page 20, I described how, starting from the

focused application context and the corresponding requirements for the design of

modern embedded systems, it is possible to derive an optimization technique which

is fundamentally based on three steps: FSC identification, ordering and selection.

Now I have all the elements to better explain this claim.

The target of the optimization layer is to identify at run-time what is the best feasible

system configuration. I already observed that all and the only possible solutions to

the optimization problem are represented by the FSCs, which define an abstract

representation of the target system and are identified by the model layer. Therefore,

the target of the optimization layer could be refined into: identify at run-time what is

the best FSC among those offered by the model layer.

The identification of all the FSCs provided by the model layer is the first step of

the proposed optimization technique. How much a certain FSC is a good solution

depends on the optimization objectives, and thus on the running global optimiza-

tion policy. This represents the second step of the proposed optimization technique.

And finally, whether a certain FSC is feasible or not at run-time depends on the set

of active constraints, that is whether it is valid or not according to the definition

given on page 87. Thus this is exactly the third step of the proposed technique.

Let’s review now the details of each one of these steps.

2Definition from “The American Heritage Dictionary of the English Language, Fourth Edition”
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I STEP – Platform-specific FSC identification

According to the proposed technique described so far, the identification of FSC is

in charge to the model abstraction layer. However I prefer to detail the approach

implementation in this section, not only for presentation consistency with the next

two steps of the proposed technique, bu also because it is itself subject many dif-

ferent optimizations. Indeed, even if it is possible to identify an initial simple but

still effective implementation for this step, as I will motivate and discuss later, it is

also possible to further optimize this step thus improving the overall performances

of the complete solution.

The FSC identification is the first step of the optimization working flow, and it is

necessary to build an abstract model of the real system which define a knowledge

base that the upper layer could exploit to manage and supervise the actual platform

optimization. The main goal of this step is to acknowledge data coming from de-

vices and then generate the set of FSCs on the base of these data. A driver, usually

when it registers itself within the OS, defines the DWR of the controlled devices

and publics this information. The model layer collect these informations from all

the registered devices and exploit them to synthesize the FSCs which will then be

available to the upper-layer for the optimization of the platform.

A simple algorithm for the FSC identification is based on the depth-first search

on a tree-like data structure. I forward the reader to the relevant appendix describ-

ing the proposed implementation for the full details on how this is done. What

is important to comment here instead is the overhead of this step. Indeed, one of

the requirements for the design of new generation control solutions is to have very

low-overhead at run-time.

The complexity of the algorithm proposed, which is actually analyzed in the fol-

lowing chapter, is well known to be exponential. Of course, one may complain that

this corresponds to considerable drawbacks on both the solution scalability and

even more important on the energy overhead introduced by this computation. Does

we risk to spend more power to prepare the ground for the optimization than the power

which could be saved by the following optimizations? This is a licit question and thus by

counter some observations are worth to be done.

The complexity and the consequent time and energy overhead introduced by the

FSC identification, is mitigated by the fact that this operation is just seldom performed.

It is actually required only when a new device register itself int the OS. This hap-

pens usually at system boot time, when most of the available devices are scanned

by drivers and properly initialized. Otherwise, the identification is required when a

new device is hot-plugged into the system. Anyway, even on desktop and laptops,

these operations are usually quite infrequent and it will be demonstrated that they

have a reasonable time frequency which is order of magnitude bigger than the time

required by the identification processing. This means that the energy required to

build the model is foreseen to be well compensated by the following optimization

advantages.
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Optimization opportunities Moreover, if we specifically consider an embedded

system like a smart-phone or a GPS navigation system, it is reasonable to think that

all devices are present from the beginning and in most of them it is even impossible

to hot-plug new ones at runtime. Considering this specific scenario, a rich set of

optimizations can thus be easily identified to mitigate even more the complexity of

identification stage.

Boot-time identification – The identification can be performed just when the sys-

tem boots. The set of FSCs identified can than be available for the entire duration of

the working session of the device, until a new reboot is done, since we are granted

that no other devices can be added or remove from the system.

One can complain that this approach increases boot time, which is a metric that

nowadays influences QoS and the user experience. Indeed one of the main topic

of current industrial research in the optimization of modern Operating Systems

like Linux, especially when used in embedded multimedia mobile environment, is

the reduction of the delay between the power-on and the moment when the user

interface is available with a device which is fully functional.

Considered this specific aspect, it is worth to notice in advance that even the

time required for the identification of quite complex scenarios, according to the ex-

periments presented in the following chapter, is at least one order of magnitude

slower than the most aggressive nowadays boot-up requirements. Anyway, a sim-

ple and effective solution to this problem is to run the identification process only

when the user interface has been already loaded. The FSCs identification can run

in background, without compromising system response, and take control on the

system configuration only once a system model has been properly identified.

Off-line identification – In the specific case of embedded system without hot-plug

support the complete set of FSCs could be generate just one time, eventually off-

line when a new product is designed and tuned. This set of stable FSCs can than

be stored in persistent memory and simply loaded at boot-time. In this way the

overhead introduced by the identification algorithm is actually equal to zero.

Hardware assisted identification – Another interesting opportunity, which is fore-

seen as a future extension of this work, consists in implementing the algorithm with

a dedicated hardware companion chip that could accelerates not only the identifi-

cation of FSCs but also provide support for the other two steps of the proposed

technique. This possible extension will be better discussed in the relative section of

the concluding chapter. Such a solution could be especially interesting for emerging

SoC based embedded devices with a wide number of devices and high need of very

aggressive and low-overhead optimization.
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II STEP – Policy-based FSC ordering

This is the first step which is properly related to the run-time system optimization.

In the previous theoretical approach I discussed how LP can be used as a suitable

mechanism to identify the optimal solution. If we look at how works some of the

main algorithms for the efficient solution of linear programming problems [98] we

could get some inputs on how the solution is identified. Basically the idea is that:

starting from a vertex of the convex-hull which identify a generic feasible solution,

we move along the border of the convex-hull in the direction that better improve

the solution. This step is repeated until the solution cannot be further improved.

Thus the optimal solution could be found by successive refinements, thanks to the

convexity of the explored border. What I propose for the actual implementation of

the technique is something similar to that reasoning, but with a simple variation:

the successive refinements are pre-computed once the optimization objectives have

been defined for each FSC.

More precisely, the proposed technique computes the goodness level of each FSC

according to the optimization objectives. This is a quite simple result to achieve if,

according to the discussion on how to use the LP solution given on page 90, we

remember that:

a) the optimal LP solution is always found on a vertex of a RFSC

b) every point within a FSC corresponds to the same system configuration

Indeed, to describe the goodness of the system configuration represented by a FSC,

we have simply to associate to each FSC a unique goodness level which is equal

to that of one of its vertex. This value is than used to generate a list that define a

partial-ordering of all the feasible configurations. Thus I define:

Ordered FSC list (OFL) - a list defining a partial-ordering of all the

FSC, with respect of their goodness level defined by a certain opti-

mization policy.

The OFL can be exploited by a mechanisms which represent something similar to

the successive refinements algorithm previously described. Indeed, starting from a

generic element of the OFL, and moving towards the proper direction we always

get to an improved system configuration. This list as another important property:

it allows to compare two RFSC and find which is better between them, with respect

to the optimization policy used to build the list, by simply comparing their position

within the list.
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Figure 3.10: The goodness levels of a FSC. Given a FSC (e.g., FSC2) and an objective

function (e.g., og), each feasible configuration define two static goodness

levels: a best-effort and a granted level (e.g., b2 and g2). Moreover, once

a constraint is asserted at run-time (e.g., v1) the actual goodness level of a

restricted FSC could change, this is the dynamic goodness (e.g., d2).

Best-effort vs Granted QoS ordering. So far, I described how it is possible to

build a list of pre-ordered RFSC, by simply associating to them a goodness level

which is equal to that of one of its vertex. The problem now is to define how to

choose this vertex. The approach based on the LP comes to our aid once again.

Every RFSC, by its definition, is represented by convex region in the SWCS. Thus,

considering a generic objective function: the corresponding direction in the SWCS

identify exactly two points for every RFSC. Lets have an example, considering the

simple scenario depicted in Fig. 3.10, where in a 2D SWCS we have only two FSC.

The nearest point in the optimization direction, named gi, belongs to the set of ver-

texes G, and it identifies a granted QoS configuration. For example, if in the figure we

consider FSC2 and the corresponding system configuration, we are granted that this

configuration will ensure the QoS level represented by the vertex g2. Indeed, any

single configuration point within FSC2 will have for sure a goodness level greater

than that of is representing vertex. Reversing this reasoning, the point which is

farthest in the optimal direction, named bi, belongs to the set of vertexes B, and it

is easy to convince ourself that it identifies a best-effort QoS configuration.

In the light of these considerations, we understand that in the definition of the

optimization policy, along with the weight that can be associated to each SWM,
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to define the orientation of the objective function’s vector, it is possible to define a

further attribute. This attribute could express how to choose the representing vertex

of each FSC. Not only it is possible to choose between a best-effort or a granted

approach, but potentially it is also possible to configure alternative strategies, e.g. a

weighted average between this two bounds.

Dynamic goodness. A further observation is worth to be done regarding the FSC

ordering while considering run-time constraints. It could happen that at run-time,

some application or driver requirement define a constraint in the SWCS which par-

tially cut a FSC. I defined RFSC the restriction of a feasible configuration defined

by constraints. What is important to consider is that a restriction could impact on

the FSC ordering. Indeed, the goodness level of a RFSC can be different from that

of the original FSC. This difference depends also on the method adopted for the

choice of the representing vertex. To properly handle these situations, I define:

Def. 3.8: Dynamic goodness - the QoS level associated to a RFSC; it

can never be greater than the corresponding static goodness which

is the goodness level of the original FSC.

For example, lets consider still the simple scenario depicted in Fig. 3.10, and

RFSC2,v1 , which is the restriction of FSC2 with respect to the constraint v1. In the

case of granted QoS ordering the dynamic goodness is not affected and thus the

ordering is not changed by the consideration of v1. Vice versa, in the case of best-

effort QoS ordering the dynamic goodness of RFSC2,v1 no only is lower than that of

the original FSC2 but it is also lower than the static goodness of FSC1. In this case

thus the ordering of FSCs is affected by the assertion of the constraint v1.

In order to be empirical equivalent to the LP theoretical approach, the dynamic

goodness effect should be considered by the implementation of the proposed tech-

nique. However, I forward the reader to the section describing the implementation

details, where it is explained how this effect could be efficiently handled without

compromising the effectiveness of the a-priori FSC ordering based on the static

goodness.

Finally it is worth to notice that this step is required only when the optimization

policy is changed. Indeed, a change to the optimization goals, implies a modifica-

tion of the objective function and of the corresponding optimization direction in the

SWCS. Thus the static goodness of each FSC generally change and this could lead to

a different static ordering of the feasible configuration. Beside being the optimiza-

tion policy change a relatively infrequently event, the complexity of the algorithm

for the FSC ordering is essentially linear in the number of FSC. Indeed, the time

and energy overhead corresponding to this operation could be easily compensated

by the benefits that the pre-ordering introduce at run-time as I explain discussing

the following step. Moreover, the hardware extensions sketched in the description

of the previous step, are foreseen to be effectively used also to speed-up this step.

Once again
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Figure 3.11: Constraint assertion and FSC selection. When a new constraint asserted

does not shrink the convex-hull (a) than the FSC selection step can be

avoided. Whenever instead the convex-hull is shrunk (b) than the dynamic

goodness of some FSC could be changes and thus a new selection is re-

quired.

III STEP – Run-time FSC selection

This is the last step of the proposed optimization strategy and its goal is to identify

the optimal FSC according to the set of explicit constraints which are active time

to time. Thus this is the most frequently executed step because it must run almost

every time a new constraint is asserted. It is important to stress the “almost” adverb,

since it could effectively happens that in consequence of a new constraints it is not

actually required to select a new FSC. This step is required once the convex-hull

shrank.

The assertion of a constraint not always correspond to a shrinking of the convex-

hull. Indeed, in our specific context the definition of solution space, given on

Par. 3.5.2 on page 85, defines the convex-hull to be the smallest convex polygon

that contains just all the RFSC, regardless of the active constraints. We could iden-

tify at least two different scenario on which the assertion of a constraint does not

shrink the convex-hull:

a) the assertion of an additive constraints when the convex-hull identifies a re-

gion which is already smaller that the one defined by the explicit constrains

b) the assertion of a restrictive constraint which is less binding than the one

previously asserted

For example, considering the scenario depicted in Fig. 3.11a, the first case happens

happens when the constraint v1 on the additive SWM p1 is being changed to be

v2 but without actually modifying the geometry of the convex-hull. The second
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case instead is when a new constraint v4 is asserted on the restrictive SWM p2
where another constraint v3 is already asserted, but with the new one which is less

restrictive than the one already present.

In both of these cases, the net effect is that the set of valid FSCs is not modified and

thus the convex-hull still remain the same. In this case, there is no needs to select a

new solution because the one presently selected still remain the same.

In all others situations, the assertion of a constraint produces a modification

of the convex-hull and thus, to preserve the empirical equivalence with the LP

theoretical formulation, it is required to run the FSC selection step. Actually, even

in this case we could identify two different on which the assertion of a constraint

does shrink the convex-hull:

c) the additional constraint completely invalidate the previously selected FSC

d) the additional constraint only reduce the previously selected FSC

For example, considering the scenario depicted in Fig. 3.11b, the first case hap-

pens when the constraint v1 on the additive SWM p1 is being changed to be v2
which completely invalidate FSC1. The second case instead could be when a new

constraint v4, asserted on the same metrics as the previous one, produces only a re-

striction of the FSC1. This time the convex-hull is modified but the current selected

configuration, i.e. FSC1, is not invalidated. What happens in this case is just that

the dynamic goodness of FSC1 change and this value, instead of its static goodness

level, must be considered in order to find the next optimal configuration.

Finally, we have to observe that similar reasoning to that done so far could be

done also in the case of constraints removal. In these situations: an enlargement of

the convex-hull could be originated when previously invalid FSCs turns out to be

valid again.

In the light of these consideration, we understand that FSC selection is a quite

tricky subject, with many different conditions to be considered in order to satisfy the

empirical equivalence. However, I demonstrated that the problem could be tackled

and moreover quite efficient deterministic solutions can be implemented exploiting

the FSC ordering provided by the previous step. Indeed, the partial ordering, once a

FSC is invalidated, allows to limit the subspace to be explored near the old solution

in order to find the next optimal configuration.



Chapter 4
Results, Conclusions and

Developments

“The scientific man does not aim at an immediate

result. He does not expect that his advanced ideas

will be readily taken up. His work is like that of

the planter – for the future. His duty is to lay the

foundation for those who are to come, and point

the way. He lives and labors and hopes.”

Nikola Tesla

T
his chapter reports experimental results which show the viability and effec-

tiveness of the power and performances optimization technique presented in

this thesis. Then, it draws the conclusion of the work, and it discusses some

directions where the research could extend.

4.1 Results

The major advantages of my optimization technique are the hierarchical control

model provided and the low-overhead it introduces, at the expense of slightly mod-

ifications required for drivers and possibly for platform-code and user-space. The

technique proposed satisfy the main requirements of modern power and perfor-

mances optimization framework.

As far as the ’system-wide’, ’fine-details’ and ’dynamic’ requirements are con-

cerned, a quantitative comparison with other approaches is difficult to setup and

bears little meaning. However, the proposed technique, thanks to its cross-layer
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design with multiple optimization policies at different abstraction levels, ensures

to satisfy these functional requirements. As fare as ’scalability’ and ’low-overhead’

requirements are concerned, I have performed a complexity analysis of the opti-

mization algorithms and a set of measurements on real hardware to evaluate these

metrics.

Although the technique is general and completely independent from any archi-

tectural detail, I chose one specific mobile multimedia platform and, therefore, a

specific architecture for model validation. As a target system, I have employed an

NHK-8815 [99], a development board using the STn8815 SoC by STMicroelectronics.

This platform has been choosed becasue it is quite representative of new generation

embedded mobile platforms, being already employed on commercial products such

as the recently released N96’s Nokia smartphone. Actually, this platform provides

support for many hardware optimization techniques and the porting of a complete

GNU/Linux system is also available.

4.1.1 Worst-case analysis

A benchmarking activity as followed the implementation of the framework. This

activity has been supported by a synthetic use-case, which has been properly de-

signed to support a worst-case analysis. This worst-case analysis has been obtained

using both a carefully designed system configuration, in terms of devices working

regions, and a set of properly defined run-time requirements. These two elements

allow to always stress the main algorithms implemented; e.g., the FSC search algo-

rithm must perform a complete exploration of the configuration space, or the FSC

selection algorithm always has to analyze all the available configurations to fine the

one to enable.

The measurement of the time overheads, introduced by the execution of main

CPM algorithms, aims at validating the complexity analysis of the model described

in Sec. C.2 on page 155. Moreover, it is important to have a real overhead measure

for these metrics because we aim at embedding the framework into a real product.

Thus, just an asymptotic analysis is not sufficient but instead it is required real

values to understand:

• how the optimization framework could impact on system performances at dif-

ferent time-frames (i.e., boot-time, wakeup-time, idle-time, processing-time)

• what is the corresponding real energy overhead that define the risk/benefits

trade-off for the system-wide optimization policy.

These results could be used also to evaluate the scalability of the proposed solution.

Moreover, the total memory footprint of the framework’s core has been mea-

sured, which is an important metrics especially when the software must be de-

ployed on embedded systems that have reduces storage resources.
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Figure 4.1: The working region defined by the test module. This module allows to con-

figure different testing scenarios by properly configuring some parameters

for some virtual devices: a top device and one or more lower devices.

The synthetic benchmark

The synthetic benchmark is composed by a kernel test module which can emulates

a system with a complete set of devices, each one with its own DWRs. The number

of devices and their DWRs can be properly configured at module load time to sim-

ulate different configurations and working scenarios under which the framework

implementation has to be tested.

A graphical representation of the device working regions created by the test

module is depicted in Fig. 4.1. The module create exactly on “top device” and one

or more “lower devices”. The former defines just one working region (i.e., dm) while

lower devices can define three different kind of working regions that correspond to

all the possible different overlapping: full-merge (i.e., dk), partial-merge (i.e., dj)

or not-merge (i.e., di). More precisely, each synthetic benchmark can configure

different scenarios by loading the test module with the following parameters:

• N, the total number of platform devices to register, which corresponds to the

depth of the tree on which the depth first search is performed. N − 1 devices

are defined as “top devices” which have all the same DWR and determine the

number of levels of the tree except the last one.

Having all the same DWRs the intersection is guaranteed and avoids pruning

of search path until the last level of the tree.

The remaining device is defined as “lower device” and stands at the last level

of the search tree.

• M is the number of identical DWRs of the “top devices”. It corresponds to

the width of the search tree.

• K is the number if identical DWRs declared by the “lower device” which fully
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merge with the DWRs ∈ M. The intersection of these DWRs with those of the

“top devices” is complete.

• J is the number if identical DWRs declared by the “lower device” which par-

tially merge the DWRs ∈ M. The intersection of these DWRs with those of

the “top devices” is partial, they are placed across the edge of a DWR ∈ M.

• I is the number if identical DWRs declared by the “lower device” which do

not merge with the DWRs ∈ M. The intersection of these DWRs with those

of the “top devices” is the empty set, they are placed outside the borders of a

DWR ∈ M.

The sum of K, J and I is the total number of “lower device”’s DWRs. The complete

set of module parameters is then given by:

< N,M,K, J, I >

A simple bash script has been used to automatize the testing of different sce-

narios by loading the module with proper parameters, running the required bench-

marks and collect back measurements. Each run measure the time required for

the execution of each main algorithm, with a nanoseconds resolution, using the API

offered by the standard high-resolution timer Linux framework. An average value

on these measures is computed out of a pool of 30 measures for each run of the

benchmark. Details on the measures and the obtained results are gathered in spe-

cific tables and then plotted to show the minimum and maximum value, together

with the average value.

FSC Identification

The FSC Identification algorithm is sensible to both the number of devices and the

number of DWRs that each device defines. The function defining the complexity of

the algorithm and returning the number of FSCs to be identified is:

FSCcount = MN−1 · (K + J) (4.1)

The test module is configured with M = 3, N ranging from 2 to 9 and K + J = 3.

The results achieved are reported in Tab. 4.1 and plotted in Fig. 4.2 where both

the scales are logarithmic and we show the bisector with a dashed line to deter-

mine the linear growth, useful for comparison with the trend of the measures. This

comparison highlight the exponential trend of the function, which validates the

complexity analysis performed on the FSC Identification algorithm. It is also rel-

evant to note how the algorithm is fast in identifying all the FSCs of the system,

especially considering a reasonable number of total FSCs of a real system that ac-

cording to our analysis never reach a number greater than few thousands. With

500 FSCs the time spent by the algorithm, running on the reference platform, is less

than 10 milliseconds which is at least two orders of magnitude less than the more

aggressive boot-up time requirement. Thus, since that algorithm is run seldom and

at boot time, the total overhead is negligible.
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Figure 4.2: Worst-case time required by the FSC identification algorithm. Despite this

algorithm has an exponential time complexity, the identification of 1000 fea-

sible configurations takes less than one second. This is an interesting abso-

lute value, specially if we consider that this algorithm runs just one time.

FSC Selection

The FSC Selection algorithm is sensible on the total number of FSC, which in the

worst case must be all scanned. Thus, considering the Eq. 4.1 on page 102 we

configured the test module with: M = 1, N = 2 and the sum K + J tacking value

from a predefined set of interesting configurations.

The benchmarked configurations, along with the time measurements obtained

on a set of thirty run for each one of them, are reported in Tab. 4.2. These results

are graphically represented by the plot in Fig. 4.3; as expected the algorithm has a

linear trend. It is important to notice that, looking at absolute values, the selection

algorithm is three order of magnitude better than the identification ones, with a

scanning time of fewmilliseconds for a systemwith more than ten thousand feasible

configurations. This quantitative result is especially important for two reasons:

• at run-time, the selection algorithm runs more frequently than the identifica-

tion ones1. Thus, having a lower absolute overhead associated to it confirms

one of our fundamental goals: run-time efficiency. Indeed, the decomposi-

1We already observed that, especially on embedded system, the identification is required just one

time at system boot.
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Figure 4.3: Worst-case time required by the FSC selection algorithm. The selection time

never exceed the few milliseconds boundary. This is an interesting absolute

which is around three order of magnitude less that the usual activation time

of this algorithm.

tion of identification and selection steps, and their relative overheads, allows

to spend less time (i.e., less energy) for the more frequent operations that

are related to the investigation for optimization opportunities, while keeping

complex (i.e., energy demanding) operations relegated to the system boot time

only.

• the absolute value of the selection step is always contained within few mil-

liseconds also for a very big number of FSC2. If we consider that a reasonable

timeframe for the activation of a new selection is usually related to that of a

use-case change at application level, we understand that this is a good result

by itself. Indeed, even on a heavy loaded multi-functional embedded mobile

system, it is reasonable to expect that the use-case changes could happen only

every few seconds. Thus, the relative overhead of this algorithm is at least

two or three order of magnitude less than that of the system under control.

This has a beneficial effect on the risk-vs-benefits trade-off, increasing a lot

the change to effectively exploit the proposed solution for the system-wide

optimization.

2Even considering the relatively low performance profile of the target board used for the measure-

ments.



4.1 Results 105

#
o
f
F
S
C
s

S
a
m
p
le
s

M
a
x

M
in

S
u
m

M
e
a
n

S
ta
n
d
a
rd

D
e
v
ia
ti
o
n

V
a
ri
a
n
ce

1
9
6
8
3

3
0

3
0
.6

3
1
7

2
2
.9

6
3
6

7
5
1
.3

8
7

2
5
.0

4
6
2

1
.6

0
8
2

2
.5

8
6
3

6
5
6
1

3
0

1
.9

1
1
8
3

1
.2

8
6
3
6

4
5
.7

9
5
8

1
.5

2
6
5
3

0
.1

0
7
8
1
3

0
.0

1
1
6
2
3
6

2
1
8
7

3
0

0
.4

8
7
0
0
2

0
.2

0
5
7
4
5

9
.4

5
3
0
1

0
.3

1
5
1

0
.0

6
4
5
0
8
3

0
.0

0
4
1
6
1
3
2

7
2
9

3
0

0
.0

7
6
3
7
7
1

0
.0

1
2
2
5
2
1

0
.8

1
7
7

0
.0

2
7
2
5
6
7

0
.0

1
6
6
8
5
5

0
.0

0
0
2
7
8
4
0
6

2
4
3

3
0

0
.0

3
2
6
1
8
8

0
.0

0
1
8
3
3
2
2

0
.1

9
8
1
7
3

0
.0

0
6
6
0
5
7
6

0
.0

0
6
3
5
8
9
8

4
.0

4
3
6
6
e-

0
5

8
1

3
0

0
.0

1
7
2
0
9
9

0
.0

0
0
5
9
6
0
5
7

0
.0

5
0
1
6
7
7

0
.0

0
1
6
7
2
2
6

0
.0

0
2
9
4
6
6
3

8
.6

8
2
6
5
e-

0
6

2
7

3
0

0
.0

0
0
6
7
9
2
4
8

0
.0

0
0
2
1
5
5
8
1

0
.0

1
5
1
2
2
4

0
.0

0
0
5
0
4
0
7
9

8
.7

9
2
4
6
e-

0
5

7
.7

3
0
7
4
e-

0
9

9
3
0

0
.0

0
0
2
2
4
4
0
1

1
.0

0
7
1
e-

0
5

0
.0

0
2
3
7
6
5
2

7
.9

2
1
7
3
e-

0
5

4
.3

4
4
4
5
e-

0
5

1
.8

8
7
4
2
e-

0
9

T
ab
le
4
.1
:

S
ta
ti
st
ic
s
o
n
co
ll
ec
te
d
d
at
a
fo
r
th
e
F
S
C
id
en

ti
fi
ca
ti
o
n
b
en

ch
m
ar
k
.
A
ll
ti
m
e
m
ea
su

re
s
ar
e
in

se
co
n
d
s.



106 Chapter 4. Results, Conlusions and Developments

#
o
f
F
S
C
s

S
a
m
p
le
s

M
a
x

M
in

S
u
m

M
e
a
n

S
ta
n
d
a
rd

D
e
v
ia
tio

n
V
a
ria

n
ce

1
0
3
6
8

3
0

0.0
0
8
1
2
8
7
1

0.0
0
0
7
5
1
7
1

0.1
1
2
3
4
9

0.0
0
3
7
4
4
9
6

0.0
0
1
5
3
4
4
6

2.3
5
4
5
6e-0

6

8
1
9
2

3
0

0.0
0
6
7
5
0
1
2

0.0
0
2
3
3
2
7
7

0.1
0
0
0
7
9

0.0
0
3
3
3
5
9
7

0.0
0
1
0
6
8
5
8

1.1
4
1
8
6e-0

6

5
1
8
4

3
0

0.0
0
4
1
5
0
2
2

0.0
0
1
0
2
4
5
6

0.0
6
4
7
6
1
8

0.0
0
2
1
5
8
7
3

0.0
0
0
7
6
8
9
0
7

5.9
1
2
1
9e-0

7

2
0
4
8

3
0

0.0
0
1
7
7
1
4
5

0.0
0
0
5
1
0
3
1
2

0.0
2
8
6
6
4
9

0.0
0
0
9
5
5
4
9
8

0.0
0
0
3
6
5
2
3
8

1.3
3
3
9
9e-0

7

1
0
2
4

3
0

0.0
0
0
9
4
1
1
6
3

0.0
0
0
3
3
7
8
0
6

0.0
1
5
5
5
9
4

0.0
0
0
5
1
8
6
4
7

0.0
0
0
2
1
9
9
7
7

4.8
3
8
9
8e-0

8

8
6
4

3
0

0.0
0
0
7
0
9
9
8
9

0.0
0
0
1
8
5
2
7
7

0.0
1
2
2
6
3
3

0.0
0
0
4
0
8
7
7
8

0.0
0
0
1
6
3
3
8
3

2.6
6
9
4
2e-0

8

5
1
2

3
0

0.0
0
0
4
1
8
8
8
3

0.0
0
0
1
5
0
7
1
4

0.0
0
7
0
0
9
6
9

0.0
0
0
2
3
3
6
5
6

0.0
0
0
1
0
0
8
6

1.0
1
7
2
7e-0

8

2
5
6

3
0

0.0
0
0
2
0
9
4
6
5

8.6
2
4
1e-0

5
0.0

0
3
5
1
5
8
9

0.0
0
0
1
1
7
1
9
6

4.7
3
1
5
7e-0

5
2.2

3
8
7
7e-0

9

1
2
8

3
0

0.0
0
0
1
0
6
7
7
6

4.4
8
4e-0

5
0.0

0
1
8
3
3

6.1
1e-0

5
2.3

0
9
6
2e-0

5
5.3

3
4
3
2e-1

0

6
4

3
0

5.4
0
6
8e-0

5
2.2

8
9
4e-0

5
0.0

0
0
8
5
0
9
8
4

2.8
3
6
6
1e-0

5
8.1

8
1
3
1e-0

6
6.6

9
3
3
8e-1

1

T
ab
le
4
.2
:

S
tatistics

o
n
co
llected

d
ata

fo
r
th
e
F
S
C
selectio

n
b
en

ch
m
ark

.
A
ll
tim

e
m
easu

res
are

in
seco

n
d
s.



4.1 Results 107

4.1.2 A safari on a real-world usage scenario

The aim of the following discussion is to show the reader how CPM can be easily

and effectively adopted in a real-world system. A careful reader should catch the

benefits of using CPM to manage resources, such as the Internet connection band-

width, according to the actual applications demand. Moreover, a system integrator

should evaluate how simple and straightway is the effort required to keep track of

architectural dependency between different subsystems, while still preserving the

opportunity to write a clean code that exploit all already existing low-level opti-

mization frameworks.

The STn8815 SoC [99] has an ARM host CPU and two DPS accelerators for

multimedia: one for audio transcoding (i.e., DSP_A) and another supporting video

accelleration (i.e., DSP_V). The host CPU is clocked by the CPU_CLK clock signal,

while both the two DSPs are clocked by the same DSP_CLK clock signal. Inter-

estingly, this SoC is characterized by a strict dependency between CPU_CLK and

DSP_CLK, which constrains their frequency. When one or both the DSPs are ac-

tive and require a certain clock frequency, the CPU is constrained to work at a

compatible frequency. This means that the CPU frequency scaling driver, which

in a standard Linux kernel is provided by the CPUfreq framework (see Par. B.2.2

on page 143), must be opportunely notified about the hardware inter-dependency

and its policy constrained. It is worth to notice that, simply hacking the CPUfreq

framework, to take care of the hardware interdependency, don’t properly solve the

problem because such a solution is not portable and it cannot even be accepted into

the mainline kernel.

From the user-space standpoint, the use case involves an application that con-

trols the playback of a audio-video stream, and another one that downloads some

data from the web, such as a download manager handling some queues or a mail

client fetching new messages. These applications share a resource, the connection

bandwidth, and require a minimum amount of it to grant the wanted QoS. The

devices involved in the use case are a 3G modem which provide Internet access, the

two DSPs used for hardware accelerated audio and video decoding, and of course

the CPU running both the OS and the two aforementioned applications among oth-

ers.

The modem provides several working modes, one for each of the mobile net-

work’s protocol supported. Each working mode is characterized by a maximum

bandwidth capacity and a different level of energy consumption. The audio and

video DSPs provide different codecs such as, respectively: raw PCM, MP3, WMA

and OGG-Vorbis for the audio accelerator, and MPEG4, H.263 and H.264 for the

video ones. Each hardware accelerated decoder requires different operational fre-

quencies. Finally, the CPU is controlled by the CPUfreq framework [12] which con-

trols the processor’s operating voltage and frequency according to the computation

load. Notice that the CPU load is defined only by the OS and running applications,

but not by the audio and video decoding which instead are activities in charge of
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the two DSPs.

The SWM reasonable and thus considered for this usage scenario are:

- the connection bandwidth: represented by the additive metric ’BAND’ that ab-

stracts the network bandwidth’s resource on which applications compete for

usage;

- the audio codec: represented by the restrictive metric ’ACODEC’ that abstracts

the kind of audio content that an application has to decode;

- the video codec: represented by the restrictive metric ’VCODEC’ that abstracts

the kind of video content that an application has to decode;

- the clock signal of the accelerators: represented by the restrictive metric ’DPS_CLK’

that abstracts the frequency of each DPS’s clock signal;

- the CPU clock signal: represented by the restrictive metric ’CPU_CLK’ that

abstracts the host processor’s frequency.

The first three are abstract metrics (i.e., ASM), thus exposed to applications for the

assertion of QoS requirements, while the last two are platform metrics (i.e., PSM)

that are defined by the platform code and used internally by the drivers only.

Using the available system wide metrics, each device driver defines its own work-

ing regions as graphically depicted in Fig. 4.4-abc. The architectural dependencies

instead are defined by the Linux platform initialization code and have been repre-

sented in Fig. 4.4d.

The use-case begins with the user selecting a content to be played. As soon as

the download of audio and video data starts, the video player application collect

some information:

• v1: the minimum connection bandwidth (e.g., 264 Kbps) required to have

good quality reproduction, i.e. without jitter and buffering phenomena;

• the audio codec used (e.g., MP3);

• the video codec used (e.g., H.263);

and use them to assert some QoS requirements on the corresponding ASM, respec-

tively: BAND, ACODEC and VCODEC.

The CPM core collects and aggregate these requirements to find the correspond-

ing constraints on every system metric. At this point, the current FSC the system

is working on could be invalidated by the new constraints. Thus, the FSC selection

algorithm is run to fine the next valid system-wide feasible configuration.

Once the new valid FSC has been found, the CPM framework notify the corre-

sponding DWRs to each involved driver along with the values of the new sys-

tem constraints. Since the required audio and video codecs are bound to a spe-

cific DSP_CLK frequency and the platform DWRs defines its dependency with the
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Figure 4.4: The set of device working regions defined by the usage scenario. a) modem’s

DWRs, with the lower bound requirements v1 and v2 asserted by applica-

tions and the corresponding aggregated constraint va. b/c) audio/video

DSP’s DWRs which setup a relation between the required audio/video de-

coding effort represented by the ACODEC/VCODEC metrics and the hard-

ware accelerator clock frequency abstracted by the DSP_CLK metrics. d)

platform DWRs to track the architectural dependency between two metrics:

CPU_CLK and DSP_CLK
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CPU_CLK, then the CPUfreq framework will be able to scale the frequency accord-

ing to the imposed constraint. Also all other involved subsystems update their

working mode accordingly, for instance the modem switches from the GPRS to the

EDGE1 network to fit the new constraint for the BAND metric.

While the video is played, the data download application starts and asserts a

QoS requirement on the bandwidth for a minimum amount of 200 kbit/s. Since

the BAND metrics is of additive type (ref. “composition” on pag. 67), the CPM

framework perform an aggregation by summing the new requirement with the

old constraint’s value to get the new ones (i.e., 464 kbps). This new constraint

invalidate one more time the current FSC and thus the FSC selection algorithm

is triggered one more time to move the system towards the next valid system-wide

feasible configuration. This new configuration specifically brings the modem device

to move to a different working mode (i.e., EDGE2).

Use case results and considerations

From this use-case it is possible to derive some main consideration on the proposed

framework.

System resources management. The usage of QoS requirements’ declaration and

aggregation allows to keep a correct and precise view of used and still available

system resources. This information is exploited to configure the hardware devices

with the correct working mode supporting the required resource demand. It is

worth to notice that the usage of an efficient FSC selection algorithm allows to

achieve the better energy saving that is compatible with the user perceived perfor-

mances. Indeed, this algorithm is always working on a set of possible system-wide

solutions which have been pre-ordered according to the running performance-vs-

power optimization policy. This solution is better than the best effort approach

provided by many of the current implementations of system-wide resource man-

agement systems, such as the QoSPM framework described in Par. B.3.2 on page

151.

Additive aggregation. The additive aggregation is a concept introduced by CPM

to overcame some limitation of present implementations such as the QoSPM frame-

work. According to this framework, even for resources that are intrinsically additive

(e.g., bandwidth) the aggregation function could be only of type ’min/max’. This

do not allow to keep a correct view of system resources and could bring to the se-

lection of devices’ working mode that can’t support the actually required QoS level.

For example, if two applications require 300 kbps each, QoSPM aggregating with

the ’max’ function will still set a system-wide constraint at only 300kbps, which is

only half of the effectively required bandwidth resource of 600kpks.

Dependency tracking. CPM allows to track hardware dependencies, among differ-

ent subsystems of a SoC, in order to prevent a correct operation of a system. Instead

of patching each device driver to adapt it to a different platform, system developers

must simply declare platform DWRs to track the dependencies’ issues. That way
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code portability is improved allowing to have a single driver which can safely fits

multiple platforms with different architectural requirements.

Automatic identification of system working points. Other approaches to power man-

agement, like the DPM framework described in Par. B.3.1 on page 150, requires

to code all the working points by hand. Instead, CPM allows to identify all the

working points of an entire platform automatically through the computations of

the FSC in the system configuration phase, e.g., at boot-time. It does this exploiting

the information defined, independently, in each device driver code. This is another

relevant result, since it improves portability of device drivers code across different

platforms and products.

4.2 Conclusions

This thesis describe a methodology to identify the optimal trade-off between per-

ceived performances and energy consumption of a multimedia mobile embedded

system, considering both application requirements and system resources.

The proposed method is formally verified and supported by a complete imple-

mentation within a Linux kernel framework named CPM.

Thanks to an optimized implementation, both user-space applications and drivers

could get immediate benefits from its usage without noticeable performances degra-

dation. Indeed, it proves to be effective on identify the optimal configuration, ac-

cording to a give set of optimization objectives, and to exhibit a very low overhead

on real utilization scenarios.

Moreover, supporting the effective implementation of a distributed control and hi-

erarchical optimization solution, it is able to transparently handle devices inter-

dependencies and architectural constraints. Indeed, the proposed solution offers an

easy to use interface to both system and application programmers. For instance,

the framework could also support a regular resource manager with a very limited

integration effort.

Finally, the design of the proposed technique and the modular architecture of

its implementation effectively support code reuse and thus improve the portability

of the solution on different platforms.

4.3 Developments

This thesis work paves the way for a wide set of improvements and future develop-

ments.
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Extending hardware support

Up to now, just a couple of use-cases has been developed and implemented on real

hardware. The main goal was that of testing the implementation and proving the

goodness of the proposed approach in different scenarios, especially if compared

with other available Linux frameworks like QoSPM [100].

The framework implementation can be used as an OS based simulation environ-

ment, running on real hardware or within a virtual machine. This usage is useful

to easily evaluate the distributed control model and how well it could interact with

different local optimization policies. However, this framework is designed for real

use and thus a wide adoption within different hardware platforms is one of the

main targets to definitely prove its goodness.

Porting the core, policy and governors, as well has testing drivers is a trivial task

since CPM has been directly coded on a recent Linux kernel: if the board already

comes with a recent kernel, the porting of these components is just a matter of

simple cross-compilation. If the board instead comes with an older Linux version,

it is possible that some kernel-related data structure used by CPM does not match

with our implementation, thus a minor porting effort should be considered.

The main effort in integrating CPM in a real hardware platform is represented

by already existing drivers, that should be modified to support the framework’s

workflow, and the corresponding identification of DWR.

SWM mapping methodology

A further improvement of the current work consists in the definition of a clear

and standard methodology to perform the mapping of SWM on device drivers

operating mode. For instance, given a specific device and the analysis of its internal

configuration states, how a developer should generate the mapping and the local

driver’s policy. This is a key point for the success of CPM and its widespread

adoption.

Improvements at applications level

A complete usage of the proposed framework includes the participation of user-

space as an active entity. Applications should assert their QoS requirements that

are used to constraint the identification of feasible configurations. Up to now, only

a trivial interface towards user-space has been developed, to further improve the

utilization of the framework these extensions are considered particularly interest-

ing:

• Improved API – The user-space should be able to interact with the in-kernel

framework implementation using an efficient communication mechanism, per-

haps based on a properly defined syscall interface.
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• Feedback mechanism – User-space should be able to receive feedbacks on the

current system resource availability and granted QoS. This could allows for

applications to fine tune their offered services according to effectively avail-

able resources and perhaps also to tune these requirements at run-time ac-

cording to changing resources availability.

• Priority aggregation – Requirements coming from applications should be man-

aged according to their impact on the user’s perceived QoS. Thus, applications

with higher impact on user experience should be granted higher priorities

on constraints assertion, regardless of the order these constrains are asserted

within the system. A mechanism to support this kind of feature must relay

on a properly working feedback mechanism previously outlined.

The improvements described above depict CPM as a resource manager and out-

line a possible limitation of the ideas presented: applications should be modified

to support CPM. This is not a good feasible solution because it would introduce an

unsustainable effort in the user-space context. This limitation could be easily over-

came thinking at integrating CPMwith software layer that stands between CPM and

the applications. This mid-layer is in charge of managing the bi-directional com-

munication between the other two layers. Resource managers already exists: thus

the integration of CPM with one of such framework is foreseen as an interesting

extension of this work.

Runtime power measures

To better support power optimization it is interesting the implementation of the

learning mechanism to acquire power consumption measures and used them to au-

tomatically power classify each FSC. To implement such a mechanism it is required

first the porting of CPM on a board with sensors or dedicated PMU to collect energy

consumption measurements.

Governor modules

The development of new Governor’s modules for the FSC identification is another

interesting development topic. Actually, as the experimental results prove, the al-

gorithm based on an exhaustive search, even if it has exponential complexity in the

worst case, performs very well and introduce a really tiny computation overhead on

the system. Especially if we consider that such algorithm is run only at boot time.

It would be interesting to better investigate the possibility to implement some kind

of hardware acceleration to support the main complex framework functionalities.





Appendix A
An Implementation Proposal

“Talk is cheap. Show me the code!”

Linus Torvalds

T
his appendix describes the CPM framework, which is a reference implemen-

tation for the proposed optimization technique. The main design decisions

and some implementation details will be carefully reviewed in order to setup

a common ground for everyone interested on using or hacking the code.

A.1 Theoretical Concepts Implementation

CPM has been developed following the theory of Hierarchical Distributed Control.

However, some of the theoretical concepts have been implemented slightly differ-

ently to ensure both portability and run-time efficiency. In the following paragraphs

some theoretical ideas are recalled and, for each of them, the various choices made

are explained and justified.

A.1.1 The System-Wide Metrics (SWMs)

The implementation of SWMs reflects the definition given for these elements in

Par. 3.3.1 on page 65, while describing the theoretical model. They are abstract

metrics that represent different aspects of the global QoS level of a system. De-

vice drivers can be sensible to different subsets of SWMs. Through these metrics,

drivers are kept informed of the global system state, they can use these informa-

tions for taking their local decisions and they can assert constraints on them when,

for working correctly, they need to be ensured on specific levels of QoS.
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The main issue that I found during the implementation of the SWM’s concept is

the definition of a set of them. This topic has been analyzed considering the typical

characteristics of SoC based embedded systems, for which CPM is mainly targeted.

Every embedded systems has its own characteristics and functionalities and so it

appears impossible to define a unique static set of SWMs suitable for all of them.

For this reason I decided to statically define a list of platform-independent metrics,

ASMs, directly within the CPM core, while I provide a mechanism that allows the

system platform code to define additional platform-specific metrics, PSMs, which

can be used to represent find-detail about a specific platform. Since ASMs are

platform independent, they are exposed to user-space. To the contrary, the PSMs

will be visible to the platform code and drivers only. This decision is meant to

preserve the portability of the framework.

A.1.2 The Device Working Regions (DWRs)

The implementation of this concept completely covers the definition introduced in

the Par. 3.3.3 on page 70. A DWR express the binding between an operating mode

of a device and the corresponding QoS levels of the system. They are represented

by ranges on a subset of SWMs and defined by the corresponding device driver.

A driver propose a change on a SWM when its internal configuration changes,

for instance because the local policy of the driver can optimize the operating point.

In this case the driver affect the SWM. Similarly, a driver can be asked to change

its configuration to satisfy a QoS requirement, asserted by another entity (either an

application or a different driver). In this case the requirements must constraints the

value on one of the device’s sensible SWM. Whenever a driver changes its internal

configuration the corresponding DWR could also be updated.

DWRs are essentially static entities: they are related to the possible devices’

configurations and, consequently, to their physical capabilities. It is therefore rea-

sonable to assume that they can be statically known by device drivers and that they

can not change at run time. The device will be also considered both influenced and

affect by all the SWMs that are used to define its DWRs. Due to these reasons, to en-

sure that CPM works correctly, devices must declare all their DWRs at registration

time using a specific API defined by the framework. All the DWRs are stored by the

framework for future elaborations: like the computation of FSCs or the notifications

during the distributed agreement process.
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A.1.3 The Feasible System-wide Configurations (FSCs)

According to the definition given on page 78, the FSCs as the regions in the SWCS

that result from the intersection of at least one DWR for each device. These are the

only feasible working regions of the entire system. The problem of a possible high

computational cost of FSC search is investigated in Sec. C.2 on page 155 and proved

in Sec. 4.1.1 on page 100. These configurations are strictly related to the defined

DWRs that, as explained, are immutable for each device once the driver is compiled.

This implies that FSCs can change only when a driver registers or unregisters its

devices to the framework and, consequently the process of FSCs identification has

to run only in these two situations that are relatively seldom in embedded systems.

As a result, the probability of a relevant overhead is reduced if all drivers register

at boot time: overhead appears only once, at system initialization.

A.1.4 The objective function

An important part of the hierarchical distributed control theory is related to the

analysis of the problem through an approach that is based on linear programming.

This kind of strategy requires the definition of an objective function to be used

for choosing the system working point, which corresponds to one of the available

FSCs. The selected FSC, besides satisfying all the asserted constraints, results to be

the best according to the considered optimization goals. In linear programming an

objective function is represented by an oriented vector that indicates the direction

to take to find the best solution inside the constrained solution space.

Within the implementation, I reworked the concept of oriented-vector which de-

fines the objective function into something that is easier to implement and manage

with the kernel data structures. I considered that a vector in a n-dimensional space

can be always represented as the sum of its n projections on the n direction that

generate the space. According to this consideration, inside CPM I provided the

mechanism to define these n projections. This mechanism simply corresponds to

the assignment of a ’weight’ to each SWM. These weights allow to evaluate each

FSC according to the same approach suggested by linear programming.

A.2 The Framework Architecture

An overview of the proposed Linux kernel framework implementation is shown

in Fig. A.1, where all the main components are represented to highlight also their

relationship. The framework’s implementation is made of different interacting com-

ponents which, according to their logical role, can be divided into three main classes

- CPM framework

- Device drivers

- Platform code
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Figure A.1: Overview of the CPM framework architecture. This block diagram repre-

sent the framework’s components and the relationship among them. There

are three main class of components: framework core, platform code and

driver. The last two define code that is already available in the operating

system and must be just integrated. The platform code defines the PSMs,

while the drivers define their DWRs. Operations from one to three usually

happens at boot-time, while operations four and five happens only when

the framework is enabled. At run-time, either drivers or applications (using

the sysfs interface) can assert and remove constraints that could trigger a

system reconfiguration.
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Almost all the entities introduced by the theoretical model are defined by the com-

ponents belonging the first group. The drivers define the DWR and the platform

code is in charge to define the PSM. Let us review in details each one of these

classes.

A.2.1 CPM Framework

This is the core of the proposed framework and is actually composed of three dif-

ferent modules.

The CPM core (pm_ore). This is the main module of the framework and con-

tains the entire core logic. It can be primarily paired with the theoretical idea of

Constrained Power Manager (CPM) which, according to its definition, it is the only

component that is known to all the others. This module keeps track of DWRs, com-

putes FSCs and control the workflow of information exchanged by other modules.

The actual identification of FSCs and their ordering according to the objective func-

tion is demanded to other modules, respectively the pm_governor and pm_poliy.

The core module also defines the API used by the platform code to setup the

PSMs and drivers to register themselves to the core and to define their DWRs.

Finally, this module provides also a user-space interface based on sysfs. This is used

to export information about SWMs, and the constraints that are currently asserted

on them. Moreover, using this interface new constraints can be asserted. Indeed,

this interface provides a hook to the “execution context”, which is composed by

applications, libraries and software buses that describe what it is happening in the

system from the user standpoint.

The CPM governor (pm_governor). This module is in charge of the FSCs identi-

fication. The framework allows to define more than one governor. Each one must

register itself within the pm_ore using the provided API. However, at any time,

only one can be selected and enabled for use. Given the list of registered devices

and the corresponding DWRs, a governor (i.e., the one which is active) is expected

to returns the set of FSCs identified. Once registered, the identification functionality

can be used by the core every time it’s required.

The choice of implementing the FSCs identification step as an independent ker-

nel module, instead of embedding it inside the core, is due to efficiency’s and flex-

ibility’s considerations. Moreover, separating core from governors and policies it

is a well known and successful programming approach used also in other Linux

kernel frameworks (e.g., CPUFreq). Indeed, this allows to test different algorithms

or to tuned them in a proper way. Moreover, considering embedded system where

it is possible that the set of registered devices never changes for the entire life of the

final product, thanks to this modular approach, FSCs can be statically computed

one time and then coded into a governor that simple export them to CPM, without

any further run-time research processing required.
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The CPM policy (pm_poliy). This module is in charge of ordering FSCs accord-

ing to the implemented objective function. Even in this case, the framework allows

to define more than one policy, each one registering itself with the provided API,

and only one active at any time.

The decision to make this functionality independent from the pm_ore is re-

lated to flexibility considerations. The general idea of CPM is to evaluate FSCs

according some weights defined on SWMs. Anyway, the compliance with this basic

idea, does not imply the existence of an unique objective function. For example, a

policy can consider only a subset of SWMs, e.g. only latencies, to optimize a specific

aspect of the system. Thanks to this modular implementation, the need for different

strategies can be fulfilled through either the implementation of different modules

or that of a single module with some tunable parameters.

A.2.2 Device drivers

Each driver must register itself and define the DWRs of each managed devices, right

after its loading into the system. The control of the local configuration is demanded

to a driver’s own management policy, that is usually finalized to optimize some

local metrics, without considering the other component of the system. However,

for a compliant integration within the CPM framework, the local policy is expected

to interact with the framework before any change on the device working mode.

Indeed, the policy can answering to the various notifications that the core sends

to drivers during a FSC change, to express its agreement or disagreement to a

proposed local reconfiguration.

A.2.3 Platform code

This code is used to set up PSMs, the platform dependent metrics, which provide

higher flexibility and portability to CPM. This portability could be ensured through

a binding between PSMs and ASMs. Indeed, DWRs could be expressed on both

these two kind of metrics. This allows user-space to assert requirements at run-

time on platform-independent ASM and thus to reflect these requirements on some

other platform-specific metrics. For example, an hypothetic ’network bandwidth’

ASM can become both a ’LAN speed’ or ’modem network’ depending on the real

type of connection available on the target system.
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A.3 The Framework Workflow

Two are the main timeframes in which the framework is used: at system initializa-

tion time and at run-time. In this section I clarify the role of each component and

the details of the involved mechanisms during each one of these timeframes.

A.3.1 The role of CPM at system initialization

An overview of the activities related to CPM, which happens at boot time, is de-

picted in Fig. A.2. Among these activities, the really first fore are executed at system

initialization, while the last two can start once the framework is enabled. Let me

review each one in details.

PSMs registration. At boot-time the platform code is required to register all the

platform specific metrics. To that purpose, the platform code calls a registration

method, defined by the core’s API, and passes it an array containing the PSMs. For

each PSM this set of attributes is required to define the metrics properties such as:

name, aggregation type, composition type and boundaries for acceptable values.

Another parameter allows to define whether the metrics should be kept hidden or

read-only exported to the user-space.

Governor registration. Every governor must register itself to the pm_ore mod-

ule. This operation is usually accomplished immediately after a governor’s module

has been loaded. The governor’s initialization function calls the proper API regis-

tration function, provided by the core, to define a reference to its FSC identification

algorithm.

Only one governor can be used by the CPM framework at each point in time. If

more than one governor is registered a suitable user-space interface is provided to

select the one to be used by the framework. Every time a governor is changed the

framework require the new active governor to identify the FSCs.

Policy registration. Similar for the governors, policies also must register to the

framework using the provided API. During registration each policy passes a ref-

erence to two callbacks functions implementing the FSC ordering and the DDP

monitoring algorithms. Even in this case only one policy can be active in CPM

at every time. If more than one policy is registered a suitable user-space interface

is provided to select the one to be used by the framework. Every time the active

policy is changed the framework requires the new active policy to define the FSCs

ordering.
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Figure A.2: A sequence diagram of the framework initialization. While the first three

steps usually happens at boot-time, the last two can happens only once the

framework is enabled.
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Drivers registration. This is the last action which is mandatory at system initial-

ization. The registration of drivers is possible at run-time, but especially in the case

of embedded system it happens only at system boot time. Every drivers registering

to the framework provides its list of DWRs and a reference to a callback function.

The list of DWRs is used to infer the set of sensible SWMs of the corresponding

device. The drivers will then be allowed to assert constraints only on them. The

callback function is instead used to notify the device, during the distributed agree-

ment process, about the change of the global system working point.

FSCs identification. This activity starts whenever the set of FSCs is outdated. This

happens at system boot, when FSCs should be identified for the first time, or when-

ever a device is registered or removed from the system. Another event that triggers

a new identification step is the change of the active governor.

Once all FSCs have been identified, they are inserted into a linked list and passed

back to the core using a proper method defined by its API.

FSCs ordering. This activity starts every time a new policy is activated or its pa-

rameters are updated. In all these cases, it is necessary to re-order the set of FSCs

that will then be used by selection algorithm. Once all FSCs have been ordered by

the active policy, they are inserted into a linked list and passed back to the core

using a proper method defined by its API.

A.3.2 The role of CPM at run-time

The CPM framework is mainly used at run-time, when it is in charge to support

the system-wide optimization according to the application requirements and the

active optimization policy. During this phase, the framework is mainly involved in

activities related to requirements aggregation, constraints synthesis, search of a FSC

and its notification to the driver’s local policies. An overview of the main activities

related to this timeframe is depicted in Fig. A.3. Let me review each one in details.

Requirements assertion. This is the start action that triggers the possibility of

a system reconfiguration. Either applications, according to their requirements, or

drivers, according to its local optimization policy, could need a different working

mode. This need is expressed by a QoS requirement assertion on some sensible

SWMs. Depending on the type of requester, the assertion can be communicated

to the framework in two ways. In the case of a drivers, using the framework API,

while in case of an application using the sysfs interface.
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Requirement validation. The active policy is required to validate each new QoS

requirement. The policy can evaluate the new requirement, considering both the

requesting entity and the actual value, and than return its agreement or not to

proceed. If the policy returns a failure, the research of a new FSC terminates and a

failure notification is returned to the driver or to the application requiring it. The

policy takes its decision according to a proper criteria. For example, the policy could

enforce some access control rules on who is authorized to assert some requirements.

Requirement aggregation and constraint assertion. Once a QoS requirement has

be authorized by the active policy, the framework aggregate it with those previously

asserted for the same SWM. The aggregation is done according to the properties of

the SWM: its composition, either additive or restrictive, and its type, either LiB or

GiB, and produce a new constraints.

FSC selection. Once a new constraint invalidate the current F SC, a new once must

be selected. The FSCs are stored in a list, which is maintained ordered according

to the objective function implemented by the current policy. The selection of a

new FSC is done scanning this ordered list and stopping at the first element that

is compatible with the set of all the asserted constraints. This guarantees to choose

always the best possible FSC, according to the current policy. If a candidate FSC

is not found the requested constraint is not feasible and also in this case a failure

notification is returned to the driver or to the application that had required it.

FSC validation. When a new valid FSC is found, it is notified to the policy that

can evaluate it according to its own criteria. If the policy rejects the proposed

FSC, the previous step could be tried again until either a valid configuration is

authorized buy the policy or anymore FSC are available. In this last case the system

reconfiguration fails and the requirement’s caller notified.

Pre-change notification. Once a new valid FSC has been validated by the active

policy, the system is ready to switch to the new configuration. However, before

the actual switch, all devices are notified to give their local policies the final chance

to stop the change’s process. Indeed, by returning a not agreement a device local

policy could require the seek of another FSC. Otherwise, when a devices agrees

on the proposed FSC, it must be ready to reconfigure itself according to the DWRs

defined by the new FSC. When all devices have returned their agreement the policy

is notified about the end of the pre-change phase.
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Figure A.3: The state diagram describing the behaviors of the framework at run-time.

The CPM core provide support for QoS requirements assertion, validation

and aggregation. The aggregation procedure could produce a new con-

straint on the system-wide metrics that trigger the selection of a new FSC.

The selection, agreement and activation of a new FSC are part of a dis-

tributed decision process (DDP) which ensure an agreement between all the

local control policies before changing the system-wide configuration.
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Do-change notification. Once all devices have accepted the new FSC, they are

asynchronously triggered to reconfigure themselves in the new selected FSC. This

notification in an asynchronous notification that trigger the reconfiguration without

waiting for it to complete. Thus, all the drivers can reconfigures in parallel the

corresponding devices.

Post-change notification. This is a synchronization call. Once called, every driver

should return from this notification only when its reconfiguration has completed.

Thus, when all drivers return from this call the system is granted to be moved to the

new configuration. One more time the policy is notified about the reconfiguration

completion.

The last three activities define what we called a “Distributed Decision Process”

(DDP), which is depicted in Fig. A.3. These process is particularly important be-

cause give the change to the driver’s local policies to play an active role in the

system-wide reconfiguration during the selection of the next valid FSC to activate.

Indeed, every and only the valid FSC are proposed to every device driver to let

them evaluate the possibility to move to the new configuration. Only when all the

local policies agree about the new configuration, then this configuration in enabled.

This allows to get a real hierarchical and distributed control.

A.4 The Framework Interfaces

The CPM framework’s’ API interface allows different entities to transparently in-

teracts by accessing the framework’s services according to the workflow previously

described. This interface is based on a set of proper defined data structures and

functions, which corresponds to the theoretical concepts of: SWM, DWR, FSC, ob-

jective functions, and constraints. Additional data structures are instead used to

represent policies, governors and device drivers. All these data types and function

prototypes are defined within the inlude/linux/pm.h header file. This section

deals with the description of this programming interface. A comprehensive dia-

gram of the data structures used by the framework and their interactions is depicted

in Fig. A.4.
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list of FSCs

identified by governor

this list that is then maintained by the core

When a governor identifies / computes FSCs, it returns

pointers that allows to access each FSC in the chosen order

When a policy sorts the FSC list, it builds a list of

When a device registers to CPM it must pass

including its DWRs and the number of them.

Each DWR is defined on a set of SWMs.

cpm_dev

*dwrs

*fsc *fsc *fsc *fsc

cpm_fsc_pointer

cpm_swm_range

*dwrs

*swms

cpm_fsc_dwr

*swms

cpm_dev_dwr

cpm_swm_range

SWMs’ array, dynamically allocated

list of devices

registered to CPM

cpm_fsc

DWRs’ array, dynamically allocated

cpm_swm

*dwr *dwr *dwr *dwr

array of PSMs

This array contains platform specific

metrics and is filled by the platform code

at system initialization time

to the registration function different informations,

Figure A.4: Overview of the relationship between the main data structures. The CPM

core implementation rely on statically allocated data (e.g., PSMs and DWRs)

that are used to dynamically generate other data (e.g., FSCs), according to

some modular code (e.g., governor and policy).
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A.4.1 The basic data types

Let me first review how are defined the model’s theoretical concepts, which has

been presented in the first part of this appendix.

The SWM type. Each system-wide metric is represented with a data structures

of type pm_swm, shown in Lis. A.1. This type allows to keep track of all the infor-

mation provided at initialization time: some constants definitions help to properly

encode the different options. In addition to this, a field is used for the ASM’s weight

that is related, as previously explained, to the objective function. These structures

are allocated by platform code and then passed to pm_ore that maintains them

into an array for use at runtime.

The DWRs type. Each device working region is represented by a data structures

with type pm_dwr, shown in Lis. A.2. These allow to uniquely identify each DWR

with an id and a reference to the device at which it belongs. For each DWR all

the SWMs’ ranges that compose it are stored into a dynamic array. Each range is

defined by the pm_swm_range data structure that is based on the pm_range base

type represented into Lis. A.3.

Finally this data provides some helpers for the sysfs interface management, and

two additional fields that can be used by policies and governors for data that can

be eventually needed for their elaborations. These structures are declared by the

drivers and passed to the core when each driver is registered.

The FSCs type. The feasible system-wide configurations are stored in data struc-

tures of type pm_fs, shown in Lis. A.4. They are uniquely identified by an id and,

like DWRs, are composed by a set of ASMs’ ranges represented by the structure of

Lis. A.3. In addition each FSC has also references to the various DWRs that have

been merged, by the pm_governor to obtain the FSC itself. This information is use

at runtime for the notification of the new active FSC to devices. Finally, also in this

case the structure provides fields that can be used by policies and governors for

their own needs. These structures must be declared by the governor during FSC

identification phase.

The following data structures, are used to represent framework’s entities inside the

pm_ore, mainly for keep track of their callbacks.



A.4 The Framework Interfaes 129

1 s t ru c t cpm_swm {

char name[CPM_NAME_LEN] ;

3 void ∗data ;

#define CPM_TYPE_LIB 0

5 #define CPM_TYPE_GIB 1

u8 type : 1 ;

7 #define CPM_USER_RO 0

#define CPM_USER_RW 1

9 u8 userw : 1 ;

#define CPM_COMPOSITION_ADDITIVE 0

11 #define CPM_COMPOSITION_RESTRICTIVE 1

u8 comp : 1 ;

13 s32 weight ;

u32 min ;

15 u32 max ;

} ;

Listing A.1: The pm_awm data structure

s t ru c t cpm_dev_dwr {

2 s t ru c t device ∗dev ;

u8 id ;

4 char name[CPM_NAME_LEN] ;

s t ru c t cpm_swm_range ∗swms ;

6 u8 swms_count ;

void ∗gov_data ;

8 void ∗pol_data ;

/∗ p r i v a t e ∗ /

10 s t ru c t kob j _ a t t r i bu t e ka t t r ;

s t ru c t a t t r ibute_group swms_group ;

12

} ;

Listing A.2: The pm_dev_dwr data structure

1 s t ru c t cpm_range {

u32 lower ;

3 u32 upper ;

#define CPM_SWM_TYPE_UNBOUNDED 0 /∗ no bounds d e f i n e d

∗ /

5 #define CPM_SWM_TYPE_RANGE 1 /∗ upper and l o v e r bound

∗ /

/∗ d e f i n e d ( i f l owe r==upper ∗ /

7 /∗ than i s a s i n g l e v a l u e ) ∗ /

#define CPM_SWM_TYPE_LBOUND 2 /∗ l owe r bound on ly ∗ /

9 #define CPM_SWM_TYPE_UBOUND 3 /∗ upper bound on ly ∗ /

u8 type : 2 ;

11

} ;

13 s t ru c t cpm_swm_range {

u8 id ;

15 s t ru c t cpm_range range ;

s t ru c t kob j _ a t t r i bu t e ka t t r ;

17 char name[CPM_NAME_LEN] ;

} ;

Listing A.3: The pm_swm_range data structure
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s t ru c t cpm_fsc {

2 u16 id ;

s t ru c t cpm_swm_range ∗swms ;

4 u8 swms_count ;

s t ru c t cpm_fsc_dwr ∗dwrs ;

6 u8 dwrs_count ;

void ∗gov_data ;

8 void ∗pol_data ;

s t ru c t l i s t _head node ;

10 } ;

Listing A.4: The pm_fs data structure

s t ru c t cpm_policy {

2 char name[CPM_NAME_LEN] ;

in t (∗ s o r t _ f s c _ l i s t ) ( s t ru c t l i s t _head ∗ f s c _ l i s t ) ;

4 in t (∗ddp_handler ) ( unsigned long event , void ∗data ) ;

} ;

Listing A.5: The pm_poliy data structure

1 s t ru c t cpm_governor {

char name[CPM_NAME_LEN] ;

3 in t (∗ bu i l d _ f s c _ l i s t ) ( s t ru c t l i s t _head ∗dev_ l i s t , u8 dev_count ) ;

} ;

Listing A.6: The pm_governor data structure

s t ru c t cpm_dev_data {

2 ddp_callback no t i f i e r _ c a l l b a c k ;

s t ru c t cpm_dev_dwr ∗dwrs ;

4 u8 dwrs_count ;

} ;

Listing A.7: The pm_dev_data data structure
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The Policy type. Each policy is represented by a data structure pm_poliy, re-

ported in Lis. A.5. When a policy module is loaded, its initialization code must

setup an element of this type and passes it to the core. Along with a name at-

tribute, the policy must define two callback:

• int (*sort_fs_list)(strut list_head *fs_list);

is a reference to an asynchronous call that is used to notify the policy when a

new sorted FSC list is requested. This methods takes the list of current FSC

and computes asynchronously, to do not block the core, the new ordered list

to notify back to the core.

• int (*ddp_handler)(unsigned long event, void *data);

is used by the core after a constraint assertion to notify the policy during

the FSC selection process. The first parameter is used to indicate the current

step of the FSC selection, coded with the reported defines, according to the

previously explained working flow. The second parameter is used instead

differently. During the CPM_EVENT_NEW_CONSTRAINT event it is a reference to

the newly asserted constraint. While, it points to the chosen FSC during all

the other phases. The policy use this callback to interact with the core and

assert if it is possible to continue with the FSC selection process.

The Governor type. Each governor is represented by a data structure pm_governor,

reported in Lis. A.6. When a governor module is loaded, its initialization code must

setup an element of this type and passes it to the core. Along with a name attribute,

the policy must define a callback:

• int (*build_fs_list)(strut list_head *dev_list, u8 dev_ount);

is a reference to an asynchronous call that is used to ask the governor to build

the FSC’s list merging the DWRs of the devices that are currently registered to

the framework. The DWR’s can be found associated to the device’s list which

is passed with the first parameter. The second parameter simply define the

number of devices in this list.core.

A.4.2 The frameworks’ core

The core of the framework is defined in the drivers/pm/pm_ore. source file.

The pm_ore entity has a fundamental role in the coordination of the framework

activities and in managing communication between the other modules. To support

these activities, a proper API is defined and exported by this entity. Let me review

it starting from the calls related to the system initialization phase and then looking

at the run-time support.
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The initialization API. A set of functions are exported to support the system

initialization phase. They are mainly related to entities registrations and data defi-

nitions. Lets me review the in details.

• int pm_register_platform_asms(strut pm_platform_data *pd);

is used by the platform code to register platform specific SWM. The input

parameter pm_platform_data essentially wraps a vector of pm_asm shown

in Lis. A.1, and a field that define their number. This function takes care of

copying the SWMs into a core’s local array. Moreover, each SWM is appended

with a list of constraints that will be asserted on it. This allows to know at

run-time the current QoS level which is granted by the system on each SWM.

• int pm_register_governor(strut pm_governor *g);

is used by governors to register to the core by passing a reference to a properly

initialized structure of type pm_governor, like the one shown in Lis. A.6.

• int pm_register_poliy(strut pm_poliy *p);

is used by policies to register to the core by passing a reference to a properly

initialized structure of type pm_poliy, like the one shown in Lis. A.5.

• int pm_register_devie(strut devie *dev, strut pm_dev_data *data);

is used by a device driver to register to the core by passing a reference to a

properly initialized structure of type pm_dev_data, like the one shown in

Lis. A.7. This structure must be properly initialized by the device with an

array containing its DWRs and a reference to the callback that must be used

by the core to notify the device during a FSC selection process.

• int pm_set_fs_list(strut list_head *fs_list);

is used by a governor to return to the core the new FSCs that it has been

built. Indeed, for performances reasons the FSC list is computed with an asyn-

chronous process during which the core framework continues to run. When

the governor has finished its computation it must notify the new FSCs list by

passing it to the core using this function. After this call the core deallocates

the old list and starts to use the new one.

• int pm_set_ordered_fs_list(strut list_head *fspl_head).

is used by a policy in a similar way of the previous one, to set up the new

FSCs’ ordered list. In this case also, the computation of this list is a non-

blocking activity and so the policy must notify the new ordered list to the

core using this function.
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The run-time API. Two functions supports the constraint assertion and removal,

accomplished by device drives at run-time. Lets me review them in details.

• int pm_update_onstraint(strut devie *dev,

pm_id asm_id, strut pm_range * range);

allows a device driver to assert a new constraint, or to update one that it has

previously asserted on the same SWM. To use this function, a driver must

specify a pointer to itself, that will be used to track assertion’s paternity, the

ID of the desired SWM and a range that represent the level of QoS that it

required.

After this call, the core executes different actions. First of all it checks, search-

ing in the list that it is appended to each SWM, if the considered device has

already required a constraint on the same parameter. If this occurs, it substi-

tute the existing with the new one. Then the core notifies for the first time the

registered policy about the raised request and, if the policy grants its autho-

rization, the core aggregates the required constraint to those that are currently

asserted for that SWM. It can happen that after the aggregation the current

FSC is no more valid: in this case the update process continues as explained

in Par. A.3.2 on page 123

• int pm_remove_onstraint(strut devie *dev,

pm_id asm_id, strut pm_range * range);

allows a device to communicate that it is no more interested in a previously

requested level of QoS. The parameters that are needed for this action are

similar to the assertion’s case, with the only difference that the specified range

must correspond to a previously requested one. After this request the core

undoes the previous aggregation and, if this operation enable some previously

invalidated FSCs a new distributed agreement process is triggered.

A.4.3 The user-space interface

The framework’s sysfs interface is exported at this path sys/kernel/pm. Under this

directory, a file called enable allows to enable or disable CPM from the user space,

by “echoing” respectively 1 or 0 into it. If CPM is disabled, devices, governors and

policies can anyway register to the framework but, after that, CPM does not build

any FSC list, does not manage any constraints assertion and does not search any

FSC that corresponds to the optimal global system working point. In other words, if

CPM is disabled, the system works in best-effort mode, without considering it. This

possibility has been mainly provided for debugging purposes, but it can be useful

also in normal circumstances. For instance, in order to avoid excessive overheads at

boot-time, it is convenient to boot with the framework disabled.

Two folders can be found also at this path. They are used to export information

on SWMs and FSCs.
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The SWMs folder. It contains a file for each registered SWM. For an easy access,

the file name correspond to the name given to the corresponding metrics. By simply

reading one of these files we get some information on the metric formatted into the

string:

ID:NAME TYPE COMPOSITION MIN MAX PERMISSION CONSTRAINT

where:

• ID is the numeric identifier of the SWM;

• NAME is the name of the SWM;

• TYPE is ’L’ or ’G’, depending whether the SWM is of type lower-is-better or

greater-is-better;

• COMPOSITION is ’A’ or ’R’ depending if additive or restrictive composition is

needed;

• MIN represents the minimum value allowed for the SWM;

• MAX represents the maximum value allowed for the SWM;

• PERMISSION can be ’w’ if the SWM is user writable, ’-’ otherwise;

• CONSTRAINT shows the constraint currently asserted on the SWM. It can be

’UnB’ if the SWM is unbounded, i.e. no constraints has been asserted.

This folder contains also two others files. The onstraint file can be used to assert

a new constraint on the SWM. This can be done by simply writing into it a string

with this syntax:

ID:VALUE

where:

• ID is the ID of the SWM on which we want to assert a constraint;

• VALUE is a single numeric value that represents the constraint boundaries

If we are considering a LiB SWM this value will be interpreted as an upper bound

otherwise, in a GiB case, as a lower bound.

The weight file allows instead to define a ’weight’ for the SWM. This values can

be used be an FSC ordering policy as a relative importance optimization value to

each SWM. The usage of this file is similar to the previous one and required write

a string with this syntax:

ID:WEIGHT

where:

• ID is the ID of the SWM on which we want to assign a weight;

• VALUE is a single numeric value that represents the weight.
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The FSC folder. It contains a sub-folder for each identified FSC by the current

governor. Inside each folder can be found a file for each SWM that define the

corresponding FSC, which once read return a string with this syntax:

ID:NAME PERMISSION TYPE RANGE

where:

• ID is the ID of the corresponding SWM;

• NAME is the name of the SWM;

• PERMISSION can be ’w’ if the SWM is user writable, ’-’ otherwise;

• TYPE indicates the kind of range is asserted by the FSC on the SWM. It can be

’R’ in case of range, ’L’ or ’U’ for lower and upper bound respectively;

• RANGE shown instead the actual value of the range defined by the considered

FSC on that SWM.

This directory contains also a link named urrent which points to the directory

corresponding to the FSC that is active at that time.

A.5 Governor and Policies Examples

This section presents an example of policy and governor modules, which have been

used to validate the framework and to run the tests described in Sec. 4.1 on page

99.

A.5.1 The performance policy

This policy has been implemented with the goal of testing the mechanism for the

weighting of SWMs, used to implement the objective function. By using this policy

it is possible to effectively support the power saving vs. performances optimization

of the system. The two required callbacks are implemented that way:

The sort_fs_list receives from the core the original list of FSCs and then scans

all the elements contained inside it. For each FSC, it considers the set of SWMs that

are involved in the FSC and retrieves the corresponding weight. These are used

to evaluate the objective function for that SWM and then, by summing all of the

obtained values, it evaluate the objective function for the FSC. At the end a new list

of FSC ordered according to the computed results are registered to the core.

The ddp_handler is invoked by the core during the FSC selection process and, at

each call, it always returns an agreement to the core. Indeed, this policy do not

implement any access control.
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A.5.2 The exhaustive governor

The Exhaustive Governor performs the identification of the FSCs which correspond

to the set of DWRs declared by registered devices using an exhaustive search. This

choice has allowed a simple and fast implementation, although this approach can

surely be optimized to improve its efficiency. We have also chosen to provide a first

implementation that exactly maps the definitions of DWRs and FSCs, as described

in the theoretical model formulation, with the aim of proving the validity of the

model itself. Moreover, an exhaustive research represents the intrinsic maximum

computational complexity of the problem and thus it is also useful for stress testing

purposes.

The build_fs_list callbacks receives as input a reference to the list of devices

that are currently registered to CPM. After some checks on the formal validity

of the parameters the governor executes the algorithm that computes the FSCs.

This search algorithm is based on a depth first on a graph data structure which

is implemented using a recursive function. The pseudo-code of that function is

represented in Lis. A.5. The recursive call has two exit conditions:

• the DWRs of the last device has been reached and all the SWMs’ ranges merge

with the ’candidate FSC’ generating the new FSC;

• a range of the DWR currently considered does not merge with the related

range of the ’candidate FSC’

This DWRs merge routine works by considering all the possible combinations

of DWRs from all the devices. For each combination, it compares the first two

DWRs, considering the common SWMs and computing the intersection of their

ranges. If two such ranges have an empty intersection, then the two DWRs do not

overlap. In this case, the comparison process is aborted and the algorithm continues

with the next combination of DWRs. Otherwise, the result of a merge represents a

’candidate FSC’. Ranges expressed on SWMs which are not common to two DWRs

are automatically selected to be part of the candidate FSC. Indeed, we can imagine

to add to the DWR that do not consider this SWM an unbounded range, i.e. a range

that space from the minimum to the maximum value declared on the metric.

When the comparison between the first two DWRs of a combination is com-

pleted, the same process is re-iterated considering the ranges of the candidate FSC,

obtained at the previous step, and the next DWR of the combination. The process

continue until all DWRs belonging to the combination have been considered, ob-

taining an FSC, or an empty merge has been found found, thus aborting the search

and continuing the exploration.

The pseudo-code presented in Lis. A.6 shows the algorithm described above.
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Data: Devices List, totalDevice

Results: list of found FSCs

level ←− 1;

f oundFSC←− empty;

recursive_fsc_search(device, level);

begin

forall DWR of device do

forall ASM of DWR do
oldValue = f indold(ASM, candRanges);

if (oldValue! = NULL) then
newValue←− merge(ASM, oldValue);

if (newValue! = NULL) then
push(newValue, candRanges, level);

else
goto nomerge;

end

else
push(ASM, candRanges, level);

end

end

if (level == totalDevice) then
newFSC←− top(candRanges);

add(newFSC, f oundFSC);

else
recursive_fsc_search(device− > next, level + 1);

end

nomerge : pop(candRanges,level);

end

end

.
Figure A.5: The pseudo-code of the FSC recursive search algorithm
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Data: Devices’ DWRs

Results: list of found FSCs

begin
compute all the combinations composed by a DWR for each device;

forall the computed combinations do
CandidateFSC += merge ranges on a common SWM;

if all merges are possible then
CandidateFSC += ranges on SWMs not in common;

IdentifiedFSC += CandidateFSC;
else

this combination do not generate and FSC;

end

CandidateFSC := empty;

end

end
Figure A.6: The pseudo-code of the DWRs merge algorithm.



Appendix B
Main Linux Frameworks for

Power Management

“If you want to accomplish something in the

world, idealism is not enough – you need to choose

a method that works to achieve the goal. In other

words, you need to be pragmatic.”

Richard Stallman

C
lassical low-power design methodologies defined mechanisms to solve

power issues from the physical up to the gate and architectural levels of

abstraction. Such methodologies are generally based on a precise hardware

support, e.g. by directly operating on the supply voltage. In parallel, the higher

software layer can be effectively employed in defining a suitable mechanism to

provide the application with system-wide power management. There exist several

software frameworks addressing power management. In this survey we focus on

those designed for Linux-based systems, and which was originally designed for

classical general purpose platforms, such as Intel processors for desktop comput-

ers. Nevertheless, their applicability is of (quite) general validity, also for mobile

embedded systems.

This appendix review some of the main frameworks supporting power manage-

ment that can be found already embedded into the mainline Linux kernel.
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Power Optimization
Clock gating MVS Power gating

Static Dynamic

Pure OS

CPUFreq • •

CPUIdle • • • •

S/R Fw • •

Clok Fw • •

V/I Fw • • •

Cross-Layer
Centralized (DPM) • • • • •

Distributed (QoS) • • ? ? ?

Table B.1: This table shows a summary comparison among the presented software

frameworks. The classification is made considering different aspects: static

or dynamic power consumption involved, clock gating, MVS, and power

gating.

B.1 Frameworks Classification

Purpose of this section is to provide a concise overview of the different software

support for power optimization. A summary of the available approaches is reported

in Table B.1. We can identify two classes of software support: i) pure-OS and ii)

cross-layer. The main differences rely on where the power optimization mechanisms

are applied and which kind of interaction is exposed toward the user-space.

Pure-OS techniques are completely implemented within the Operating System;

they do not provide support for direct input from software applications. They

attempt to figure out application requirements, based on previously seen behavior

or current activities, and enforce some control decision either on a single device

or an entire subsystem. We can further divide these techniques in two groups,

whether they tend to optimize static or dynamic power consumption. In the former

case, also named resource hibernation, they are generally based on the exploitation

of ON/OFF states of the peripherals. In the second case we refer to resource tuning

techniques, since power minimization in obtained by properly configuring available

operational parameters of the target platform, according to the changing run-time

requirements.

Cross-layer techniques aggregate data from multiple layers into power manage-

ment decisions; indeed a properly defined interface allows the user space to assert

Quality-of-Service requirements and exploit these information to support system-

wide optimization. These techniques could be further grouped into centralized

and distributed. Centralized techniques have been developed mainly to support the

power optimization of relatively simple and dedicated embedded systems, for ex-

ample personal media player, but have some scalability problems related to their

complexity which impacts on the implementation effort. On the other hand, dis-

tributed techniques are designed to be more scalable to easily address much more

complex architectures, for example new generation smart-phones.
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B.2 Pure-OS Techniques

We have to distinguish between device-specific techniques and system-wide tech-

niques. The former class relates to those techniques addressing specific devices,

while the latter attempts at optimizing the system as a whole, in a more abstract

view of the application.

Being one of the more power demanding device, power optimization of the

system processor is of major interest. Two are the main frameworks available in

a modern Linux kernel: one is devoted to reduction of static power consumption

while the other addresses the optimization of dynamic consumptions.

B.2.1 CPUidle: Do Noting Efficiently

This framework focuses on power management of an idle CPU. We refer to a CPU

as being idle when it is doing nothing useful for the application semantics, there is

no workload, and it can be turned out to avoid unnecessary power consumption.

We have several opportunities in this context, ranging from clock gating or shut-

ting down increasing portions of the circuitry, down to completely power gating

the processor. These different solutions correspond to a well-defined set of idle

states that modern high-performance processors exhibit. Idle states are character-

ized by particular processor configurations, with precise power consumption levels

and wakeup latency. Moving from the simple approach of clock gating to power

gating, there are increasing penalties, mostly related to wakeup latency. For in-

stance, waking-up from an idle state requires just to re-enable the clock, while

waking-up from a deep idle state could require to re-initialize the CPU and restore

its registers from main memory too.

The CPUidle framework [13] addresses power/performance trade-off from a soft-

ware layer standpoint, with the target of exploiting all the available idle states of

a processor without impacting on the overall system performance. An effective

solution to this problem requires an adequate support to identify the real system

requirements in terms of CPU latency. To simplify the exploiting of such a sen-

sitive power management techniques, the Linux implementation defines a proper

software design which separate the low-level software mechanism from high level

interface toward the framework clients. An overall view of the framework architec-

ture is given in Fig. B.1.

The low-level interface supports the definition and registration of processor-

specific drivers. Those drivers are required to define the set of idle states available

on the target CPU. Each state must be characterized by a set of attributes defining

their power contribution, exit latency and a target residency time which is consid-

ered necessary to get advantage from entering that state. Every idle state could

also be associated to a specific callback function which implements all the required

low-level code needed to actually enter the state.

The high-level interface instead provides support for the definition of a governor,
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Figure B.1: An overview of the CPUidle framework’s software design.

a processor-independent algorithm for choosing the effective idle state to enter, ac-

cording to system constraints on maximum latency. There might be more than one

governors registered in the core, but just one can be used at any time. Widely used

implementations provide two governors, called ladder and menu. The ladder gov-

ernor adopts a step-wide policy: every time the CPU is idle, a deeper idle state is

entered only if we were previously able to remain in that state for a period greater

than its corresponding target residency. Instead of relying on a simple heuristic

approach, the policy implemented by the menu governor is latency-based and ex-

ploits the information on the maximum allowed system latency in order to better

identify the idle state that should be reached every time there is the opportunity.

This governor is certainly more efficient but requires a closer collaboration among

applications and kernel drivers, to collect such requirements.

The core implementation is completely platform independent and provides the

glue code that defines the required data structures, support drivers, governors reg-

istration and run-time selection. A proper monitoring interface is also exported to

the collecting statistics on idle states usage.
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B.2.2 CPUfreq: Use Just the Right Power

The CPUfreq framework [12] focuses on the optimization of dynamic power con-

sumption by exploiting DVFS mechanisms. A processor is in an active state when

there is some workload ready to be executed. A workload can either be CPU-

bounded or I/O-bounded; the former requires intensive CPU computations on

memory located data, while the latter presents a more heavy information exchange

toward relatively slow peripherals such as disks or low-bandwidth buses. In gen-

eral, a single task cannot be exclusively classified in a single class; it happens that

some portions are more CPU-intensive, while others are more like I/O operations.

This means that the nature of a task could change during its execution; the combi-

nation of different workloads is even more evident if we consider a multi-tasking

system with many concurrent applications running at the same time and sharing

the few available processors.

The CPUfreq framework considers these combined behaviors in order to op-

timize power against performance. The basic idea is to exploit the possibility to

perform computations at different operative frequencies. The set of available fre-

quencies define the performance states of the platform; lower frequencies correspond

to lower voltages and thus also less performance states with reduced power con-

sumption and increased execution time. Switching from a performance state to

another inserts overhead that must be kept into consideration. Moreover, there is

the need to efficiently identify the real system performance requirements. These

observations make that of the CPU frequency scaling a rather complex mechanism

to exploit. The framework available in Linux simplifies the implementation by a

proper software design which aims at decoupling low-level software mechanisms

from high level policies. An overall view of the software architecture is depicted in

Fig. B.2.

The low-level software mechanisms are implemented by drivers, required to de-

fine both platform specific information, and a set of control routines. The required

information is related to the available performance state and the corresponding

transition overheads, while the platform specific hardware mechanism to actually

perform a transition must be wrapped by a set of properly defined callback func-

tions. An high-level interface allows to define a governor, which is the platform

independent algorithm for the evaluation of system performance requirements and

of the selection of the optimal performance state. At least one governor must be

defined, and multiple governors enable adaptive and dynamic multiple optimiza-

tion strategies. The default framework implementation provides five governors, the

more interesting and widely used being the on-demand governor. It implements a

scaling policy based on the run-to-idle optimization. The CPU load is monitored in

a periodic time frame, and according to the load observed in the past time frame a

scaling decision is taken according to a simple rule: try to keep the CPU utilization

around the 80% [12]. On CPU utilization higher that that threshold, an immedi-

ate scaling up to the maximum available frequency is required, to the contrary, on
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Figure B.2: An overview of the CPUfreq framework’s software design

lower CPU utilization the scaling down is required step-by-step but only after a

pre-configured number of negligible load time-frames are elapsed.

The core implementation provides the code to bind the platform independent gov-

ernors down to the architecture specific driver. Moreover, a proper notification API

is provided which allows other kernel components not only to be aware about CPU

scaling operations but also to somehow interact with those optimization decisions,

for example to assert a veto on some changes due to some contingent constraints.

The clock distribution tree and the power domains have some common charac-

teristics: they have system-wide view, i.e. they interact with all the available on-chip

devices, and they define a hierarchical dependency tree, i.e. a local power opti-

mization decision could impact on different devices. Indeed, these two components

require system-broad optimization techniques which are able to collect information

from multiple devices in order to identify a proper optimization strategy.

B.2.3 The Suspend/Resume Framework

The Suspend/Resume Framework provides the proper support for a complete and

efficient resource hibernation strategy. Linux supports three static-power saving

states: standby, suspend-to-RAM, and hibernation. The main difference between them

stands on how the device state is preserved. In a standby state a device is not

functional, but it is still powered at least to grant the preservation of the content

of its configuration registers. This kind of power saving addresses static power

optimization, since the device logic is powered down and only a retention voltage

is applied to the configuration array. This state could be always entered whenever
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a device is not in use since the recovery time is relatively short and practically

negligible if compared to the typical operating system reaction time. In suspend-to-

RAM a device is completely powered off, the contents of the configuration array are

moved backed up in a secure area in main memory. Recovering from such a state

is more time demanding since all the peripherals configurations must be recovered

from main memory, and sometime this is possible only after a proper cold-start

device initialization procedure. Hibernation is the more effective saving state: power

consumption minimization is at its optimal value, saving the system configuration

in a persistent storage and powering off all devices (memory included in some

cases). Unfortunately, as one can argue, this last state is also the most expensive

in terms of recovery time. A complete system restart is generally required, and

it is done during the boot-up procedure in order to keep dynamic overhead at a

minimum.

The main challenge for a successful implementation is the proper tracking of

device functional dependencies. Different devices within a system could be inter-

connected to form subsystems. For instance a USB device, such as a memory stick,

is connected to the port of an HUB which in turn connects to a port of a USB host

controller. All this chain define a USB subsystem. Finally the host controlled could

be either a system device or a gateway towards a PCI bus; which in turn defines

another subsystem. Considering all the devices within a system and their inter-

dependencies with respect to their functional dependencies what we get is logical

dependency tree rooted at the CPU and having a device at each end node. This

tree specifies an implicit order that must be respected both on suspend, starting

the suspension from nodes and visiting the tree up to the root, and on resume, by

converse visiting it starting from the root node down to the device nodes.

B.2.4 The Clock Framework

The Clock Framework has been introduced in the Linux kernel to optimize the dy-

namic power consumption associated to the clock distribution tree. The rationale

on which the proposed framework is based is the management of the system clock

signal. The hierarchical generation and distribution of the clock signal1 as reported

in Figure B.3 opens several opportunities for engineers to reduce power. The ef-

fective validity of the approach is driven by the fan-out value and the switching

activity of the clock signal.

Purpose of the framework is to export the programmability of such components

to the software level. In this way, it is possible to cut-off some tree edges accord-

ing to the desired computational activity; this is actively done by switching off a

selected subset of LDO, PLLs or DIV modules. The approach takes even more

advantage in those partitioned systems, in which several independent subsystems

receive the clock from a common source, the top-level system clock, and scale the

input signal according to local optimization policies, using DIV modules. In this

1Usually, for performance reasons, through an H-tree
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Figure B.3: An example of clock hierarchically.The clock signals are generated and dis-

tributed among the subsystems by means of several PLLs and DIV modules.

This architecture of the clock distribution tree allows some level of control

over the different system clocks.
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way, individual operating requirements can be locally addressed with little silicon

cost.

There are two main mechanisms for clock management: clock stopping and clock

scaling. The former technique allows to disconnect the clock line from the associated

PLL, and to eventually power off the PLL. Such mechanism gates the clock to the

entire sub-tree controlled by the actual PLL that has been turned off. Clock scaling,

on the other hand, does not disable clocks, but it instead scales down the incoming

signal using physical dividers or reprogramming the top PLL for the current sub-

tree.

The software layer introduced by this framework completely and transparently

hides the complexity of the clock generation and dependencies. The implementa-

tion provided by a modern Linux kernel is based on a minimal abstract interface to

be implemented by the platform code of each machine. Every machine code that

want use this framework is required to implement a set of callback routines which

basically allows to: a) get a reference to a clock signal; b) set the required clock rate

for a reference; c) release a reference once the clock is no more needed. This simple

abstract API could mask a quite complex platform specific implementation. The

platform code usually is in charge of defining a proper data structure to represent

each clock signal available in the system and to track their hierarchical structure.

Indeed, a simple call to a clock set_rate() method usually triggers a complex set

of modifications that could also navigate all the clock tree up to PLLs in order to

get out the expected result at the required clock end node.

By default, the abstract interface does not define a user-space interface, mainly

for complexity and flexibility reasons, but generally every platform tends to export

such an implementation for at least supporting debugging and monitoring. Un-

fortunately, the framework also does not keep track of inter-dependencies among

devices, but only dependencies among Clock Generation Units (CGUs). Moreover,

the framework cannot cover the entire platform. This is mainly due to the fact that

some hardware resources, such as bus interconnects and memory L2 caches, do not

have any associated device driver.

B.2.5 The Voltage and Current Control Framework

This framework provides a quite specific support focusing on the efficiency of volt-

age regulators. Modern SoC architectures are composed of multiple voltage do-

mains to better fit specific requirements of each hardware block. In general, the

voltage domains within a SoC could have some dependency relation between them

and someone are directly controlled by a dedicated voltage regulator usually pro-

vided by an extern companion chip.

Each device in the system is powered by a certain voltage domain and, according

to the specific functionalities required by a device, the current drained from the

domain could also be very different. For instance, if we consider an audio-codec

controller, its current drain is very different if we are listening to some audio stream
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Figure B.4: The efficiency of a voltage regulator depends on the working mode and the

current load.

via a loudspeaker or we are simply performing some digital audio mixing activities.

A physics study of the dynamics of a regulator device shows that its efficiency is

highly affected by the instantaneous current load. The Regulator Power Efficiency

(RPE) of a regulator is defined in Equation B.1.

RPE = Pout/Pin (B.1)

Equation B.1 compares the amount of power Pin that is presented as input to the

regulator, and how much Pout we are able to derive from it; it is a direct measure

of how much energy is lost in the regulator itself. A classical characterization of a

regulator efficiency is very close to the graph depicted in Fig. B.4.

This diagram shows that when the regulator works in normal mode, it is able

to efficiently support only current loads over a certain threshold value. On the con-

trary, once the current load on the corresponding voltage domain drops under this

threshold, the current requirement could be satisfied with a better efficiency only

switching the regulator to an idle operating mode. This kind of behavior of volt-

age regulators are worth to be considered in order to implement a really holistic

approach to power management in a modern embedded system. The framework

presented in this paragraph has been introduced in the Linux framework quite re-

cently, but provides a well designed and mature support to simplify the exploitation

of this kind of optimization. The framework is composed of four separate interfaces:

• regulator, allows a regulator driver to register a set of required operations to

the core framework;

• consumer, allows a device to notify voltage and current requirements to the

regulator driver;
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• platform, allows the system platform code to define the voltage domains, their

dependencies and thus the creation of the regulator tree;

• userspace, exports a lot of useful voltage/current data and operation mode

statistics via a sysfs interface to support device power consumption and sta-

tus monitoring.

B.3 Cross-Layer Techniques

Mechanisms and techniques supporting power management can be implemented

at different abstraction levels; not only at architectural and middleware abstraction

levels but also at software level. Indeed, applications are aware of their Quality-

of-Service expectations. For instance, if we consider the playback of a network

video stream: then we could easily identify at the application level some of the

requirements, e.g., in terms of network bandwidth and decoding processing work-

load. Thus, the development of holistic approaches should support the aggregation

of data from multiple layers into power management decisions. Cross-Layer tech-

niques try to exploit mechanisms from different abstraction levels at the same time.

The idea behind them is to provide properly defined mechanisms to collect abstract

information from the higher abstraction levels, i.e. user-space applications, and ex-

ploit them to give some useful hints to the lower abstraction level techniques in

order to improve the exploitation of the available architectural mechanisms.

The power optimization techniques proposed in this class are essentially based

on the definition of a single coordination entity, which stands in between the user-

space applications and the available architectural mechanisms. However, we could

identify essentially two orthogonal approaches: centralized and distributed; the

main difference is in the role of the coordination entity. In centralized approaches

the coordination entity has a direct control on the available mechanisms which are

used to perform power management according to a single and system-wide opti-

mization policy driven by the requirements collected from user-space. Distributed

approaches, instead, implement only a lightweight, single, and system-wide opti-

mization policy but exploit also many other devices and subsystem specific poli-

cies. The idea is to implement a distributed control model where user-space re-

quirements are aggregated and used to feed some input to more specialized local

controls.



150 Chapter B. Main Linux Frameworks for Power Management

Policy

Operating Points

Strategy

Power Management

OS
A

A
CC

9OP

5OP
7OP

3OP

1OP

6OP

8OP

4OP

2OP

Congruence
Class

State

Operating

Device

Constraints

8OP

Power

Considerations

Figure B.5: The DPM architecture abstraction objects.

B.3.1 DPM: A centralized Approach to PM

The Dynamic Power Management (DPM) framework, presented in [97], is both an ar-

chitectural and interface proposal for a centralized cross-layer technique targeting

high-performance embedded systems. Purpose of this proposal is to exploit effec-

tive power management mechanisms from the architectural view-point and from

the management view-point at the OS level. This framework is neither a DVFS al-

gorithm, nor a power-aware OS and not a mechanism such as ACPI. Its relevance

comes from the integrated engineering that has been applied to provide an highly

efficient power management solution. To this purpose, the framework architecture

is based on few abstraction objects: operating points, task states and policies. Each

one cooperates information for performance and power management purposes. An

overall representation of these abstractions is depicted in Fig. B.5.

An operating point (OP) is the lowest level abstraction which encapsulates a mix-

ture of physical and logical parameters, representing a power-related sensible char-

acterization. Each OP is thus a specific set of 〈parameter, value〉 pairs corresponding

to a precise system power/performance configuration. At any given instant of time,

the system is allowed to execute in a specific OP. Examples of operating points for a

processor, as specified for the PowerPC architecture, are: core voltage, CPU operat-

ing frequency, bus frequency, and memory timing. The designer is in charge of the

choice and setting of the OPs, as many as required by the capabilities of the target

platform and the desired complexity of the framework implementation. The frame-

work allows also the definition of congruence classes (CCs) which are sets of OPs that

could be considered to be equivalent from certain power/performance optimization

strategy. A task state (TS) is the high-level abstraction corresponding to a possible

system operating state. In the control model defined by DPM, the system is seen

as a state machine defined on a limited and well defined set of states. Example of

states could be: idle, interrupt handling, CPU-bound process, I/O-bound process.

The definition of the actual set of TS is once again in charge of the integration en-

gineer. At run-time, each task could be associated with a task state. This mapping
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allows to identify in which task state the system is by simply looking at what task

is scheduled to run at every time instant. Thus, switching from one task to another

could imply the switching of the system among different task states.

Since each task state might have its own power/performance profiles, it is worth

defining a mechanism to map task states to operating points, or more in general to

a congruence class. This is achieved through the introduction of the policy abstrac-

tion, representing such mapping, Indeed, according to the time running task, the

DPM core framework is able to automatically identify the current task state and

accordingly map this on a congruence class defining a limited set of eligible oper-

ating points. Identifying a congruence class is not sufficient to actually select the

best OP. To that purpose two more concepts are considered in the framework: the

constraints and the optimization strategy. A constraint is a requirement on a specific

OP value that could be asserted by either applications or device drivers. The core

framework collects constraints asserted by all system entities and use them to inval-

idate the OPs that are not compatible with them. This first mechanism could thus

reduce the number of eligible OPs available in the current congruence class. Finally,

where more OPs are still valid after considering all the constraints, the optimization

strategy defines the ultimate rules to give each valid OP a relative preference value.

The framework is mostly an architectural proposal which requires customization

efforts for each specific platform in order to be effectively used. The core framework

provides just the glue code with the basic mechanisms to define the abstraction ob-

jects, but their actual definition is entirely an effort of the platform engineer. Sec-

ondly, the definition of the abstraction objects is a rather complex problem by itself

since requires a deep knowledge of a platform as a whole. Nevertheless, this re-

mains one of the more interesting proposal for a centralized cross-layer optimization

framework which is worth to consider especially in the case of relatively simple and

dedicated embedded systems that require fine grained and low-overhead control.

B.3.2 QoSPM: A distributed Approach to PM

The QoS Framework has been the first attempt to implement a sufficiently generic

framework to support distributed cross-layer power management within the Linux

kernel. This kernel infrastructure has been proposed by Intel, essentially as an ex-

tension to the pre-existing Latency Framework, for optimizing the power consump-

tion of a WiFi network interface.

The basic idea of this framework is to define a set of QoS parameters which are

available to both applications and in-kernel code to assert requirements on them.

The parameters defined are sufficiently abstract not to reduce the portability of the

solution; in the current implementation they represent network throughput, net-

work time-out and system latency. Of course this initial set of parameters is quite

limited, but could be easily extended provided that the new parameters are com-

pletely platform independent. A well defined and simple can be used to assert

requirements on each of these parameters which are then aggregated by the core
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framework. The requirements aggregation is performed using a simple boundary

function, i.e. the maximum or the minimum of the requests is considered to be

the more restrictive value for the parameters. Drivers and other kernel code could

declare their interest on a particular parameter by simply subscribing the corre-

sponding notification chain. 2. Once a new request on a parameter happens, the

aggregated value is notified by the core framework to each driver or subsystem

which has registered to the notification chain associated to that parameter.

Once a driver is notified by a new aggregated value for a certain parameter of

interest, it could exploit that information in order to fine tune its local optimiza-

tion policy. For instance, the current implementation of the CPUidle framework

described so far, when an idle state transition has to be decided it takes into con-

sideration the system latency requirements. This information is valuable since we

know that the exit time from an idle state could be highly varying and thus could

have also a great impact on the experienced latency of the system. Thus, the op-

timization policy implemented by CPUidle could easily discard all the idle states

which have an exit time greater that the aggregated request on this parameter. The

behavior implemented in this framework is thus that of a distributed control model.

The framework core collects requests from applications and provides a simple op-

timization policy, based on the boundary aggregation, that deliver some tuning

parameters to many others specialized policies. It is worth noticing the current

implementation of the notification mechanism support only a best-effort approach.

Indeed, once a driver receives a notification of an update on a certain parameter it

could decide to do its best to satisfy the requirements but if that is not possible any

kind of feedbacks is delivered up to the requesting user-space application.

The best-effort nature of the current implementation, along with the simple ag-

gregation functions supported, are justified by the need to keep the QoS framework

as simple as possible. This design choice has allowed to easily export to the Linux

kernel the paradigm of a cross-layer distributed approach to power management.

Nevertheless these are also some of the main limitations of the current implemen-

tation and motivate the research interest in this specific area of power management

at operating system level.

2A notification chain is a standard in-kernel support to make asynchronous calls to a registered entity

and are used to deliver events and data in a completely decoupled away.



Appendix C
Computational Complexity

Analysis

“Simplicity is a great virtue but it requires hard

work to achieve it and education to appreciate it.

And to make matters worse: complexity sells

better.”

Edsger W. Dijkstra

T
his appendix present the complexity analysis of the main algorithms used by

the proposed technique. First, a rapid review of computational complexity

theory is given. This mostly aims at explaining the technical terms that are

going to be used without any claim to be exhaustive considering also the theoretical

complexity of the topic. Then, I analyze the algorithms with the main goal to focus

the possible issues related to the amount of computational and temporal resources

needed to execute the model.

C.1 Theory overview

Computational complexity theory [101] investigates the problems related to the re-

sources required to execute algorithms. It is useful for analyse the scalability of a

proposed solution and to place practical limits on what can and cannot be do with

it. Computational complexity must be studied from a abstract standpoint, using

only generic metrics that are technology independent. This last key point is ab-

solutely mandatory, otherwise the same solution could have a different efficiency

depending on the specific technology on which it is run.
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This theory relies on a mathematical analysis of algorithms independently in

the particular implementation and input data. The first step in the analysis is to

abstract over the input and so, to find parameter(s) that characterize the size of the

input, which is usually indicated by the variable n. The second step is to abstract

over the implementation, in order to find a measure that pinpoints the running

time of the algorithm not tied to a particular compiler or computer, for instance the

number of arithmetic operations needed to complete the algorithm or the number

of loops or the number of branches in a tree. Both the steps provide a measure of

the number of steps taken by the algorithm as a function of the size of the input,

which is indicated by the function f (n).

The “Big O” notation. Complexity analysis is not trivial for two main reasons.

First it hard to find a parameter n that completely give a characterization of the

number of steps of an algorithm. Therefore, usually the worst-case and the average

case are considered, computing fWORST(n) and fAVG(n). Secondly, it is hard to

achieve an exact and precise analysis, therefore it is usually necessary to approxi-

mate. Hence the so called Big O notation is used. Briefly, “an algorithm is O(n)”

means that its measure is at most a constant time n, with a possible exception of a

few small values of n; formally:

f (n) = O(g(n)) if ∃(n0, c) | c ≥ 0, n ≥ 0, ∀n ≥ n0 f (n) ≤ cg(n) (C.1)

The function f (n) must be monotonically increasing and computable in a finite

time. The O() notation defines the asymptotic analysis.

Computational Complexity Theory is based on a generic computation model,

the Turing Machine, and on the measure of two generic metrics: time and memory

space necessary to execute an algorithm.

Time complexity. This kind of complexity describes how the amount of time

needed to solve a specific problem scales compared to the size of input data. More

precisely we can say that a Turing Machine needs an amount of time f (n) to com-

plete a computation if, given an input of length n, it outputs the result after f (n)

elaboration’s steps.

Space complexity. Analogously to the previous definition, this second kind of

complexity describes how the amount of memory needed to solve a problem scales

compared to the size of input data. We can say that a Turing Machine needs a

memory space of size f (n) if, given an input of length n it needs f (n) temporary

memory location to compute the results.
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Figure C.1: Outline of the algorithms that will be presented and analyzed in terms of

computational complexity

Optimum, Average and Worst case. Since it is not possible to evaluate precisely

the time and the memory used to execute an algorithm, usually the optimum, av-

erage and worst case are considered.

• The optimum is the case where data are the best possible for the algorithm, i.e.,

those that require the less number of computations to be processed.

• The average is the most interesting case because provide an actual characteriza-

tion of the complexity of the algorithm, but is also the hardest to be analyzed.

It is often treated through repetitive simulations and an approximate value is

statistically obtained.

• The worst is the case where data require the maximum number of steps and

iterations of the algorithm.

To analyze the optimum case the Ω function is defined:

g(n) = Ω( f (n)) if ∃(n0, c) | c ≥ 0, n0 ≥ 0, ∀n ≥ n0 g(n) ≤ c f (n) (C.2)

which indicates that g(n) grows more slowly than f (n): is an algorithm is Ω(n), it

means that in the best case it requires f (n) steps to be completed.

C.2 Technique analysis

In this analysis, I will focus on the three main steps of the model, outlined in

Fig. C.1.
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C.2.1 FSC identification

The ’FSC identification’ step of the proposed technique, described in Sec. 3.4 on

page 75, is comparable to the well-know Depth-first search over a well balanced

tree. We report the detailed algorithm in pseudo-code.

• currentDWR is the DWR of a device currently analyzed by the algorithm.

• candidateFSC is the partial FSC brought on at each step of the algorithm and

made of subsequent intersections of DWRs.

• currentLevel is the level of the tree currently analyzed.

• foundFSCs contains a list of found FSCs (partial results) and at the end of the

algorithm the complete result.

• The merge function computes the intersection between a temporary FSC and

the current DWR.

• The insert function adds a found FSC to the results.

• Backtrack moves the index of the algorithm a level up to the current one.

To analyze the computational complexity of the algorithm we define the follow-

ing parameters:

• Branching factor (b): is the maximum number of successors of any node. In

our case is the maximum number of DWRs for a device.

• Maximum length (m) of any path considering the entire tree. In our case it is

given by the number of devices + 1.

The worst case for the described algorithm corresponds to case where every path

of the tree must be visited because every DWR results to have an intersection, or

at most just the DWRs of the last devices analyzed do not merge. The overall time

complexity for the worst case is thus O(bm).

The space complexity in the worst case is given when an FSC is found for each path

followed by the algorithm and result to be O(bm + 1), then asymptotically O(bm)

The optimum case is when no DWR of the first device analyzed has an intersec-

tion with any DWR of any other device. Hence there is not any merge at all and

the algorithm is blocked after having tried to intersect the DWR of the first device.

The time complexity results to Ω(b).
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Data: devices’ DWRs

Results: list of identified FSCs

begin
currentDWR←− treeRoot;

candidateFSC[0]←− unbounded;

currentLevel ←− 0;

f oundFSCs←− NULL;

forall paths in the tree do
currentDWR = next depth first search node;

increase currentLevel by 1;

if (merge (currentDWR, candidateFSC[currentLevel− 1]) is not null)

then
candidateFSC[currentLevel] = merge (currentDWR,

candidateFSC[currentLevel− 1];

if (currentLevel is the last level of the tree) then
insert candidateFSC[currentLevel] in f oundFSCs;

backtrack;

decrease currentLevel by 1;

end

else
backtrack;

decrease currentLevel by 1;

end

end

end
Figure C.2: FSC identification algorithm in pseudo-code.

C.2.2 FSC selection

The algorithm for the selection of a new FSC is not computationally expensive. It

consists in scanning the elements of the set of identified FSCs and selecting the

first FSC that matches the asserted constraint. The only variable that should be

considered to evaluate the complexity is n: the number of FSC in the set.

The worst case is when the entire the list must be analyzed, eventually without

finding a FSC that matches the constraint neither at the last step. I this case the

time complexity is given by O(n), and similarly even the space complexity results

to be O(n), i.e. the necessary memory for each FSC.

The optimum case is when the first element of the list matches the constraint

and thus a FSC is soon carried out. The time and space complexity is O(1) because

just one element has to be analyzed.
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C.2.3 Distributed agreement

Also the algorithm which drives the distributed agreement results trivial from the

point of view of the complexity analysis and particularly it is linear with respect to

the number of devices.

Hence, both time and space complexity are O(m), where m is the number of

devices. However, note that the computation complexity of the local policy of each

device driver has not been considered because each driver can implement a different

policy. If one wants to analyze specific cases the complexity of each driver’s policy

define a single contribute to be added linearly.

Finally the complexity of the complete Distributed Decision Process results to

be the sum of two linear algorithms and thus it is linear too.
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