
A Linux kernel driver for theST-Mi
roele
troni
s LIS3LV02DL a

elerometerfor INS-based GPS assistan
eNi
holas Angelo CrespiO
tober 23, 2008

Contents
1 Introdu
tion 31.1 Global navigation satellite system 31.1.1 Global Positioning System 31.2 GNSS augmentation . 41.2.1 Inertial navigation with GPS and a

elerometers 52 Requirements And Constraints 62.1 Driver requirements . 62.1.1 Hardware platform
onstraints 72.2 Assistd Requirements . 72.3 Software platform
onstraints . 83 Design 93.1 MEMS driver . 93.1.1 Con�guration interfa
e . 93.1.2 Output interfa
e . 103.2 MEMS driver ar
hite
ture . 123.3 Assistd . 133.3.1 Reading from the kernel driver 133.3.2 Integration . 133.3.3 Output interfa
e . 153.4 Assistd ar
hite
ture . 163.5 Testing . 174 Experimental Results 184.1 The experiment . 184.2 Integration method . 204.3 Sampling frequen
y . 204.4 Thresholding a

elerations . 211

Prefa
eAs we're heading towards integrated, embedded portable devi
es, manufa
turersare qui
kly adding new features to their produ
ts: one of these, on
e prerogativeof spe
ialized navigation devi
es, is a GPS re
eiver. These devi
es have the
hallenge to be useful navigators even when their GPS re
eivers are preventedfrom attaining a �x on enough satellites. It happens often in urban
anyonsettings, as tall buildings and
on
rete walls hinders the GPS signal re
eption.When this happens the GPS re
eiver must be assisted with information
omingfrom other sensors in order to synthesize the
urrent position.

2

Chapter 1Introdu
tion
1.1 Global navigation satellite systemGlobal Navigation Satellite System is the standard generi
 term for satellitenavigation systems that provide autonomous geo-spatial positioning with global
overage. A GNSS allows small ele
troni
 re
eivers to determine their lo
ation(longitude, latitude, and altitude) to within a few metres using time signalstransmitted along a line of sight by radio from satellites. Re
eivers on theground with a �xed position
an also be used to
al
ulate the pre
ise time as areferen
e for s
ienti�
 experiments.1.1.1 Global Positioning SystemAs of 2007, the United States NAVSTAR Global Positioning System (GPS)is the only fully operational GNSS. It uses a
onstellation of between 24 and32 medium earth orbit satellites that transmit pre
ise mi
rowave signals, thatenable GPS re
eivers to determine their
urrent lo
ation, the time, and theirvelo
ity (in
luding dire
tion). GPS was developed by the United States Depart-ment of Defense.A GPS re
eiver
al
ulates its position by
arefully timing the signals sentby the
onstellation of GPS satellites high above the Earth. Ea
h satellite
ontinually transmits messages
ontaining the time the message was sent, apre
ise orbit for the satellite sending the message (the ephemeris), and thegeneral system health and rough orbits of all GPS satellites (the almana
).These signals travel at the speed of light (whi
h varies between va
uum and theatmosphere). The re
eiver uses the arrival time of ea
h message to measure thedistan
e to ea
h satellite, from whi
h it determines the position of the re
eiver,using trilateration te
hniques. The resulting
oordinates are
onverted to moreuser-friendly forms su
h as latitude and longitude, or lo
ation on a map, thendisplayed to the user.It might seem that three satellites would be enough to solve for a position,sin
e spa
e has three dimensions. However, a three satellite solution requires thetime be known to a nanose
ond or so, far better than any non-laboratory
lo
k3

CHAPTER 1. INTRODUCTION 4
an provide. Using four or more satellites allows the re
eiver to solve for timeas well as geographi
al position, eliminating the need for a very a

urate
lo
k.In other words, the re
eiver uses four measurements to solve for four variables:
x, y, z, and t. While most GPS appli
ations use the
omputed lo
ation and notthe (very a

urate)
omputed time, the time is used in some GPS appli
ationssu
h as time transfer and tra�
 signal timing.GPS problemsSin
e GPS signals at terrestrial re
eivers tend to be relatively weak, it is easyfor other sour
es of ele
tromagneti
 radiation to desensitize the re
eiver, makinga
quiring and tra
king the satellite signals di�
ult or impossible.Solar �ares are one su
h naturally o

urring emission with the potential todegrade GPS re
eption, and their impa
t
an a�e
t re
eption over the half of theEarth fa
ing the sun. GPS signals
an also be interfered with by naturally o
-
urring geomagneti
 storms, predominantly found near the poles of the Earth'smagneti
 �eld. GPS signals are also subje
ted to interferen
e from Van AllenBelt radiation when the satellites pass through the South Atlanti
 Anomaly.GPS signals are also degraded by di�erent arti�
ial sour
es. In automotiveGPS re
eivers, metalli
 features in windshields, su
h as defrosters, or
ar windowtinting �lms
an a
t as a Faraday
age, degrading re
eption just inside the
ar.Man-made EMI (ele
tromagneti
 interferen
e)
an also disrupt, or jam, GPSsignals.Urban environments with streets
utting through dense blo
ks of stru
tures,espe
ially skys
rapers, have a great impa
t over GPS signals re
eption. Un-fortunately, this happens when the need for lo
alization is at its highest peak.To solve this problem, a re
eiver should rely on another method of positioningwhile the GPS signal is unavailable.1.2 GNSS augmentationGNSS Augmentation involves using external information, often integrated intothe
al
ulation pro
ess, to improve the a

ura
y, availability, or reliability ofthe satellite navigation signal. There are many su
h systems in pla
e and theyare generally named or des
ribed based on how the GNSS sensor re
eives theinformation. Some systems transmit additional information about sour
es oferror (su
h as
lo
k drift, ephemeris, or ionospheri
 delay), others provide dire
tmeasurements of how mu
h the signal was o� in the past, while a third groupprovide additional navigational or vehi
le information to be integrated in the
al
ulation pro
ess.The augmentation may also take the form of additional information beingblended into the position
al
ulation. Many times the additional navigationsensors operate via a di�erent prin
iple than the GNSS and are not ne
essarilysubje
t to the same sour
es of error or interferen
e. The additional sensors mayin
lude:

• Automated Celestial navigation systems;

CHAPTER 1. INTRODUCTION 5
• Simple Dead re
koning systems (
omposed of a gyro
ompass and a dis-tan
e measurement);
• Inertial Navigation Systems.Among all these methods, the latter is rapidly gaining a

ura
y and
oste�e
tiveness as the digital sensor te
hnology is maturing. Furthermore, thedevelopment of motion sensors built built with the MEMS1 te
hnology enabledthe embedding of navigation systems in portable devi
es.1.2.1 Inertial navigation with GPS and a

elerometersGPS systems have some problems when working in
losed environment or inurban areas, where the need of lo
alization is highest. An inertial navigationsystem
ould be used in
on
ert with GPS positioning when the signal is un-available.Inertial navigation systems using a

elerometers is based on the numeri
alintegration of a

elerations
oming from the sensors. A

elerometers measureslinear a

eleration among some given axis: to obtain information about theangular velo
ity of the devi
e we need either a
ouple of a

elerometers in ashifted-axis
on�guration, or a set of gyros
opes and an a

elerometer. If there'sonly one a

elerometer available, we lose information about the rotation of thedevi
e: however, it the devi
e is kept still we
ould still measure its motion.Computing motion from a

eleration is a

omplished through a simple dou-ble integration. Given our a

eleration a(t) and a time t0 < T when the devi
ewasn't in motion, we
an
ompute the speed fun
tion s(t) as:

s(t) =

∫ t

t0

a(t) dt .We
an now obtain the position p(t) as the integral of the speed fun
tion
om-puted before:
p(t) =

∫ t

t0

p(t) dt .It's worth nothing that the error term
aused by the sensor (
omposed ofun
ertainty, quantization error, nonlinearity, . . .) is magni�ed by the double in-tegration. Another error sour
e arises from the numeri
al integration algorithm
hosen. Anyway, the distan
e
overed without the GPS �x should be small, sothe estimation error imposed by the numeri
al integration shouldn't pose a bigproblem.
1Mi
roele
trome
hani
al systems

Chapter 2Requirements AndConstraintsThe proje
t's goal is to write a linux kernel driver for the LIS3LV02DL MEMSsensor manufa
tured by ST and write a simple daemon, assistd, whi
h providesposition updates based on the sensor's readings.As this proje
t is a
ademi
 in nature, most of requirements have been statedin advan
e by the proje
t supervisor. However, further meetings with the No-madik team at ST provided some additional requirements as well as some
on-straint over the driver's interfa
e.2.1 Driver requirementsThe driver must be written to serve several appli
ations, ea
h with it's own setof requirements:GPS assistan
e: as stated before, one of the goal is to implement a small dae-mon that assists gpsd by providing position updates synthesized from thea

elerations. To a

omplish this the driver must provide samples with itsgreatest a

ura
y and with a frequen
y of 30 Hz or better. Furthermore,the output interfa
e must be fast
ompared to the output frequen
y andeasily a

essible from userspa
e. Finally, the driver must provide either itsupdating frequen
y via a
on�guration interfa
e or it should blo
k read-ings from
y
le to
y
le. We'll dis
uss more about the assistd requirementslater.Gesture support: this appli
ation allows to perform gestures by simply mov-ing the devi
e around. To a

omplish this, the driver must provide samplesat least at 30 Hz, with no
onstraint on a

ura
y. Moreover, the a

eler-ation samples must be equally spa
ed in time. Similar to GPS assistan
e,the output interfa
e must be a

essible, fast and syn
hronized (i.e.: itshould blo
k reads until it has new data).6

CHAPTER 2. REQUIREMENTS AND CONSTRAINTS 7Joysti
k: this set of requirements is fo
used towards allowing to use the devi
eas a joysti
k by moving it around. To a

omplish this, the driver mustprovide samples at 30 Hz or more, with no hard
onstraints on a

ura
y.Again, it must also have a fast, a

essible output interfa
e that providesits own syn
hronization.To sum up, we need to write a devi
e driver that
ould sample at least at
30 Hz, with high sensitivity (when asked to), it should provide a fast, a

essibleoutput interfa
e that syn
hronize appli
ations by blo
king the readings on theinterfa
e until new samples are available.As these appli
ations are mutual ex
lusive, there's no need to
are aboutmultiple appli
ation reading the output interfa
e, although this feature
ouldbe a ni
e addition.2.1.1 Hardware platform
onstraintsEmbedded systems development fa
es important requirements and
onstraintsarising from the spe
i�
 platform that will be used. As the proje
t is fo
usedtowards developing software for Nomadik, an embedded portable devi
e, wemust investigate
arefully platform-spe
i�

onstraints.For this proje
t, the platform used will be the Nomadik NHK-15 r3.1 ref-eren
e board from ST Mi
roele
troni
s. It's based on the STn8815 SoC thatin
ludes an ARM pro
essor (ARM926EJ), two I2C bus adapter (named I2C-0and I2C-1), smart graphi
s a

eleration, general purpose I/O interfa
e and soon. The MEMS sensor that we'll use, the LIS3LV02DL, has an adjustable sens-ing frequen
y between 40 Hz and 2, 56 KHz and an adjustable fulls
ale of
±2 g or ±6 g. It also supports data-ready interrupt generation, dire
tion dete
-tion interrupt generation with adjustable
onditions and thresholds and free-fallwakeup interrupt generation, again with adjustable
onditions and threshold.The sensor supports either I2C or SPI bus, but on the NHK-15 r3.1 board it's
on�gured to use the I2C interfa
e, and it's
onne
ted to the SoC through theI2C-0 adapter. Its interrupt pin is
onne
ted via GPIO port 82. For moreinformation about this sensor, you
an �nd its datasheet at www.st.
om.12.2 Assistd RequirementsThe other goal of the proje
t is the development of assistd, a GPS assistan
edaemon. For the same reason of the driver, the proje
t supervisor provided alist of requirements for the daemon to be met.Assistd must be a UNIX daemon; it have to base its
on�guration on anexternal
on�guration �le, whi
h
an be provided as an argument (in parti
ular,the lo
ation of both the output interfa
e and the
ontrol interfa
e of the drivermust be provided in that �le). The daemon should a

ept a
ommand line1http://www.st.
om/stonline/produ
ts/literature/ds/12094/lis3lv02dl.htm

CHAPTER 2. REQUIREMENTS AND CONSTRAINTS 8parameter that spe
i�es the lo
ation of the
on�guration �le: if it's not present,it should look for the
on�guration �le in the /et
 dire
tory.The primary purpose of the daemon is to provide position updates. A po-sition update is de�ned as an estimate of the distan
e
overed by the devi
efrom the last time an update was requested to the time of the
urrent request,measured in meters.The requirements asso
iated to the daemon
an be divided in two subsets:one asso
iated with the internal implementation and one asso
iated with theoutput interfa
e.Talking about the internal implementation, assistd must implement somesort of quadrature rule algorithm in order to obtain position updates from thesensor readings. Dead re
koning systems based on a

elerations are known todiverge qui
kly, be
ause of double error integration), hen
e there's no stri
t
onstraints on the approximation error introdu
ed by the integration method asit's supposed to be
onveniently small. However, if several integration methodare individuated, the method with the least approximation error should be
ho-sen. On the other side, the daemon should take samples at least at the sensor'sminimum output frequen
y (40 Hz for LIS3LV02DL), so it must implement anintegration method that's fast enough to keep pa
e with that.The output interfa
e of the daemon should be easily a

essible from otherdaemons (su
h as gpsd). It should also have a me
hanism that senses whenanother appli
ation reads the stored positions and thus reset them (in orderto provide position updates). It should also provide a method of
learing thestored speeds.The stru
ture of the position updates is also subje
t of some requirements.It must be a three double-pre
ision �oating point ve
tor, ea
h
ontaining theposition update along a single axis. The axis ordering for the updates
an bedepi
ted as below.




dx

dy

dz



2.3 Software platform
onstraintsThe version of linux that will be used for the development is STlinux 2.3, whi
h
ontains a 2.6.20 kernel pat
hed with platform-spe
i�

ode. As the linux API
hanges from version to version, knowing that you'll work on a spe
i�
 kernelversion will ease you task a lot, be
ause there won't be the need to read throughdi�erent trees in order to see what's
hanged and what's not. The softwaretool
hain for
ross-
ompiling the software is in
luded in the STlinux 2.3 release,as well as a s
ript for setting the appropriate environment variables.

Chapter 3DesignThis
hapter deals with the translation of the previously gathered requirementsinto a design for both the driver module and the integration daemon. It in-trodu
es the possible solutions that
ould address the requirements and thedrawba
ks asso
iated with them; then, it shows the reason why a spe
i�
 solu-tion has been preferred. Finally, the ar
hite
ture of the two pie
es of softwarewill be dis
ussed.It's worth noting that this
hapter is written to resemble a single designphase, as in the waterfall development model, even though the proje
t was basedon an iterative development model. It's an expedient that has been adopted inorder to provide an organi
 report of the design phase, instead of a list of gradualimprovements applied on an initial bare design.3.1 MEMS driverThe requirements gathered in the previous phase are primarily oriented at howthe devi
e must be
on�gured to operate and what performan
e must met. Thefew ar
hite
tural
onstraints gathered in the previous phase address the outputinterfa
e performan
e and the
on�guration interfa
e.3.1.1 Con�guration interfa
eThe standard
on�guration interfa
e provided by the linux kernel is sysfs. It's avirtual �le system that is used to export information about devi
es and driversfrom the kernel devi
e model to userspa
e, and is also used for
on�guration.Its theory of operation is straightforward. For ea
h obje
t in the driver modeltree a dire
tory in sysfs is
reated. For devi
e drivers there's the possibility to
reate attributes, whi
h are simple �les: the rule is that they should only
ontaina single value and/or allow a single value to be set. These �les show up in thesubdire
tory of the devi
e driver respe
tive to the devi
e. It's also possible to
reate attribute groups, subdire
tories �lled with attributes.Based on this properties, we de
ided to use sysfs to
reate a
on�gurationinterfa
e for the devi
e. 9

CHAPTER 3. DESIGN 103.1.2 Output interfa
eFor this interfa
e we have a few options, as the linux kernel provides severalmethods to export data to userspa
e.Sysfs. As stated above, sysfs
an be used also as an output interfa
e, by
on�g-uring a read-only attribute and providing a show fun
tion. This methodis slow and doesn't provide any native lo
king me
hanism, but it's a ni
eaddition for troubleshooting purpose; plus it doesn't require mu
h e�ortto implement.Chara
ter Devi
e. A
hara
ter devi
e is a spe
ial �le related to a devi
e thattransmits data one byte at a time. The linux kernel provides a simpleimplementation of a
hara
ter devi
e: it provides a stru
ture that holds a
olle
tion of pointers to fun
tions that will be
alled when the
orrespond-ing operation will be performed on the �le (open, read, write, seek,
lose,�ush and so on), plus two API to register and remove it.This approa
h has several advantages over sysfs: the
hara
ter devi
e �ledoesn't need to be opened and
losed at every read, saving a
onsiderableamount of time; it
an also export multiple values over a single �le, so they
an be read simultaneously. However the devi
e returns data in byte-sized
hunks (
 type
har), so a software that have to read a

eleration data(three signed word) from this interfa
e must employ its own
onversionroutine.Like sysfs, a
hara
ter devi
e doesn't provide native lo
king me
hanism,although it's possible to implement a blo
king
har devi
e using kernelAPIs like wait_event and wake_up.Memory Mapping. The most famous memory mapping API is mmap, whi
hallows the mapping of devi
e memory dire
tly into a user pro
ess' addressspa
e, providing a user programs with dire
t a

ess to devi
e memory.It's a very fast output interfa
e, but it doesn't provide a lo
king me
hanismand la
ks a method to link
ustom fun
tions to operations performed onthe memory, making it hard to implement a lo
king me
hanism.Input Interfa
e. The linux input subsystems provides a simple method ofexporting data
oming from input devi
es su
h as keyboards, joysti
ksand mi
es to userspa
e: the event interfa
e. Ea
h event interfa
e is aspe
ial �le that provides syn
hronized data
oming from the devi
e. Thedata is pushed in the event queue in the form of events from a kerneldriver that have registered an input interfa
e by means of a standard setof API.Ea
h event is
omposed by three values: a type that dis
riminates betweenseveral prede�ned event types (absolute movements, relative movements,keypress, and so on) a
ode that dis
riminates between events with thesame type (i.e.: linear movement versus angular movement) and a valuethat quantify the event. Ea
h event also
arries a timespe
 stru
ture
ontaining the time-stamp of the event.An input interfa
e provides its own method of lo
king. A read performedover the event spe
ial �le blo
ks if there's no event ready in the queue.

CHAPTER 3. DESIGN 11Furthermore, the presen
e of a �ne-grained time-stamp is useful when thedevi
e is asked to generate free-fall or dire
tion dete
tion signals.For this driver, we de
ided to use a mixture of three of these interfa
es.We de
ided to use sysfs output interfa
e for a

elerations, as it's very graph-i
al and easy to use: it requires a simple
at to be performed on the attribute.It has helped us while trying di�erent devi
e
on�gurations. It is meant onlyfor debugging and
on�guring purposes, hen
e it does not blo
k waiting for anyinterrupt: it simply reads the data from the sensor and print it.Another interfa
e used in this driver is a
hara
ter devi
e �le, with majornumber 190. This interfa
e
an be used only with data-ready signal generationenabled, as it blo
ks any reading performed upon it until the sensor gener-ates a new data-ready interrupt; then it return six bytes,
ontaining the threea

elerations read from the sensor, measured in LSB/g (based on the sensor
on�guration, 1 LSB
an vary from 1/1024 g to 1/340 g). The reader soft-ware must employ its own
onversion me
hanism in order to
onvert this datain a
onvenient measurement unit. To disambiguate whi
h of the three wordsrepresents whi
h a

eleration, an ordering
onvention has been formalized: itmandates that the �rst a

eleration is relative to the X axis, the se
ond isrelative to the Y axis and the third is relative to the Z axis.Finally, this driver implements an event input interfa
e. This input interfa
e
an be used only when data-ready signal generation or interrupt generation areenabled, as the events
an be generated only when the driver is in interrupt-driven mode. The events type returned are EV_ABS for a

eleration data (data-ready enabled) or EV_REL for free-fall and dire
tion dete
tion data (interruptenabled).If the driver is in data-ready mode, three events are generated at every interrupt
orresponding to the
odes ABS_X, ABS_Y and ABS_Z: their value it's the a

el-eration read from the sensor, in the same format that's used by the
hara
terdevi
e interfa
e. Then, a syn
hronization event is generated.If the driver is in interrupt mode, six events may be generated: event
odesREL_X, REL_Y and REL_Z indi
ates free-fall interrupt, while event
odes REL_RX,REL_RY and REL_RZ indi
ates dire
tion dete
tion interrupts. The value asso
i-ated to these six events
an be +1 or −1, with di�erent meaning based on whi
hkind of interrupt has been inter
epted.A free-fall event with value +1 is generated whenever the absolute value of thea

eleration along any given axis ex
eed a preset threshold, while an event withvalue −1 is generated whenever the absolute value is lower than the threshold.A dire
tion dete
tion event with value +1 is generated whenever the a

elera-tion along any given axis ex
eed a hysteresis region de�ned by two thresholds(+THSI and +THSE), while an event with value −1 is generated whenever thea

eleration along any given axis is lower than a hysteresis region de�ned by thesame thresholds inverted (−THSI and −THSE). It's worth noting that, whiledire
tion dete
tion events along an axis are always mutually ex
lusive, based onhow the free-fall
on�guration register is set both positive and negative free-fallevents might o

ur.

CHAPTER 3. DESIGN 12

Figure 3.1: The MEMS driver ar
hite
ture blo
k diagram.3.2 MEMS driver ar
hite
tureFigure 3.1 shows the ar
hite
ture of the sensor driver, as it is implemented. Thisdriver is based on the I2C devi
e driver model, hen
e it
ontains a number offun
tions that the I2C infrastru
ture needs in order to probe, initialize, atta
hand deta
h it.The two interfa
e fun
tions mems_read and mems_write wrap the
orre-sponding I2C transferring fun
tions in order to make the driver independentfrom minor API
hanges. These fun
tions handle all the
ommuni
ation to andfrom the devi
e.The sysfs hooks blo
k is a group of pro
edures exported as sysfs attributes,whi
h in turn forms the
on�guration interfa
e of the driver. They handlethe
onversion from sensor values to human readable values and vi
e-versa. Forsimpli
ity, in this �rst implementation of the driver all the attributes are groupedinto a single sysfs_group whi
h is exported as a dire
tory named nmdkmems.When the driver is inserted in the kernel an interrupt handler is initialized,linked to the GPIO pin where the sensor is atta
hed to; the driver initializesalso three work fun
tion (a

_work, DD_work and FF_work) that perform theoperation that has been requested with the interrupt. When data-ready signalgeneration or interrupt generation has been enabled they begin to pro
ess inter-rupts
oming from the sensor, feeding the output
hara
ter and event interfa
eswith data.The two output interfa
es exported by the driver are a
hara
ter devi
e andan event input interfa
e.The
hara
ter devi
e
reated has a major number of 190, and its spe
ial devi
e

CHAPTER 3. DESIGN 13
an be
reated by the superuser by exe
utingmknod /dev/nmdkmems
 190 0,or by
on�guring udev to dynami
ally
reate it at insertion.the input interfa
e is dynami
ally linked by the kernel to an event interfa
e. Alist of input interfa
es with the respe
tive event handlers
an be found in the�le/pro
/bus/input/devi
es.3.3 AssistdIn this se
tion the requirements spe
i�ed in the previous
hapter about assistdwill be addressed. They
onstrain the ar
hite
ture of the daemon more thanthose related to the driver as well as the fun
tions it is required to perform.3.3.1 Reading from the kernel driverThe MEMS driver, whose ar
hite
ture has been already dis
ussed in the previ-ous se
tion, provides three output interfa
e: sysfs,
hara
ter devi
e and inputinterfa
e. As sysfs provides a

elerations only for debugging and
on�guringpurposes, the
hoi
e for assistd's input interfa
e is narrowed down to two.The
hara
ter devi
e o�er a low-overhead interfa
e, exporting only six bytesat a time without any other information (other than the ordering
onstraintde�ned above); it also provides its own lo
king me
hanism, freeing the daemonof the burden of having a timer waking it up.The same properties also holds for the input interfa
e, but it exports mu
hmore information to userspa
e than the
hara
ter devi
e (though it's simpler todis
riminate a

elerations, as every event have it's own type and
ode). This
ould be useful if the lo
king me
hanism isn't working properly and the daemonhave to get time information from the events timestamp in order to integrateproperly, but for now it's only a time waste.For this reason, the reading interfa
e used by assistd will be the
hara
terdevi
e exported by the driver.3.3.2 IntegrationWhen the driver was almost
omplete, a set of a

eleration samples has beena
quired in order to evaluate graphi
ally the di�erent numeri
al integrationmethods1 available for implementation.The samples a
quired were about a single axis movement of about 30 cm,
overed at variable speeds and a

elerations. The log were then integratedmanually using di�erent numeri
al integration algorithms in order to evaluatewhi
h one was better for the daemon.1the results are presented in the next
hapter.

CHAPTER 3. DESIGN 14Integration rulesThe MEMS sensor provides us with equally-spa
ed samples of the a

elera-tion fun
tion a(t): the obvious
hoi
e for the integration is thus an algorithmimplementing one of the Newton-Cotes formulas, whi
h take advantage of thehomogeneous spa
ing. Newton-Cotes formulas provides a

urate estimation ofthe integral if the sampling frequen
y is
onveniently small, and the higher thedegree of the formula the smaller the error is. However some rule's error termin
rease if the integrand fun
tion is highly os
illatory.From the aforementioned family we
hose two of the simpler rules: the trape-zoid rule and the Simpson's rule. We de
ided to take these two be
ause one ofthe requirements for the integration pro
ess addresses its speed; the other pointis that being low in degree, they update their estimate with a higher frequen
ythan higher degree rules (up to 1/4 of the sampling frequen
y if we use doubleSimpson's rule integration).The trapezoid rule is the simplest among all the Newton-Cotes formulas.It works by approximating the region under the graph of the integrand fun
tionwith a trapeze and
al
ulating its area. It follows that:
∫ b

a

f(x) dx ≈ (b − a)
f(a) + f(b)

2
.The error term asso
iated with the rule is

e(h) ≈ −
h3

12
f (2) (ξ) .This rule has some advantages over Simpson's rule when the integrand fun
-tion is not twi
e
ontinuously di�erentiable, and gets extremely a

urate whenperiodi
 fun
tions are integrated over their periods.The Simpson's rule is a Newton-Cotes quadrature rule of degree 2, de-rived by repla
ing the integrand with the quadrati
 polynomial build over threeequally spa
ed points f(a), f(b) and f(c) by using Lagrange polynomial inter-polation. Easy
al
ulations derives that

∫ c

a

P (x) dx ≈
(b − a)

6
[f(a) + 4f(b) + f(c)] .The error term asso
iated with the rule is

e(h) ≈ −
h5

90
f (4) (ξ) .Simpson's rule gains an extra order of the error term be
ause the points at whi
hthe integrand are evaluated are distributed symmetri
ally in the interval [a, c].Simpsons's rule has some advantages over trapezoid rule when the integrand is�smooth� enough, i.e. when it is twi
e
ontinuously di�erentiable and it's nothighly os
illatory: if this is not true, Simpson's rule may give very poor results.

CHAPTER 3. DESIGN 15ResultsTo obtain position estimates from a

elerations samples, a double numeri
alintegration is required. As we have to test two rules, we have 4 di�erent ex-periments to
arry on: Trapezoid-Trapezoid, Trapezoid-Simpson's, Simpson's-Trapezoid and Simpson's-Simpson's.The results of the experiments show that the approa
h with the least errorin all of the di�erent samples group is, surprisingly, Simpson's-Trapezoid. It'ssurprising, as the a

eleration fun
tion sampled by the sensor is very os
illatory,and the maximum frequen
y at whi
h we
ould sample is limited by the overheadof the I2C adapter devi
e driver to 40 Hz. Still, we
hose this as our methodof numeri
al integration.3.3.3 Output interfa
eThe output interfa
e that will be implemented in assistd should be fast, easilya

essible and must provide a me
hanism of
learing the position updates on
eread.For this interfa
e linux o�ers two valid alternatives:Shared Memory: one of the simplest interpro
ess
ommuni
ation servi
es, ashared memory is a memory segment that is shared between two or morepro
esses, as if they all
alled mallo
 and were returned pointers to thesame a
tual memory. It is the fastest form of interpro
ess
ommuni
ationbe
ause all the pro
esses share the same pie
e of memory, and its a

esstime is as fast as a

essing a pro
ess's nonshared memory. The sharedmemory segment isn't syn
hronized, so it must provide its own methodof syn
hronization (typi
ally with a mutex inside the segment); also, it'snot possible to know whether or not someone has read the memory, so thereader must set some �ag in the shared memory to let the daemon knowthe updates has been read.So
ket: a so
ket is a bidire
tional
ommuni
ation devi
e that
an be used to
ommuni
ate with another pro
ess on the same ma
hine (or with a pro-
ess running on other ma
hines). They have two di�erent method of
om-muni
ation: the �rst one,
onne
tion, guarantees delivery and ordering;the se
ond one, datagram, whi
h doesn't. As it's substantially a bu�ermanaged by the kernel, reading and writing over a so
ket requires the in-vo
ation of two API and the use of some sort of
ommuni
ation proto
olbetween the two pro
esses.Both of the
andidates
an be used to implement the output interfa
e ofassistd: a shared memory with a �ag and a mutex, and a so
ket with a simple
ommuni
ation proto
ol.However, we think that speed is a
ru
ial fa
tor for a software developed forembedded devi
es, so we
hoose to implement a shared memory segment for ourdaemon.

CHAPTER 3. DESIGN 16

Figure 3.2: Assistd ar
hite
ture blo
k diagram.3.4 Assistd ar
hite
tureFigure 3.2 shows the ar
hite
ture of the daemon, as it is implemented. Themain thread loads the
on�guration from the �le,
on�gures the driver by usingits sysfs interfa
e, initializes the internal stru
tures and the shared memorysegment, spawns the reader and the integrator thread, prote
ts the daemonfrom SIGTERM, SIGSTP and SIGQUIT signals and goes to sleep.The reader thread opens the
hara
ter devi
e exported by the driver. Atevery
y
le the thread reads from the
hara
ter devi
e (blo
king if no data isavailable) and put it in a bu�er shared with the integrator thread. Finally, hepost the semaphore sem_read over whi
h the other thread blo
ks, waking it up.The integrator thread initializes itself and then wait on sem_read. Whenthe reader thread will post the semaphore it will wake up,
opy the a

elerationsfrom the shared internal bu�er and then evaluate if it has enough data to updateits speed and position estimates. If it's the
ase, the thread will perform thenumeri
al integration (as the integration from speed to position is performedusing trapezoid rule, ea
h a

eleration integration leads to a speed integration)to obtain new position estimates; then, it will blo
k the shared memory forwriting and it will look for the read and the reset �ags in the shared memoryblo
k. If any of these two are set it will reset the respe
tive �eld, then it willwrite the new position updates in the segment.If the daemon re
eive one of the three signal against whi
h it's prote
ted, itwill gra
efully stop exe
ution; otherwise, a manual restart will be required inorder to
lear the data pending from the previous exe
ution.

CHAPTER 3. DESIGN 173.5 TestingWhile testing both the driver and the daemon we found several bug: some ofthem have
onsiderably hindered the utility of the proje
t. Here we presentsome of the most
riti
al unresolved bugs.
• The I2C adapter driver adds an ex
essive overhead when
ommuni
atingwith the devi
e. We performed a test with a high-performan
e
lo
k inorder to assess how mu
h time a single byte read or write were taking: itturns out that a single read or write takes from 6 ms to 7 ms. Combinedwith the bug des
ribed below, this bug didn't allowed us to use the sensorto its full potential.
• The I2C adapter driver doesn't allow the reading of multiple bytes from
ontiguous registers. The read API provided allow only for a single byteto be read at a time, thus
onsiderably in
reasing the reading time of thea

elerations (6 bytes). This bug,
ombined with the previous one, allowsus to read only one a

eleration (two bytes) at the lower frequen
y at whi
hthe sensor
an be set (40 Hz), hindering
onsiderably the usefulness of thesensor.
• There's a minor bug in the GPIO driver implementation of Nomadik(probably in the ar
h/arm/ma
h-nomadik/gpio.
 sour
e �le). When oursensor driver is inserted the �rst time, it registers an interrupt handlerwith GPIO port 82; when the driver is removed, our driver
alls free_irqin order to free the interrupt. Something happens here as the interruptis not freed
ompletely: the exe
ution of
at /pro
/interrupt showsthat the interrupt has been su

essfully
leared, while the exe
ution of
at /pro
/gpio results in a kernel fault.
• Sometimes reading a

elerations from the sysfs interfa
e leads to a spuri-ous value of ±255. It should not pose a big problem as sysfs it's meant fordebugging and
on�guration only, nonetheless the bug has been forwardedto the Nomadik team.

Chapter 4Experimental ResultsIn this
hapter we present some experimental results of our work. Our goals wereto �nd a sensor
on�guration that was good enough for all the appli
ations thatrequired the sensor data and to test both the driver and the userspa
e daemonin order to see if they were working
orre
tly together.4.1 The experimentWhen the driver implementation was almost
omplete, we
ondu
ted some testin order to
hoose whi
h integration method we should use for the daemon, andto see if the a

eleration fun
tion read from the sensor was
lose to the reala

eleration imparted to the board.We set up a simple experiment. The board was set up with a fulls
ale of
±2 g, the high-pass �lter enabled for the a

eleration signals with a frequen
y
ut-out sele
tion of 512, all the three axis disabled and data-ready signal gener-ation enabled. With this
on�guration, the a

elerometer's sensitivity is at itsmaximum.We slid the board along a ruler letting it
over a �xed length, while we werelogging the a

eleration values
oming from the devi
e. In this manner we
ouldfo
us on a

elerations
oming from one axis at a time, leaving the other twodisabled. Then, we
hanged the fulls
ale to ±6 g, and pro
eed to take a set ofsamples.To post-pro
ess the samples we put them in a spreadsheet and we plotthem, in order too see if the sensor was working
orre
tly. Then, we applieddi�erent numeri
al integration method, in order to
hoose the one with the leastintegration error. Finally, we tried to apply di�erent divisor to the a

elerationread from the sensor, in order to assess whi
h divisor led to
ut the noise in thedata without dampening the a
tual a

eleration.

18

CHAPTER 4. EXPERIMENTAL RESULTS 19

Figure 4.1: Di�erent Integration methods applied to a set of samples takenfrom a 30
m motion along the X axis, with a fulls
ale of 2 g and with HP �lterenabled.

CHAPTER 4. EXPERIMENTAL RESULTS 20

Figure 4.2: Diverging speed and position estimates
aused by inadequate sam-pling frequen
y.4.2 Integration methodFigure 4.1 shows two di�erent numeri
al integration methods applied to a setof samples
oming from an experiment. The ST and TS in the legend refers tothe order of appli
ation of the two quadrature rules: ST means that Simpson'srule was applied to the raw data in order to obtain the speed fun
tion, andthen the trapezoid rule was applied to the result in order to obtain the positionestimates; vi
e-versa for TS.The graph shows that ST leads to a �nal speed that is less than the one
omputed through TS, hen
e giving a position estimate that degrades less thanthe other. Furthermore, the graph shows that the
omputed speed isn't zeroand the position estimate degrades over time;furthermore, it is far less than
30 cm.inerWhile the �rst issue
an be
orre
ted by thresholding the signal
omingfrom the sensor, for example dividing every reading by a prede�ned s
ale value,the se
ond issue is mu
h harder to
orre
t.4.3 Sampling frequen
yFigure 4.1 shows that, even when integrating with ST, the �nal position isn'teven near to the real movement of 30 cm. This e�e
t even more pronoun
ed inother samples we took, for example the one graphed in �gure 4.2.This error is supposed to be linked to the sampling frequen
y of the sensor:it's possible that the frequen
y we're stru
k to1 doesn't allow to a
quire the1see se
tion 3.5 for further info.

CHAPTER 4. EXPERIMENTAL RESULTS 21

Figure 4.3: Os
illating �nal speed with a more a

urate position estimate. theposition at 1, 8 s is −0, 16 m.a

eleration fun
tion properly.Surprisingly, things got mu
h better when we took samples by moving alongthe positive X axis or the Y axis. For example, look at �gure 4.3: the �nal speedis near zero, and the position estimate is near the nominal movement value of
15 cm. We
an
orre
t the speed behaviour by thresholding, as shown in thenext se
tion.4.4 Thresholding a

elerationsOne of the simplest method for removing error (espe
ially additive Gaussianwhite error) from a signal is by dividing ea
h sample by a prede�ned divisor.The simplest method of performing this is to shift the register
ontainingthe value right by a prede�ned number of bits, dividing the register by anin
reasing power of two for ea
h bit shifted (it work even if the register hasa two's
omplement's value, though the sign bit must be
opied in the addedMSB).We experimented with di�erent thresholds over di�erent set of samples tosee if there was a divisor that
ould have the maximum performan
e in
uttingthe rumor while still preserving the a

eleration impressed to the sensor.For example, �gure 4.5 shows integrated speed from the same set of samples,divided by various power of two (from 1 to 4), while �gure 4.5 shows the positionestimates
omputed from the
al
ulated speeds. You
an note that dividing thea

eleration by 8 leads to a perfe
t �nal speed, while the position isn't mu
h

CHAPTER 4. EXPERIMENTAL RESULTS 22

Figure 4.4: Computed speeds from divided a

elerations.a

urate. In
ontrast, dividing by 4 leads to a slight positive speed, but theposition estimate is more a

urate.The next series of graphs pi
ture the same set of samples with various thresh-olds applied (dividing ea
h samples by 1, 2, 4 and 8), together with the
omputedspeed and position. This
ase is somewhat unfortunate, as even the best esti-mate never rea
h the nominal movement of 15 cm (it stops at 12 cm). However,let's see how di�erent divisor in�uen
es the estimate.The original a

eleration is graphed in �gure 4.6. you
an noti
e how the �nalspeed is lower than zero and gradually in
reasing from spurious os
illations ofthe samples: this bias pulls down the position estimate, resulting in a degradedestimation.A simple division by two, shown in �gure 4.7, leads to a more stable speed.The position estimate is more stable, and it's nearer to the nominal movementvalue of 15 cm. However, there's still some os
illation visible at 2, 5 s: if it'svery short however, and doesn't in�uen
e the
omputed speed.Dividing the original a

eleration by 4 eliminates the spurious ripple at 2, 5 s,giving a even more a

urate estimate.Dividing by 8, as shown in �gure 4.9,
uts some of the a

eleration. Thespeed is now even
loser to zero, and the estimate is as a

urate as the onegraphed in �gure 4.8. This result is thus the most stable between the fouranalyzed here.

CHAPTER 4. EXPERIMENTAL RESULTS 23

Figure 4.5: Position
omputed from speeds graphed in �gure 4.5.

Figure 4.6: Original a

eleration, speed and position

CHAPTER 4. EXPERIMENTAL RESULTS 24

Figure 4.7: A

eleration, speed and position from �gure 4.6 divided by 2.

CHAPTER 4. EXPERIMENTAL RESULTS 25

Figure 4.8: A

eleration, speed and position from �gure 4.6 divided by 4.

CHAPTER 4. EXPERIMENTAL RESULTS 26

Figure 4.9: A

eleration, speed and position from �gure 4.6 divided by 8.

