
Android ADK application for STM32
RS232 client for Android

Beretta Michele
Matr. 782936, (michele3.beretta@mail.polimi.it)

Report for the master course of Embedded Systems
Reviser: PhD. Patrick Bellasi (bellasi@elet.polimi.it)

Received: September, 25 2013

Abstract
The goal of this project is to design and implement an Android accessory that enables to an Android device to communicate
through the standard RS232 serial port. The project consist of two components: the first is the ADK accessory, based on
the evaluation board STM32F4DISCOVERY [8], and the second is an Android application used to communicate with the
accessory.

1 Introduction

1.1 What is an accessory

The ADK (Accessory Development Kit) is a reference
implementation for building accessories for Android
devices. An accessory can be any external hardware device
that provides some kind of functionality to the Android
system (audio dock station, weather station, . . .) and
it is connected through USB port (or Bluetooth). The
connected accessory acts as the USB host and the Android
device acts as a USB device. The reason why the accessory
is the USB host is manly because not all the Android
devices support the USB host mode.
Between the accessory and the Android device is
established a point-to-point packet-based communication
channel through which is possible to communicate.
The protocol that regulates the communication is called
AOA and its complete specification is freely available
online [5]. Android provides a simple API for interfacing
with an accessory, communication is handled using only
two streams as is the case for network programming.
The accessory can be any hardware device capable
of communicating using the AOA protocol, so its
implementation is strongly tied to the particular hardware
used.
There are implementations of different types of accessory
designed for different platforms. For example there
is a particular version of the popular Arduino board
specifically designed to easily create new accessories [3].

1.2 RS232 accessory

The project aims to the development of an accessory that
enables to an Android device to connect and communicate

using other interfaces in addition to those available on the
device.
Most of the Android devices are smartphones or tablets,
the number of wired interfaces available on those devices
is very limited. There is hardly any device with any other
interface in addition to USB, headphone jack and some
kind of video output.
It would be interesting to expand the connectivity of
these smartphones using some kind of external device,
something like the docking stations used for notebooks.
The accessory that has been developed permits the
connection and the bidirectional communication with a
standard RS232 serial interface any Android device. The
possibility to have a serial port directly on an Android
device can be useful to connect to some particular
peripheral that still use that type of interface.

Figure 1: STM32F4DISCOVERY evaluation board

For the implementation of this type of accessory
is necessary to develop a dedicated hardware and
software. The hardware of the accessory must be
equipped with a serial interface and a USB host

interface. The choice was to use the evaluation board
STM32F4DISCOVERY (Figure 1). This board is
equipped with the STM32F407VGT6 microcontroller, it
is a 32-bit ARM Cortex-M4 CPU running at 168MHz
with 1 MB Flash and 192 KB RAM. This microcontroller
provides a lot of interfaces among which as many as 6
serial ports (configurable in different modes of operation
and transfer speed) and a USB host port.
In addition to the accessory it is also necessary to develop
an application that allows an easy management of the
device and of course provide bidirectional communication
through the serial port.
The rest of the report is organized as follows: section 2
briefly describes the existing implementation of the project
used, section 3 describes in detail the implementation
of the accessory, section 4 describes in detail the
implementation of the Android application, section 5
explains how to compile and run the various components,
section 6 shows a use case of the accessory, section 7
analyzes the possible future works for this project.

2 Existing accessory implementation
The project was realized as an extension of an accessory
already implemented for the evaluation board. The starting
point was the implementation of an existing accessory for
the evaluation board STM32F4DISCOVERY. With that
accessory it was possibile to turn on or off a LED of the
evaluation board and to read the status of a button.
The source code is divided into two projects, one for the
accessory STM32F4-ADK [2] and one for the Android
application HelloADK [1]. Both projects have the source
code freely available on Github.

3 RS232 accessory
The project STM32F4-ADK implements a bare metal
system that offers a simple way to communicate with an
Android device via AOA protocol.
The library’s interface used to communicate is the
following

void USBH_ADK_Init(char* manufacture,
char* model, char* description,
char* version, char* uri, char* serial);

USBH_Status USBH_ADK_write(USB_OTG_CORE_HANDLE *pdev,
uint8_t *buff, uint16_t len);

uint16_t USBH_ADK_read(USB_OTG_CORE_HANDLE *pdev,
uint8_t *buff, uint16_t len);

ADK_State USBH_ADK_getStatus(void);

USBH_ADK_Init initializes the communication
between accessory and Android device, during this
phase it is established the communication channel
and are exchanged information of the accessory

to the Android device (serial number, description,
vendor name, optional url of a website. . .)

USBH_ADK_Read used to read packets sent from the
Android device

USBH_ADK_Write sends a packet to the Android device

USBH_ADK_getStatus is an utility function that is
used to determine the status of communication

This implementation has been kept and has been used as
the basis for the project because it was simple and worked
well.
Only later were identified problems with that library which
have somehow affected the project.
The most severe problem is a bug in the function
USBH_ADK_Read, this bug consists in the fact that
the function occasionally returns a packet that has been
already received previously.
This bug does not compromises the operation of the
application because the multiple reception of a packet
containing the command “turn on the LED” or “turn off
the LED” has no side effects.

3.1 Serial port abstraction layer

To develop a system that can be easily ported to another
platform without changing too much code the first thing to
do is to define an abstraction layer for the various serial
ports offered by the microcontroller.
The way in which the serial port hardware is controlled
strongly depends on the hardware used, each vendor
typically provides within the BSP of the microcontroller
also the code required to use the serial port. Being bound,
in this case, to the libraries provided by ST would have
affected the portability of the system to other platforms.
First of all has been defined the way how to represent a
serial port. A serial port is characterized by a series of
parameters: baud rate, stop bits, parity type and hardware
flow control and a number that uniquely identifies it.
These characteristics are summarized in the following data
structure

typedef struct _SerialPortConfig {
uint32_t baudRate;
uint8_t number;
uint8_t stopBits;
uint8_t parity;
uint8_t hardwareFlowControl;

}SerialPortConfig;

Each field of the data structure (excluding port number) is
used to save the various options supported by bit fields.
For example, for the field stopBits and
hardwareFlowControl are defined the following
possible values

enum StopBits {
BITS_0_5 = 0x1,
BITS_1_0 = 0x2,
BITS_1_5 = 0x4,
BITS_2_0 = 0x8

};

enum HardwareFlowControl {
NO_HFC = 0x1,
RTS = 0x2,
CTS = 0x4,
RTS_CTS = 0x8

};

Also the other fields have preset values, the definitions
of all the these values are contained in the file
inc/serialport_config.h.
With this data representation a SerialPortConfig
object can express all the supported configurations of a
serial port. This is done by setting or clearing every single
bit to express whether or not the port supports a particular
configuration. For example we can expose a port with
only a possible configuration, this could be the case when
to the serial port there is attached a device so that its
configuration cannot be changed. A port can be exposed
with all, or a part, of its capabilities so that it can be used
with different devices.
Here there is an example of port that supports only a
particular configuration

SerialPortConfig availablePorts[] =
{

{
.number = 0,
.baudRate = BR_9600,
.stopBits = BITS_1_0,
.parity = NO_PARITY,
.hardwareFlowControl = NO_HFC

}
};

While this is an example of a port that can used be in
different modes

SerialPortConfig availablePorts[] =
{

{
.number = 1,
.baudRate = BR_19200 | BR_38400 | BR_57600,
.stopBits = BITS_1_0 | BITS_2_0,
.parity = EVEN_PARITY | ODD_PARITY,
.hardwareFlowControl = RTS | CTS

},
};

This way of representing a serial port is completely
independent from the microcontroller.
The abstraction layer for the use of the serial port is defined
by the following interface

extern SerialPortConfig activeConfig;
int getPortsConfig(SerialPortConfig **portConfig);
int openPort(SerialPortConfig* config);
int closePort();
int sendChar(uint8_t portNumber, uint8_t data);

void dataReceived(uint16_t data, int serialPort);

activeConfig variable containing the active
serial port configuration, if no serial port is
opened this number is set to the constant
NO_SERIAL_PORT_ACTIVE

getPortsConfig initializes an array with all the
available serial ports with their configurations, each
field can have multiple flags set at the same time
indicating that more than one mode is supported

openPort opens communication with a serial port
specifying a particular configuration, in this case, the
configuration must have passed only a flag set for
each field

closePort closes the communication with the serial
port currently active, if no port is opened this
function does nothing

sendChar sends a single character on the serial port
currently active, if no port is opened this function
does nothing

dataReceived is an already implemented method that
must be called when data is received on the serial
port

An implementation of this interface is contained
in the file src/uart_hardware_stm32.c, this
implementation employs the libraries provided by ST for
the use of the serial port.

3.2 Communication protocol

The communication channel between the accessory and the
Android device is used for both to exchange data passing
on the serial port and to exchange control commands,
therefore it is necessary to define a communication
protocol to differentiate the two types of flows.
The approach used is to create a small communication
protocol based on different packets that regulates all the
possible operations between the two devices.
This is the structure of the packet used

header payload

The maximum length of the packet is 64 bytes, this is due
to a limitation of the AOA protocol.4 bytes are used for the
header and up to 60 bytes for the payload. The structure of
the header is the following

type length id reserved

type 1byte, identifies the type of the packet which can be
one value of this enumeration
enum PacketType {

REQUEST_PORT = 1,
AVAILABLE_PORT = 2,
OPEN_PORT = 3,
CLOSE_PORT = 4,
SEND_DATA = 8,
RECEIVE_DATA = 9

};

length 1 byte, length of the payload of the packet

id 1byte, the id was introduced because of the strange
behavior of the accessory described before and it is
used to recognize duplicate packets. Each package
is uniquely identified by this id number, in this way
it is possible to determine if a received packet is new
or is a duplicate of the previous

reserved this field is not used and is fixed to 0xFE. The
main reason is to align to 32 bits the structure of the
packet

Here there are the details of all the packet types

REQUEST_PORT Accessory← Android
Asks for all the serial ports available
header

AVAILABLE_PORT Accessory→ Android
List of serial ports with their available configurations
header SerialPortConfig1 ...

OPEN_PORT Accessory← Android
Opens a serial port with a specific configuration
header SerialPortConfig

CLOSE_PORT Accessory← Android
Closes the serial port with the specified number
header serialPortNumber

SEND_DATA Accessory← Android
Packet of data from the application to the accessory
header data

RECEIVE_DATA Accessory→ Android
Packet of data from the accessory to the application
header data

With this simple protocol the Android device is capable
of connecting to the accessory, determine what are the
available serial ports with their various configuration,
initiate the connection with a serial port and then
communicate.

3.3 Protocol implementation
The implementation of the protocol described above
handles incoming packets and sends packets to the Android
device when necessary. The code has been split into two
separete manager: PacketManager and ProtocolManager.
The Packet Manager is responsible of interpreting
the incoming packets and create outgoing packets.
That manager provides a number of methods
to create each type of packet defined in the
protocol (es. createAvailablePortPacket,
createSendDataPacket, . . .), and another set
of function that extracts the data from the various
types of packets (es. handleReceivedData,
handleOpenPort, . . .).
The Protocol Manager is responsible to perform the
actions associated with each particular type of packet

(eg. upon receipt of package OpenPort must match the
opening of the serial port) and send packets when certain
events occur (eg. when data is received on the serial port
must then be sent to your Android device).
The simple interface of the protocol handler is shown
below

extern int packetToSend;

void packetReceived(uint8_t* packet, uint16_t length);

packetToSend is a boolean variable that indicates
whether a packet should be sent, this variable is set
when there is the need to send a packet. The main
loop of the application periodically reads the value
of this variable and if it is true sends a packet

packetReceived is an already implemented method that
must be called when a packet is received from the
Android application

src/packet_manager.c and src/protocol_manager.c
contains the implementation of the two managers.

3.4 Components interaction
The application components and their interactions are
summarized in figure 2.

Figure 2: RS232 accessory components

The code is divided mainly into two parts: a hardware
dependent part and an hardware independent part. The
former includes all the component that interact directly
with the hardware peripherals, which are: the USB Host
stack, the USB ADK implementation and the Serial port
abstraction layer.
The latter is the is the code that implements the
functionality of the accessory, which are: protocol
manager and packet manager.

4 Android application
The application HelloADK was a very simple program,
which purpose was to control a LED and read the status of
a button. In this case it has not been possible to reuse the

source code of the application because of its bad design.
It was evidently created just for example purposes. All
the source code is contained within a single activity which
makes it a single not-modular entity, due to this design
choice the application had a series of problems.
The most important was the fact of not being able to
maintain the connection with the accessory when the
device is put into stand-by mode or when the user changes
the application.
Because of Android’s design it is not possible to
guarantee a persistent connection using only one activity,
it is necessary to use a separate entity to manage the
communication. This separate entity has to be a Service.

4.1 Application structure
The application was designed from scratch, its structure is
shown in figure 3

Figure 3: Android application components

The main component is the RS232Service and it takes
care of handling the accessory, the rest of the application
is a set of activities used by the user to interact with the
accessory.

4.2 RS232 Service
The service handles the communication with the accessory
managing it exclusively, all activities must use the service
to communicate with the accessory. By structuring the
application in this way all the problems affecting the
application HelloADK are resolved and the system is much
more modular and more easily expandable.
Being always active, the service can keep the connection
with the accessory even when the Android system is
put into standby mode. It is also possible to use the
accessory by more than one activity at the same time.
The service communicates with the accessory using the
protocol described in section 3.2, while uses a different
method to communicate with the activities.
There are several possible methods of communication
between a service and an activity, each of them fits specific
situations, the one used consists of using a Messenger
object between each activity.
This method allows an activity to exchange Message
objects with the service. The choice of this method

was almost inevitable because it is necessary to establish
a bidirectional communication channel between activity
and service and the use of a Messenger to exchange
Message is the only method that provides bidirectional
communication. The need for bi-directionality is caused
by the fact that the service may need to contact the activity
in order to notify events.

Since every activity of the application needs to
communicate with the service it has been created an utility
class that allows the establishment of the connection to the
service and the subsequent communication.

// instantiate a Service Manager object
new ServiceManager(this, Service.class, new Handler() {

@Override
public void handleMessage(Message msg) {

switch (msg.what) {
case Service.MSG_ID:

// handle message
break;

default:
super.handleMessage(msg);

}
}

});

// send a message to the service
Message msg = new Message();
...
mServiceManager.send(msg);

Through the ServiceManager class it is possible to
receive messages from the service by overriding the
handleMessage method, it is also possible to send
messages to the service using the method send. This
system to communicate with the service allows a quick and
easy application development.

The various activity just need to connect to the accessory
using a ServiceManager and: map the actions of
the user into messages to send to the accessory, interpret
and then somehow display the messages sent from the
accessory.

The messages exchanged between service and activity
aren’t the same of the communication protocol, but they
are very similar as showed below

// id of messages that can be only received
// by the service
public static final int MSG_CONNECT = 3;
public static final int MSG_DISCONNECT = 4;

public static final int MSG_MESSAGE_RECEIVED = 6;

public static final int MSG_OPEN_PORT = 7;
public static final int MSG_CLOSE_PORT = 8;

public static final int MSG_GET_PORTS_CONFIGS = 10;

// id of messages that can be only sent by the service
public static final int MSG_CONNECTION_OK = 1;
public static final int MSG_CONNECTION_FAILED = 2;

public static final int MSG_SEND_MESSAGE = 5;

public static final int MSG_PORTS_CONFIGS = 9;

4.3 Activities
The application was designed with the idea of creating a
simple graphical interface to use the accessory. It was
therefore chosen to use a few simple activities to make the
application easy to use.
The structure, in terms of activity and the various
interaction, of the application is shown in figure 4.

RS232ADK is the main activity, displays the connection
status with the accessory and show its information.
From here it is possible to connect or disconnect to
the accessory

SelectPort is the activity that displays the serial ports that
can be used. From here it is possible to select a port
and change or update its configuration. It is also
possible to open the communication with a port that
has been configured

ConfigPort is the activity that allows the configuration of
a serial port. The accessory can expose different
options for the various parameters of the serial port,
here those parameters can be selected

CommunicationActivity is the activity used to
communicate via the selected serial port. It is
possible to send messages by entering the text
inside the line edit, and then press the button Send.
Received messages will be displayed in the text box,
to differentiate the messages received from those
sent it is used in a different color

5 Installation
For the accessory setup is necessary to have the following
hardware: an Android device, an evaluation board
STM32F4DISCOVERY, a microUSB-A to microUSB-B
cable. That cable may not be easy to find because of the
fact that the type of connection is quite strange. However it
is possible to use two cables to build an equivalent one, this
is done by connecting together a microUSB-B < − >USB
cable with a microUSB OTG cable.
Once procured the necessary hardware must compile and
install the firmware and the Android application.

5.1 Accessory
In order to build the firmware to flash on the
microcontroller of the evaluation board it is necessary to
have the appropriate toolchain. The toolchain must be
a GNU ARM one for bare metal systems, you can use
an existing precompiled one or you can compile your
own. This project has been compiled with the precompiled
toolchaing of Ubuntu for bare metal ARM systems [6].
The source has a GNU Makefile that automates the
compilation process, it is sufficient to run the make

command and the generated firmware will be saved in the
file build/FLASH_RUN/project.bin.
To flash the firmware on the evaluation board the
Makefile has a particular target names program that
allows programming with STLINKv2 or OpenOCD.

5.2 Android application
The Android application is a normal application and is
built using the tools provided by the SDK of Android itself.
The only note is that the compilation target must
be one version of the Google APIs, this is
because the package android.hardware.usb (or
com.android.future.usb) that contains the API
for interfacing with the accessory ADK is present only in
the Google APIs and not in the standard API.
With the Android command line tools building the
application from source is done with these commands

$ android update project
--subprojects
--target "Google Inc.:Google APIs:14"
--path .

$ ant release

It will be created the bin folder which contains the
generated program ready to be installed on any Android
device.

6 Usage example
In the following section there is a real example of use of
the application.
To use the application you must connect the accessory to
a serial port on which you can read and write in order to
control the data that is exchanged.
It was used a serial USB adapter [4] to be able to use the
serial port directly from a PC.

6.1 Connection
By launching the program, the screen that is presented is
shown in figure 5, when the application starts it will not
connect to the accessory.

Figure 5: Application start

Figure 4: Activity interaction

By pressing the Connect button the application tries to
connect to the accessory, if this is actually connected an
Android notification appears, asking for permission to use
the accessory. This permit is requested each time you want
to use the accessory, however there is the possibility to
remind the choice in the application settings.

If the connection is successful the service for the
management accessory is started. The first action taken by
the service is to read the information from the accessory as
shown in figure 6.

Figure 6: Accessory connected

6.2 Ports configurations

Once the accessory is connected you can switch to the
port configuration activity by pressing on the Open button.
Initially these ports do not have any configuration as shown
in figure 7.

Figure 7: List of available ports

From here you can configure individual ports using
the interface in figure 8, each entry contains all the
configurations supported by the particular selected port.
As mentioned earlier, these can have only one or many
possible configuration for each field, this setting is
contained in the firmware of the accessory.

Figure 8: Port configuration

6.3 Communication

Once that the port has been configured it is sufficient to
click on it to open it as shown in figure 9. The application
passes to the communication activity that shows the data
exchanged through the serial port. A different color is

udes to distinguish sent messages from received messages
, green for sent messages, gray for received messages.

Figure 9: Ports configurated

Figure 10 shows a short (and nice) exchange of text strings
between accessory and application. There is a line edit
where to write the message to sent, messages are sent only
when the button Send is pressed.

Figure 10: Example of communication

In this example the program used to send and receive
through the serial port is Cutecom [7] (a graphic
serial terminal program for Linux, it is equivalent
to Hyperterminal on Windows). Figure 11 shows a
screenshot of that application used to send the messages
showed in Figure 10.

Figure 11: Cutecom

7 Future works
The project could be extended by adding other features.
With regard to the accessory there are mainly two major
improvements: porting to other hardware platforms and
integration with an RTOS. In this project it has been
used the evaluation board STM32F4DISCOVERY, it could
have been used other types of microcontrollers (AVR,
Microchip ...) or other STM evaluation boards to
implement the accessory. The code has been written
so to abstract as much as possible the hardware of
the microcontroller used, there should be no particular
problems in a porting to a different platform.
The other main improvement is to switch form a bare metal
system to a RTOS, this change requires the writing of a
library for a specific RTOS such as FreeRTOS or ChibiOS.
This would make the porting from an hardware to another
even more simpler because the RTOS provides a lot of
features of hardware abstraction.
From the point of view of the Android application there are
several possible improvements.
For the time being the application only allows the exchange
of printable characters, an extension could the integration
of a hex viewer to "read" also generic stream of data, or
the possibility to save the conversations to a file, or a better
mechanism to select the configuration of a serial port. . .
and other changes always related to the graphical interface.
This accessory adds a sort of virtual serial port to the
Android device. There are other types of interfaces that
could be added, for example an interface for the CAN bus
or for the I2C bus. Theoretically there are no particular
constraints on the type of interface that the accessory
can expose to the Android device. The main limitation
is imposed by the computation power offered by the
processor of the microcotroller and the speed limitation
imposed by the AOA protocol.

References
[1] Yuuichi Akagawa. Helloadk for stm32f4-adk.

[2] Yuuichi Akagawa. Stm32f4-discovery with android
adk.

[3] Arduino. Arduino adk.

[4] FTDI. Usb ttl serial cable ttl-232r-3v3-we.

[5] Google Inc. Aoa protocol.

[6] Launchpad. Gcc arm embedded.

[7] Alexander Neundorf. Cutecom.

[8] ST. Discovery kit for stm32 f4 series - with stm32f407
mcu.

	Introduction
	What is an accessory
	RS232 accessory

	Existing accessory implementation
	RS232 accessory
	Serial port abstraction layer
	Communication protocol
	Protocol implementation
	Components interaction

	Android application
	Application structure
	RS232 Service
	Activities

	Installation
	Accessory
	Android application

	Usage example
	Connection
	Ports configurations
	Communication

	Future works
	References

