
A Linux kernel driver for theST-Miroeletronis LIS3LV02DL aelerometerfor INS-based GPS assistaneNiholas Angelo CrespiOtober 23, 2008

Contents
1 Introdution 31.1 Global navigation satellite system 31.1.1 Global Positioning System 31.2 GNSS augmentation . 41.2.1 Inertial navigation with GPS and aelerometers 52 Requirements And Constraints 62.1 Driver requirements . 62.1.1 Hardware platform onstraints 72.2 Assistd Requirements . 72.3 Software platform onstraints . 83 Design 93.1 MEMS driver . 93.1.1 Con�guration interfae . 93.1.2 Output interfae . 103.2 MEMS driver arhiteture . 123.3 Assistd . 133.3.1 Reading from the kernel driver 133.3.2 Integration . 133.3.3 Output interfae . 153.4 Assistd arhiteture . 163.5 Testing . 174 Experimental Results 184.1 The experiment . 184.2 Integration method . 204.3 Sampling frequeny . 204.4 Thresholding aelerations . 211

PrefaeAs we're heading towards integrated, embedded portable devies, manufaturersare quikly adding new features to their produts: one of these, one prerogativeof speialized navigation devies, is a GPS reeiver. These devies have thehallenge to be useful navigators even when their GPS reeivers are preventedfrom attaining a �x on enough satellites. It happens often in urban anyonsettings, as tall buildings and onrete walls hinders the GPS signal reeption.When this happens the GPS reeiver must be assisted with information omingfrom other sensors in order to synthesize the urrent position.

2

Chapter 1Introdution
1.1 Global navigation satellite systemGlobal Navigation Satellite System is the standard generi term for satellitenavigation systems that provide autonomous geo-spatial positioning with globaloverage. A GNSS allows small eletroni reeivers to determine their loation(longitude, latitude, and altitude) to within a few metres using time signalstransmitted along a line of sight by radio from satellites. Reeivers on theground with a �xed position an also be used to alulate the preise time as areferene for sienti� experiments.1.1.1 Global Positioning SystemAs of 2007, the United States NAVSTAR Global Positioning System (GPS)is the only fully operational GNSS. It uses a onstellation of between 24 and32 medium earth orbit satellites that transmit preise mirowave signals, thatenable GPS reeivers to determine their urrent loation, the time, and theirveloity (inluding diretion). GPS was developed by the United States Depart-ment of Defense.A GPS reeiver alulates its position by arefully timing the signals sentby the onstellation of GPS satellites high above the Earth. Eah satelliteontinually transmits messages ontaining the time the message was sent, apreise orbit for the satellite sending the message (the ephemeris), and thegeneral system health and rough orbits of all GPS satellites (the almana).These signals travel at the speed of light (whih varies between vauum and theatmosphere). The reeiver uses the arrival time of eah message to measure thedistane to eah satellite, from whih it determines the position of the reeiver,using trilateration tehniques. The resulting oordinates are onverted to moreuser-friendly forms suh as latitude and longitude, or loation on a map, thendisplayed to the user.It might seem that three satellites would be enough to solve for a position,sine spae has three dimensions. However, a three satellite solution requires thetime be known to a nanoseond or so, far better than any non-laboratory lok3

CHAPTER 1. INTRODUCTION 4an provide. Using four or more satellites allows the reeiver to solve for timeas well as geographial position, eliminating the need for a very aurate lok.In other words, the reeiver uses four measurements to solve for four variables:
x, y, z, and t. While most GPS appliations use the omputed loation and notthe (very aurate) omputed time, the time is used in some GPS appliationssuh as time transfer and tra� signal timing.GPS problemsSine GPS signals at terrestrial reeivers tend to be relatively weak, it is easyfor other soures of eletromagneti radiation to desensitize the reeiver, makingaquiring and traking the satellite signals di�ult or impossible.Solar �ares are one suh naturally ourring emission with the potential todegrade GPS reeption, and their impat an a�et reeption over the half of theEarth faing the sun. GPS signals an also be interfered with by naturally o-urring geomagneti storms, predominantly found near the poles of the Earth'smagneti �eld. GPS signals are also subjeted to interferene from Van AllenBelt radiation when the satellites pass through the South Atlanti Anomaly.GPS signals are also degraded by di�erent arti�ial soures. In automotiveGPS reeivers, metalli features in windshields, suh as defrosters, or ar windowtinting �lms an at as a Faraday age, degrading reeption just inside the ar.Man-made EMI (eletromagneti interferene) an also disrupt, or jam, GPSsignals.Urban environments with streets utting through dense bloks of strutures,espeially skysrapers, have a great impat over GPS signals reeption. Un-fortunately, this happens when the need for loalization is at its highest peak.To solve this problem, a reeiver should rely on another method of positioningwhile the GPS signal is unavailable.1.2 GNSS augmentationGNSS Augmentation involves using external information, often integrated intothe alulation proess, to improve the auray, availability, or reliability ofthe satellite navigation signal. There are many suh systems in plae and theyare generally named or desribed based on how the GNSS sensor reeives theinformation. Some systems transmit additional information about soures oferror (suh as lok drift, ephemeris, or ionospheri delay), others provide diretmeasurements of how muh the signal was o� in the past, while a third groupprovide additional navigational or vehile information to be integrated in thealulation proess.The augmentation may also take the form of additional information beingblended into the position alulation. Many times the additional navigationsensors operate via a di�erent priniple than the GNSS and are not neessarilysubjet to the same soures of error or interferene. The additional sensors mayinlude:

• Automated Celestial navigation systems;

CHAPTER 1. INTRODUCTION 5
• Simple Dead rekoning systems (omposed of a gyro ompass and a dis-tane measurement);
• Inertial Navigation Systems.Among all these methods, the latter is rapidly gaining auray and oste�etiveness as the digital sensor tehnology is maturing. Furthermore, thedevelopment of motion sensors built built with the MEMS1 tehnology enabledthe embedding of navigation systems in portable devies.1.2.1 Inertial navigation with GPS and aelerometersGPS systems have some problems when working in losed environment or inurban areas, where the need of loalization is highest. An inertial navigationsystem ould be used in onert with GPS positioning when the signal is un-available.Inertial navigation systems using aelerometers is based on the numerialintegration of aelerations oming from the sensors. Aelerometers measureslinear aeleration among some given axis: to obtain information about theangular veloity of the devie we need either a ouple of aelerometers in ashifted-axis on�guration, or a set of gyrosopes and an aelerometer. If there'sonly one aelerometer available, we lose information about the rotation of thedevie: however, it the devie is kept still we ould still measure its motion.Computing motion from aeleration is aomplished through a simple dou-ble integration. Given our aeleration a(t) and a time t0 < T when the deviewasn't in motion, we an ompute the speed funtion s(t) as:

s(t) =

∫ t

t0

a(t) dt .We an now obtain the position p(t) as the integral of the speed funtion om-puted before:
p(t) =

∫ t

t0

p(t) dt .It's worth nothing that the error term aused by the sensor (omposed ofunertainty, quantization error, nonlinearity, . . .) is magni�ed by the double in-tegration. Another error soure arises from the numerial integration algorithmhosen. Anyway, the distane overed without the GPS �x should be small, sothe estimation error imposed by the numerial integration shouldn't pose a bigproblem.
1Miroeletromehanial systems

Chapter 2Requirements AndConstraintsThe projet's goal is to write a linux kernel driver for the LIS3LV02DL MEMSsensor manufatured by ST and write a simple daemon, assistd, whih providesposition updates based on the sensor's readings.As this projet is aademi in nature, most of requirements have been statedin advane by the projet supervisor. However, further meetings with the No-madik team at ST provided some additional requirements as well as some on-straint over the driver's interfae.2.1 Driver requirementsThe driver must be written to serve several appliations, eah with it's own setof requirements:GPS assistane: as stated before, one of the goal is to implement a small dae-mon that assists gpsd by providing position updates synthesized from theaelerations. To aomplish this the driver must provide samples with itsgreatest auray and with a frequeny of 30 Hz or better. Furthermore,the output interfae must be fast ompared to the output frequeny andeasily aessible from userspae. Finally, the driver must provide either itsupdating frequeny via a on�guration interfae or it should blok read-ings from yle to yle. We'll disuss more about the assistd requirementslater.Gesture support: this appliation allows to perform gestures by simply mov-ing the devie around. To aomplish this, the driver must provide samplesat least at 30 Hz, with no onstraint on auray. Moreover, the aeler-ation samples must be equally spaed in time. Similar to GPS assistane,the output interfae must be aessible, fast and synhronized (i.e.: itshould blok reads until it has new data).6

CHAPTER 2. REQUIREMENTS AND CONSTRAINTS 7Joystik: this set of requirements is foused towards allowing to use the devieas a joystik by moving it around. To aomplish this, the driver mustprovide samples at 30 Hz or more, with no hard onstraints on auray.Again, it must also have a fast, aessible output interfae that providesits own synhronization.To sum up, we need to write a devie driver that ould sample at least at
30 Hz, with high sensitivity (when asked to), it should provide a fast, aessibleoutput interfae that synhronize appliations by bloking the readings on theinterfae until new samples are available.As these appliations are mutual exlusive, there's no need to are aboutmultiple appliation reading the output interfae, although this feature ouldbe a nie addition.2.1.1 Hardware platform onstraintsEmbedded systems development faes important requirements and onstraintsarising from the spei� platform that will be used. As the projet is fousedtowards developing software for Nomadik, an embedded portable devie, wemust investigate arefully platform-spei� onstraints.For this projet, the platform used will be the Nomadik NHK-15 r3.1 ref-erene board from ST Miroeletronis. It's based on the STn8815 SoC thatinludes an ARM proessor (ARM926EJ), two I2C bus adapter (named I2C-0and I2C-1), smart graphis aeleration, general purpose I/O interfae and soon. The MEMS sensor that we'll use, the LIS3LV02DL, has an adjustable sens-ing frequeny between 40 Hz and 2, 56 KHz and an adjustable fullsale of
±2 g or ±6 g. It also supports data-ready interrupt generation, diretion dete-tion interrupt generation with adjustable onditions and thresholds and free-fallwakeup interrupt generation, again with adjustable onditions and threshold.The sensor supports either I2C or SPI bus, but on the NHK-15 r3.1 board it'son�gured to use the I2C interfae, and it's onneted to the SoC through theI2C-0 adapter. Its interrupt pin is onneted via GPIO port 82. For moreinformation about this sensor, you an �nd its datasheet at www.st.om.12.2 Assistd RequirementsThe other goal of the projet is the development of assistd, a GPS assistanedaemon. For the same reason of the driver, the projet supervisor provided alist of requirements for the daemon to be met.Assistd must be a UNIX daemon; it have to base its on�guration on anexternal on�guration �le, whih an be provided as an argument (in partiular,the loation of both the output interfae and the ontrol interfae of the drivermust be provided in that �le). The daemon should aept a ommand line1http://www.st.om/stonline/produts/literature/ds/12094/lis3lv02dl.htm

CHAPTER 2. REQUIREMENTS AND CONSTRAINTS 8parameter that spei�es the loation of the on�guration �le: if it's not present,it should look for the on�guration �le in the /et diretory.The primary purpose of the daemon is to provide position updates. A po-sition update is de�ned as an estimate of the distane overed by the deviefrom the last time an update was requested to the time of the urrent request,measured in meters.The requirements assoiated to the daemon an be divided in two subsets:one assoiated with the internal implementation and one assoiated with theoutput interfae.Talking about the internal implementation, assistd must implement somesort of quadrature rule algorithm in order to obtain position updates from thesensor readings. Dead rekoning systems based on aelerations are known todiverge quikly, beause of double error integration), hene there's no stritonstraints on the approximation error introdued by the integration method asit's supposed to be onveniently small. However, if several integration methodare individuated, the method with the least approximation error should be ho-sen. On the other side, the daemon should take samples at least at the sensor'sminimum output frequeny (40 Hz for LIS3LV02DL), so it must implement anintegration method that's fast enough to keep pae with that.The output interfae of the daemon should be easily aessible from otherdaemons (suh as gpsd). It should also have a mehanism that senses whenanother appliation reads the stored positions and thus reset them (in orderto provide position updates). It should also provide a method of learing thestored speeds.The struture of the position updates is also subjet of some requirements.It must be a three double-preision �oating point vetor, eah ontaining theposition update along a single axis. The axis ordering for the updates an bedepited as below.

dx

dy

dz

2.3 Software platform onstraintsThe version of linux that will be used for the development is STlinux 2.3, whihontains a 2.6.20 kernel pathed with platform-spei� ode. As the linux APIhanges from version to version, knowing that you'll work on a spei� kernelversion will ease you task a lot, beause there won't be the need to read throughdi�erent trees in order to see what's hanged and what's not. The softwaretoolhain for ross-ompiling the software is inluded in the STlinux 2.3 release,as well as a sript for setting the appropriate environment variables.

Chapter 3DesignThis hapter deals with the translation of the previously gathered requirementsinto a design for both the driver module and the integration daemon. It in-trodues the possible solutions that ould address the requirements and thedrawbaks assoiated with them; then, it shows the reason why a spei� solu-tion has been preferred. Finally, the arhiteture of the two piees of softwarewill be disussed.It's worth noting that this hapter is written to resemble a single designphase, as in the waterfall development model, even though the projet was basedon an iterative development model. It's an expedient that has been adopted inorder to provide an organi report of the design phase, instead of a list of gradualimprovements applied on an initial bare design.3.1 MEMS driverThe requirements gathered in the previous phase are primarily oriented at howthe devie must be on�gured to operate and what performane must met. Thefew arhitetural onstraints gathered in the previous phase address the outputinterfae performane and the on�guration interfae.3.1.1 Con�guration interfaeThe standard on�guration interfae provided by the linux kernel is sysfs. It's avirtual �le system that is used to export information about devies and driversfrom the kernel devie model to userspae, and is also used for on�guration.Its theory of operation is straightforward. For eah objet in the driver modeltree a diretory in sysfs is reated. For devie drivers there's the possibility toreate attributes, whih are simple �les: the rule is that they should only ontaina single value and/or allow a single value to be set. These �les show up in thesubdiretory of the devie driver respetive to the devie. It's also possible toreate attribute groups, subdiretories �lled with attributes.Based on this properties, we deided to use sysfs to reate a on�gurationinterfae for the devie. 9

CHAPTER 3. DESIGN 103.1.2 Output interfaeFor this interfae we have a few options, as the linux kernel provides severalmethods to export data to userspae.Sysfs. As stated above, sysfs an be used also as an output interfae, by on�g-uring a read-only attribute and providing a show funtion. This methodis slow and doesn't provide any native loking mehanism, but it's a nieaddition for troubleshooting purpose; plus it doesn't require muh e�ortto implement.Charater Devie. A harater devie is a speial �le related to a devie thattransmits data one byte at a time. The linux kernel provides a simpleimplementation of a harater devie: it provides a struture that holds aolletion of pointers to funtions that will be alled when the orrespond-ing operation will be performed on the �le (open, read, write, seek, lose,�ush and so on), plus two API to register and remove it.This approah has several advantages over sysfs: the harater devie �ledoesn't need to be opened and losed at every read, saving a onsiderableamount of time; it an also export multiple values over a single �le, so theyan be read simultaneously. However the devie returns data in byte-sizedhunks (type har), so a software that have to read aeleration data(three signed word) from this interfae must employ its own onversionroutine.Like sysfs, a harater devie doesn't provide native loking mehanism,although it's possible to implement a bloking har devie using kernelAPIs like wait_event and wake_up.Memory Mapping. The most famous memory mapping API is mmap, whihallows the mapping of devie memory diretly into a user proess' addressspae, providing a user programs with diret aess to devie memory.It's a very fast output interfae, but it doesn't provide a loking mehanismand laks a method to link ustom funtions to operations performed onthe memory, making it hard to implement a loking mehanism.Input Interfae. The linux input subsystems provides a simple method ofexporting data oming from input devies suh as keyboards, joystiksand mies to userspae: the event interfae. Eah event interfae is aspeial �le that provides synhronized data oming from the devie. Thedata is pushed in the event queue in the form of events from a kerneldriver that have registered an input interfae by means of a standard setof API.Eah event is omposed by three values: a type that disriminates betweenseveral prede�ned event types (absolute movements, relative movements,keypress, and so on) a ode that disriminates between events with thesame type (i.e.: linear movement versus angular movement) and a valuethat quantify the event. Eah event also arries a timespe strutureontaining the time-stamp of the event.An input interfae provides its own method of loking. A read performedover the event speial �le bloks if there's no event ready in the queue.

CHAPTER 3. DESIGN 11Furthermore, the presene of a �ne-grained time-stamp is useful when thedevie is asked to generate free-fall or diretion detetion signals.For this driver, we deided to use a mixture of three of these interfaes.We deided to use sysfs output interfae for aelerations, as it's very graph-ial and easy to use: it requires a simple at to be performed on the attribute.It has helped us while trying di�erent devie on�gurations. It is meant onlyfor debugging and on�guring purposes, hene it does not blok waiting for anyinterrupt: it simply reads the data from the sensor and print it.Another interfae used in this driver is a harater devie �le, with majornumber 190. This interfae an be used only with data-ready signal generationenabled, as it bloks any reading performed upon it until the sensor gener-ates a new data-ready interrupt; then it return six bytes, ontaining the threeaelerations read from the sensor, measured in LSB/g (based on the sensoron�guration, 1 LSB an vary from 1/1024 g to 1/340 g). The reader soft-ware must employ its own onversion mehanism in order to onvert this datain a onvenient measurement unit. To disambiguate whih of the three wordsrepresents whih aeleration, an ordering onvention has been formalized: itmandates that the �rst aeleration is relative to the X axis, the seond isrelative to the Y axis and the third is relative to the Z axis.Finally, this driver implements an event input interfae. This input interfaean be used only when data-ready signal generation or interrupt generation areenabled, as the events an be generated only when the driver is in interrupt-driven mode. The events type returned are EV_ABS for aeleration data (data-ready enabled) or EV_REL for free-fall and diretion detetion data (interruptenabled).If the driver is in data-ready mode, three events are generated at every interruptorresponding to the odes ABS_X, ABS_Y and ABS_Z: their value it's the ael-eration read from the sensor, in the same format that's used by the haraterdevie interfae. Then, a synhronization event is generated.If the driver is in interrupt mode, six events may be generated: event odesREL_X, REL_Y and REL_Z indiates free-fall interrupt, while event odes REL_RX,REL_RY and REL_RZ indiates diretion detetion interrupts. The value assoi-ated to these six events an be +1 or −1, with di�erent meaning based on whihkind of interrupt has been interepted.A free-fall event with value +1 is generated whenever the absolute value of theaeleration along any given axis exeed a preset threshold, while an event withvalue −1 is generated whenever the absolute value is lower than the threshold.A diretion detetion event with value +1 is generated whenever the aelera-tion along any given axis exeed a hysteresis region de�ned by two thresholds(+THSI and +THSE), while an event with value −1 is generated whenever theaeleration along any given axis is lower than a hysteresis region de�ned by thesame thresholds inverted (−THSI and −THSE). It's worth noting that, whilediretion detetion events along an axis are always mutually exlusive, based onhow the free-fall on�guration register is set both positive and negative free-fallevents might our.

CHAPTER 3. DESIGN 12

Figure 3.1: The MEMS driver arhiteture blok diagram.3.2 MEMS driver arhitetureFigure 3.1 shows the arhiteture of the sensor driver, as it is implemented. Thisdriver is based on the I2C devie driver model, hene it ontains a number offuntions that the I2C infrastruture needs in order to probe, initialize, attahand detah it.The two interfae funtions mems_read and mems_write wrap the orre-sponding I2C transferring funtions in order to make the driver independentfrom minor API hanges. These funtions handle all the ommuniation to andfrom the devie.The sysfs hooks blok is a group of proedures exported as sysfs attributes,whih in turn forms the on�guration interfae of the driver. They handlethe onversion from sensor values to human readable values and vie-versa. Forsimpliity, in this �rst implementation of the driver all the attributes are groupedinto a single sysfs_group whih is exported as a diretory named nmdkmems.When the driver is inserted in the kernel an interrupt handler is initialized,linked to the GPIO pin where the sensor is attahed to; the driver initializesalso three work funtion (a_work, DD_work and FF_work) that perform theoperation that has been requested with the interrupt. When data-ready signalgeneration or interrupt generation has been enabled they begin to proess inter-rupts oming from the sensor, feeding the output harater and event interfaeswith data.The two output interfaes exported by the driver are a harater devie andan event input interfae.The harater devie reated has a major number of 190, and its speial devie

CHAPTER 3. DESIGN 13an be reated by the superuser by exeutingmknod /dev/nmdkmems 190 0,or by on�guring udev to dynamially reate it at insertion.the input interfae is dynamially linked by the kernel to an event interfae. Alist of input interfaes with the respetive event handlers an be found in the�le/pro/bus/input/devies.3.3 AssistdIn this setion the requirements spei�ed in the previous hapter about assistdwill be addressed. They onstrain the arhiteture of the daemon more thanthose related to the driver as well as the funtions it is required to perform.3.3.1 Reading from the kernel driverThe MEMS driver, whose arhiteture has been already disussed in the previ-ous setion, provides three output interfae: sysfs, harater devie and inputinterfae. As sysfs provides aelerations only for debugging and on�guringpurposes, the hoie for assistd's input interfae is narrowed down to two.The harater devie o�er a low-overhead interfae, exporting only six bytesat a time without any other information (other than the ordering onstraintde�ned above); it also provides its own loking mehanism, freeing the daemonof the burden of having a timer waking it up.The same properties also holds for the input interfae, but it exports muhmore information to userspae than the harater devie (though it's simpler todisriminate aelerations, as every event have it's own type and ode). Thisould be useful if the loking mehanism isn't working properly and the daemonhave to get time information from the events timestamp in order to integrateproperly, but for now it's only a time waste.For this reason, the reading interfae used by assistd will be the haraterdevie exported by the driver.3.3.2 IntegrationWhen the driver was almost omplete, a set of aeleration samples has beenaquired in order to evaluate graphially the di�erent numerial integrationmethods1 available for implementation.The samples aquired were about a single axis movement of about 30 cm,overed at variable speeds and aelerations. The log were then integratedmanually using di�erent numerial integration algorithms in order to evaluatewhih one was better for the daemon.1the results are presented in the next hapter.

CHAPTER 3. DESIGN 14Integration rulesThe MEMS sensor provides us with equally-spaed samples of the aelera-tion funtion a(t): the obvious hoie for the integration is thus an algorithmimplementing one of the Newton-Cotes formulas, whih take advantage of thehomogeneous spaing. Newton-Cotes formulas provides aurate estimation ofthe integral if the sampling frequeny is onveniently small, and the higher thedegree of the formula the smaller the error is. However some rule's error terminrease if the integrand funtion is highly osillatory.From the aforementioned family we hose two of the simpler rules: the trape-zoid rule and the Simpson's rule. We deided to take these two beause one ofthe requirements for the integration proess addresses its speed; the other pointis that being low in degree, they update their estimate with a higher frequenythan higher degree rules (up to 1/4 of the sampling frequeny if we use doubleSimpson's rule integration).The trapezoid rule is the simplest among all the Newton-Cotes formulas.It works by approximating the region under the graph of the integrand funtionwith a trapeze and alulating its area. It follows that:
∫ b

a

f(x) dx ≈ (b − a)
f(a) + f(b)

2
.The error term assoiated with the rule is

e(h) ≈ −
h3

12
f (2) (ξ) .This rule has some advantages over Simpson's rule when the integrand fun-tion is not twie ontinuously di�erentiable, and gets extremely aurate whenperiodi funtions are integrated over their periods.The Simpson's rule is a Newton-Cotes quadrature rule of degree 2, de-rived by replaing the integrand with the quadrati polynomial build over threeequally spaed points f(a), f(b) and f(c) by using Lagrange polynomial inter-polation. Easy alulations derives that

∫ c

a

P (x) dx ≈
(b − a)

6
[f(a) + 4f(b) + f(c)] .The error term assoiated with the rule is

e(h) ≈ −
h5

90
f (4) (ξ) .Simpson's rule gains an extra order of the error term beause the points at whihthe integrand are evaluated are distributed symmetrially in the interval [a, c].Simpsons's rule has some advantages over trapezoid rule when the integrand is�smooth� enough, i.e. when it is twie ontinuously di�erentiable and it's nothighly osillatory: if this is not true, Simpson's rule may give very poor results.

CHAPTER 3. DESIGN 15ResultsTo obtain position estimates from aelerations samples, a double numerialintegration is required. As we have to test two rules, we have 4 di�erent ex-periments to arry on: Trapezoid-Trapezoid, Trapezoid-Simpson's, Simpson's-Trapezoid and Simpson's-Simpson's.The results of the experiments show that the approah with the least errorin all of the di�erent samples group is, surprisingly, Simpson's-Trapezoid. It'ssurprising, as the aeleration funtion sampled by the sensor is very osillatory,and the maximum frequeny at whih we ould sample is limited by the overheadof the I2C adapter devie driver to 40 Hz. Still, we hose this as our methodof numerial integration.3.3.3 Output interfaeThe output interfae that will be implemented in assistd should be fast, easilyaessible and must provide a mehanism of learing the position updates oneread.For this interfae linux o�ers two valid alternatives:Shared Memory: one of the simplest interproess ommuniation servies, ashared memory is a memory segment that is shared between two or moreproesses, as if they all alled mallo and were returned pointers to thesame atual memory. It is the fastest form of interproess ommuniationbeause all the proesses share the same piee of memory, and its aesstime is as fast as aessing a proess's nonshared memory. The sharedmemory segment isn't synhronized, so it must provide its own methodof synhronization (typially with a mutex inside the segment); also, it'snot possible to know whether or not someone has read the memory, so thereader must set some �ag in the shared memory to let the daemon knowthe updates has been read.Soket: a soket is a bidiretional ommuniation devie that an be used toommuniate with another proess on the same mahine (or with a pro-ess running on other mahines). They have two di�erent method of om-muniation: the �rst one, onnetion, guarantees delivery and ordering;the seond one, datagram, whih doesn't. As it's substantially a bu�ermanaged by the kernel, reading and writing over a soket requires the in-voation of two API and the use of some sort of ommuniation protoolbetween the two proesses.Both of the andidates an be used to implement the output interfae ofassistd: a shared memory with a �ag and a mutex, and a soket with a simpleommuniation protool.However, we think that speed is a ruial fator for a software developed forembedded devies, so we hoose to implement a shared memory segment for ourdaemon.

CHAPTER 3. DESIGN 16

Figure 3.2: Assistd arhiteture blok diagram.3.4 Assistd arhitetureFigure 3.2 shows the arhiteture of the daemon, as it is implemented. Themain thread loads the on�guration from the �le, on�gures the driver by usingits sysfs interfae, initializes the internal strutures and the shared memorysegment, spawns the reader and the integrator thread, protets the daemonfrom SIGTERM, SIGSTP and SIGQUIT signals and goes to sleep.The reader thread opens the harater devie exported by the driver. Atevery yle the thread reads from the harater devie (bloking if no data isavailable) and put it in a bu�er shared with the integrator thread. Finally, hepost the semaphore sem_read over whih the other thread bloks, waking it up.The integrator thread initializes itself and then wait on sem_read. Whenthe reader thread will post the semaphore it will wake up, opy the aelerationsfrom the shared internal bu�er and then evaluate if it has enough data to updateits speed and position estimates. If it's the ase, the thread will perform thenumerial integration (as the integration from speed to position is performedusing trapezoid rule, eah aeleration integration leads to a speed integration)to obtain new position estimates; then, it will blok the shared memory forwriting and it will look for the read and the reset �ags in the shared memoryblok. If any of these two are set it will reset the respetive �eld, then it willwrite the new position updates in the segment.If the daemon reeive one of the three signal against whih it's proteted, itwill graefully stop exeution; otherwise, a manual restart will be required inorder to lear the data pending from the previous exeution.

CHAPTER 3. DESIGN 173.5 TestingWhile testing both the driver and the daemon we found several bug: some ofthem have onsiderably hindered the utility of the projet. Here we presentsome of the most ritial unresolved bugs.
• The I2C adapter driver adds an exessive overhead when ommuniatingwith the devie. We performed a test with a high-performane lok inorder to assess how muh time a single byte read or write were taking: itturns out that a single read or write takes from 6 ms to 7 ms. Combinedwith the bug desribed below, this bug didn't allowed us to use the sensorto its full potential.
• The I2C adapter driver doesn't allow the reading of multiple bytes fromontiguous registers. The read API provided allow only for a single byteto be read at a time, thus onsiderably inreasing the reading time of theaelerations (6 bytes). This bug, ombined with the previous one, allowsus to read only one aeleration (two bytes) at the lower frequeny at whihthe sensor an be set (40 Hz), hindering onsiderably the usefulness of thesensor.
• There's a minor bug in the GPIO driver implementation of Nomadik(probably in the arh/arm/mah-nomadik/gpio. soure �le). When oursensor driver is inserted the �rst time, it registers an interrupt handlerwith GPIO port 82; when the driver is removed, our driver alls free_irqin order to free the interrupt. Something happens here as the interruptis not freed ompletely: the exeution of at /pro/interrupt showsthat the interrupt has been suessfully leared, while the exeution ofat /pro/gpio results in a kernel fault.
• Sometimes reading aelerations from the sysfs interfae leads to a spuri-ous value of ±255. It should not pose a big problem as sysfs it's meant fordebugging and on�guration only, nonetheless the bug has been forwardedto the Nomadik team.

Chapter 4Experimental ResultsIn this hapter we present some experimental results of our work. Our goals wereto �nd a sensor on�guration that was good enough for all the appliations thatrequired the sensor data and to test both the driver and the userspae daemonin order to see if they were working orretly together.4.1 The experimentWhen the driver implementation was almost omplete, we onduted some testin order to hoose whih integration method we should use for the daemon, andto see if the aeleration funtion read from the sensor was lose to the realaeleration imparted to the board.We set up a simple experiment. The board was set up with a fullsale of
±2 g, the high-pass �lter enabled for the aeleration signals with a frequenyut-out seletion of 512, all the three axis disabled and data-ready signal gener-ation enabled. With this on�guration, the aelerometer's sensitivity is at itsmaximum.We slid the board along a ruler letting it over a �xed length, while we werelogging the aeleration values oming from the devie. In this manner we ouldfous on aelerations oming from one axis at a time, leaving the other twodisabled. Then, we hanged the fullsale to ±6 g, and proeed to take a set ofsamples.To post-proess the samples we put them in a spreadsheet and we plotthem, in order too see if the sensor was working orretly. Then, we applieddi�erent numerial integration method, in order to hoose the one with the leastintegration error. Finally, we tried to apply di�erent divisor to the aelerationread from the sensor, in order to assess whih divisor led to ut the noise in thedata without dampening the atual aeleration.

18

CHAPTER 4. EXPERIMENTAL RESULTS 19

Figure 4.1: Di�erent Integration methods applied to a set of samples takenfrom a 30m motion along the X axis, with a fullsale of 2 g and with HP �lterenabled.

CHAPTER 4. EXPERIMENTAL RESULTS 20

Figure 4.2: Diverging speed and position estimates aused by inadequate sam-pling frequeny.4.2 Integration methodFigure 4.1 shows two di�erent numerial integration methods applied to a setof samples oming from an experiment. The ST and TS in the legend refers tothe order of appliation of the two quadrature rules: ST means that Simpson'srule was applied to the raw data in order to obtain the speed funtion, andthen the trapezoid rule was applied to the result in order to obtain the positionestimates; vie-versa for TS.The graph shows that ST leads to a �nal speed that is less than the oneomputed through TS, hene giving a position estimate that degrades less thanthe other. Furthermore, the graph shows that the omputed speed isn't zeroand the position estimate degrades over time;furthermore, it is far less than
30 cm.inerWhile the �rst issue an be orreted by thresholding the signal omingfrom the sensor, for example dividing every reading by a prede�ned sale value,the seond issue is muh harder to orret.4.3 Sampling frequenyFigure 4.1 shows that, even when integrating with ST, the �nal position isn'teven near to the real movement of 30 cm. This e�et even more pronouned inother samples we took, for example the one graphed in �gure 4.2.This error is supposed to be linked to the sampling frequeny of the sensor:it's possible that the frequeny we're struk to1 doesn't allow to aquire the1see setion 3.5 for further info.

CHAPTER 4. EXPERIMENTAL RESULTS 21

Figure 4.3: Osillating �nal speed with a more aurate position estimate. theposition at 1, 8 s is −0, 16 m.aeleration funtion properly.Surprisingly, things got muh better when we took samples by moving alongthe positive X axis or the Y axis. For example, look at �gure 4.3: the �nal speedis near zero, and the position estimate is near the nominal movement value of
15 cm. We an orret the speed behaviour by thresholding, as shown in thenext setion.4.4 Thresholding aelerationsOne of the simplest method for removing error (espeially additive Gaussianwhite error) from a signal is by dividing eah sample by a prede�ned divisor.The simplest method of performing this is to shift the register ontainingthe value right by a prede�ned number of bits, dividing the register by aninreasing power of two for eah bit shifted (it work even if the register hasa two's omplement's value, though the sign bit must be opied in the addedMSB).We experimented with di�erent thresholds over di�erent set of samples tosee if there was a divisor that ould have the maximum performane in uttingthe rumor while still preserving the aeleration impressed to the sensor.For example, �gure 4.5 shows integrated speed from the same set of samples,divided by various power of two (from 1 to 4), while �gure 4.5 shows the positionestimates omputed from the alulated speeds. You an note that dividing theaeleration by 8 leads to a perfet �nal speed, while the position isn't muh

CHAPTER 4. EXPERIMENTAL RESULTS 22

Figure 4.4: Computed speeds from divided aelerations.aurate. In ontrast, dividing by 4 leads to a slight positive speed, but theposition estimate is more aurate.The next series of graphs piture the same set of samples with various thresh-olds applied (dividing eah samples by 1, 2, 4 and 8), together with the omputedspeed and position. This ase is somewhat unfortunate, as even the best esti-mate never reah the nominal movement of 15 cm (it stops at 12 cm). However,let's see how di�erent divisor in�uenes the estimate.The original aeleration is graphed in �gure 4.6. you an notie how the �nalspeed is lower than zero and gradually inreasing from spurious osillations ofthe samples: this bias pulls down the position estimate, resulting in a degradedestimation.A simple division by two, shown in �gure 4.7, leads to a more stable speed.The position estimate is more stable, and it's nearer to the nominal movementvalue of 15 cm. However, there's still some osillation visible at 2, 5 s: if it'svery short however, and doesn't in�uene the omputed speed.Dividing the original aeleration by 4 eliminates the spurious ripple at 2, 5 s,giving a even more aurate estimate.Dividing by 8, as shown in �gure 4.9, uts some of the aeleration. Thespeed is now even loser to zero, and the estimate is as aurate as the onegraphed in �gure 4.8. This result is thus the most stable between the fouranalyzed here.

CHAPTER 4. EXPERIMENTAL RESULTS 23

Figure 4.5: Position omputed from speeds graphed in �gure 4.5.

Figure 4.6: Original aeleration, speed and position

CHAPTER 4. EXPERIMENTAL RESULTS 24

Figure 4.7: Aeleration, speed and position from �gure 4.6 divided by 2.

CHAPTER 4. EXPERIMENTAL RESULTS 25

Figure 4.8: Aeleration, speed and position from �gure 4.6 divided by 4.

CHAPTER 4. EXPERIMENTAL RESULTS 26

Figure 4.9: Aeleration, speed and position from �gure 4.6 divided by 8.

