
File2QR, an Android Application to Encode Files in QR Codes

Francesco Feltrinelli
Email: <francesco.feltrinelli@gmail.com>
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, IT

Abstract

In this paper File2QR is introduced, which is an Android application that encodes any small file to a QR Code, and vice
versa, decodes a file previously encoded in a QR. To encode, a file is loaded from the filesystem; to decode, the QR image
can be loaded from filesystem or acquired through the built-in camera of the mobile phone. The ZXing library has been
used and slightly modified to let it encode binary data instead of only text. The encode procedure is a custom proposal, as
there is no standard up to now that encompasses the encoding of binary data.

1 Overview

QR Codes, which are a technology relatively old, are now
beginning to spread in several scenarios across the end-
user market, thanks to the improvements of mobile phones’
cameras and the growth of the computational power of
smartphones. Libraries and applications to decode/encode
text to QRs with the camera were developed for various
mobile platforms, like Android, Symbian, Blackberry and
iPhone. None of these however, to the best of our knowl-
edge, allows the encoding of arbitrary binary data to QR
Codes, and this is because the standards released till now
by ISO (International Organization for Standardization)
and JIS (Japanese Industrial Standards) do not plan it [1].
This is the reason why File2QR was developed.

In section 2 QR codes will be introduced, while section 3 is
dedicated to ZXing, an Android library to decode/encode
them. Eventually in section 4 File2QR will be discussed.
Finally, conclusions will be outlined in section 5.

2 QR Codes

A QR CodeTM 1 (Quick Response Code) is a type of 2D
bar code originally developed by the japanese automotive
components manufacturer Denso Wave in 1994. As ev-
ery 2D codes, it contains information in both the vertical
and horizontal directions, whereas a bar code contains data
in one direction only: as a consequence, at equal printout
area, it holds a considerably greater volume of information
than a bar code. It can encode any kind of textual informa-
tion, which can later be decoded by dedicated scanners or
by mobile phone’s camera using one of the many existing
applications. An example of QR Code is in figure 1.

Figure 1: Example of QR Code

2.1 Structure

A QR code is made of a matrix of black squares, or mod-
ules, arranged in a squared pattern on a white background:
these modules can be either data codewords (each module
is a bit of information) or error correction codewords.

Figure 2: Structure of a QR Code [6]

As you can see in figure 2, Position-detection patterns are
placed around three of the four corners to help the de-
tection of the QR (from any direction). Timing patterns,
which are lines composed by alternating black and white

1registered trademark of Denso Wave, Inc.

1

modules and connecting two Position patterns, are used to
help determine a symbol’s coordinate. Alignment patterns
are used to correct skewness of the code. Some modules
around the Position patterns store Version (see section 2.4)
and Format (Error Correction level and Mask Pattern, see
section 2.3) information. A white margin, or “clear area”,
surrounds the code. [1] [2] [4] [5]

2.2 Character Encoding

A QR Code can store only text. Four types of characters
can be encoded:

• numeric: 10 numeric digits (0-9). Normal data density
of 10 bits per 3 characters.

• alphanumeric: 10 numeric digits (0-9), 26 alphabetic
characters (A-Z), and 9 symbols (SP, $, %, *, +, -, ., /, :).
Normal data density of 11 bits per 2 characters.

• 8-bit byte: the 8-bit Latin/Kana character set. Data den-
sity of 8 bits per character.

• Kanji: Kanji characters. Each two-byte character value
is compacted to a 13 bit binary codeword.

Note that the 8-bit byte mode has a misleading name, be-
cause it does not refer to the encoding of arbitrary binary
data, but is just another form of character encoding.

2.3 Error Correction

QR codes use an Error Correction Code (ECC) mechanism
based on Reed-Solomon code, which allows to restore data
if the code is dirty or damaged, up to a certain percentage.
Four levels of error correction are defined:

• Level L: approx. 7% correction rate

• Level M: approx. 15% correction rate

• Level Q: approx. 25% correction rate

• Level H: approx. 30% correction rate

Note that the percentages above refer to data restoration
rate for total number of codewords (where “codeword” is
a unit of information equal to 8 bits). As Reed-Solomon
Code requires twice the amount of codewords to be cor-
rected, the percentage of only data codewords corrected is
higher. For example, if it is needed to correct 25 of 100
codewords, there should be 25 × 2 = 50 correction code-
words, so the correction rate as displayed above would be
25/(100 + 50) ' 16.7%. [3]

Raising correction level improves reliability, but increases
its size (stored information being equal).

2.4 Version

A QR code has a symbol Version ranging from 1 to 40,
where each version refers to a different number of mod-
ules used, starting with Version 1 (21 x 21 modules) up to
Version 40 (177 x 177 modules): each version number has
4 more modules than previous version (see figure 3). Con-
sequently, each version for each error correction level has
a different capacity: from the 72 bits (or in characters: 17
numeric, 10 alphanumeric, 7 binary and 4 Kanji) of Ver-
sion 1 with ECC level H, to the 23648 bits (in characters:
7089 numeric , 4296 alphanumeric, 2953 binary and 1817
Kanji) of Version 40 with ECC level L. [3]

Figure 3: Versions of a QR Code [3]

Once a Version is choosen, the printout size of the QR de-
pends on the module size. The larger the module is, the
more stable and easier to read with a QR code scanner it
becomes. On the other hand, as the QR gets larger, a larger
printing area is required. Other constraints are the printer
head density if the QR is printed, or the monitor resolution
if it is displayed on a screen, which determine the min-
imum viewable module size, and the scanner resolution,
which determine the minimum module detectable size.

2.5 Standards

There are several standards covering the physical encod-
ing of a QR Code, released mainly by ISO and JIS [1].
At the application layer, there is some variation between
implementations. NTT DoCoMo, the predominant mobile
phone operator in Japan, has established de facto standards
for the encoding of URLs, contact information, bookmarks
and several other data types [7]. There exist several ap-
plications and libraries for the majority of mobile operat-
ing systems, including Android, Symbian, Blackberry and
iPhone.

As a QR can encode any kind of textual information, a
lot of usage scenarios were proposed, and many of them
are gaining more and more popularity: encoding of URLs,
contact information, SMS, geographic information, Wifi
network configuration, calendar events, and so on. Of
course, a QR reader must identify the type of the con-
tent, and this is done prefixing the text with known tags,

2

like for example http:// or URLTO: for URLs, mailto: or
MATMSG: for email addresses, tel: for telephone numbers
and so on [9]. Instead, as we will see, QRs have never been
used to encode arbitrary binary data, because standards al-
ways refer to textual information. File2QR proposes a way
to do that.

3 ZXing

ZXing is an open-source, multi-format 1D/2D barcode im-
age processing library implemented in Java. The purpose
of the library is to use the built-in camera on mobile phones
to photograph and decode barcodes on the device. Many
are the supported code formats, including QR Codes, and
the library is available on a variety of platforms, among
which Android. An Android scanner application, Barcode
Scanner, is also provided [8].

3.1 Integration

Integration of a custom Android application with Barcode
Scanner to decode/encode QR codes is possible through
the use of Intents, either manually creating the code to
launch the appropriate Intents or exploiting the provided
integration class IntentIntegrator, which encapsulates some
of the details of launching Intents. Another possibility is to
start web-browser navigation to a special type of url, which
Barcode Scanner is registered to, and which serves as an
hook to start it [10]. Unfortunately, in our case integration
through Intents or via URLs was not sufficient.

3.2 Binary Encoding

ZXing strictly complies with QR code standards, so it gives
the possibility to encode Strings, which content must be-
long to one of the four categories: numeric, alphanumeric,
8-bit bytes and Kanji. As stated in section 2.2, the 8-bit
byte mode is not really a binary data encoding, but just an-
other form of character encoding, and ZXing respects this
standard [11]. Therefore, there is no natural way to encode
arbitrary binary data, even if obviously what is put in the
QR in the end are raw bytes. But the standards does not
plan this, and the encoded bytes are always in some ways
internally manipulated, basing on the assumption of textual
information.

A solution to this could be to encode the String repre-
sentation of the bytes, for example in decimal format, or
more efficiently in higher bases like hexadecimal, base-64
or base-128. Still this would be inefficient because, (op-
timistically) assuming to use the default ISO/IEC 8859-
1encoding, which encodes each character with a byte, with

base-64 6 bits would be represented with each character
(64 = 26) and 7 bits with base-128 (128 = 27), which is
less than the 8 bits used to memorize that character. More-
over, the use of base-256 would not be possible, as in ISO/
IEC 8859-1not all of the 256 codes are displayable charac-
ters.

For these reasons, it was decided to integrate part of
the source code of ZXing to adapt it to directly accept
bytes, bypassing any preliminary manipulation in encod-
ing phase. Similarly, it was written some code to directly
extract raw bytes from a QR, bypassing all post-processing
of presumed textual info just decoded.

4 File2QR

File2QR is an Android application that let the user con-
vert an arbitrary file to and from a QR Code, exploiting the
built-in camera of the mobile phone. It uses ZXing library
and reimplement some parts of it. It is open-source soft-
ware, released under Apache License version 2.0 as ZXing
is, and its source code is freely downloadable from Source-
Forge 2; end-users can download it for free from the An-
droid Market. The minimum required Android version is
2.0, while the mobile itself must be provided with a camera
with autofocus capability.

4.1 Features

The application has two main parts: the “decode” section
and the “encode” one (see figure 4). In the encode section
the user loads a file from filesystem (through OpenIntents
OI FileManager 3, which should be installed in the sys-
tem), and this is encoded to a QR and displayed on screen,
to possibly let another user decode it with his mobile. The
generated QRs are also saved on external storage and listed
in the application window, from which the user can manip-
ulate them, that is, open again, delete, rename and share
them (for example, send them via bluetooth or with an
email, post them to Facebook or Flickr, and so on), and
view some info.

2The project page is at http://sourceforge.net/projects/file2qr/
3OI File Manager is an open file manager for Android: http://www.openintents.org/en/filemanager

3

http://sourceforge.net/projects/file2qr/
http://www.openintents.org/en/filemanager

Figure 4: File2QR screenshots. On the left, an encoded
QR; on the right, the decode section.

The decode section is dedicated to decode a file previously
encoded in a QR. This can be done either loading the QR
image from the filesystem or through the camera. In the
second case the user points the camera lens to the QR, tak-
ing care of including it completely in the screen, and waits
for it being decoded in real time; meanwhile, the camera
periodically autofocus. When the QR is decoded, a dialog
alerts the user and the decoded file is saved on the external
storage. If the QR is actually a standard textual one, its
text is displayed instead. No error messages are displayed
if no QR can be decoded correctly: the application simply
indefinitely try to decode something, and when the user
wants to abort he taps the screen. Like for encoded QRs,
also the decoded files are listed and can be manipulated in
the same ways.

4.2 Encode Procedure

As a QR can hold nominally a maximum of 23648 bits
(about 2.9 KB) with Version 40 and lowest error correc-
tion ([3]), files encoded by File2QR are necessarily small.
To lessen this problem, during the encode procedure the
body of the encoded file is gzip-compressed; because of
this, the maximum (uncompressed) file size encodable in
a QR depends on how well the file reacts to compression,
but anyway should be in the order of a few KB. In the fol-
lowing the encode procedure is detailed (see also figure 5).

Both the filename of an encoded file and its binary content
are saved in the QR. A textual part that identifies the file,
called header, is followed by the gzip-compression of the
bytes it contains, called body. The header is composed by
the fixed tag FILE: , followed by the filename, followed
by the fixed separator NUL (the null character, code 0).
The filename is just the name of the file, excluding its path
and including its extension; to save space, it must have a
maximum lenght of 20 characters, so if it is longer than 20
characters only the first 20–1 are kept and the truncating
character ˜ (tilde) is put as 20th, followed by the extension
which is never truncated. The character encoding used for

the header is ISO/IEC 8859-1, so only Latin1 - Western
European characters should be included in the filename.
The body bytes are simply the gzip-compression of the
bytes contained in the file. Then the header bytes and the
body bytes are merged in a single array of bytes which is
the one to be finally encoded in the QR. The adopted error
correction level is L.

"FILE:" "hello.txt"

filename

NUL

null characterH
E

A
D

E
R

 B

O
D

Y

01001
10100

file bytes

tag

 GZIP
0 0 1 0
1 1 0

compressed bytes

encoded
QR Code

encode engine

Figure 5: File2QR encode procedure.

To interpret the raw bytes decoded from the QR the reverse
procedure is used. First of all the raw bytes are read as a
String with ISO/IEC 8859-1. If the file tag is not found
at the beginning, the QR does not encode a file and it is
probably a standard textual one, so its textual content is
simply displayed to user. On the contrary, if the file tag is
found, the characters from the end of the tag till the first
found occurence of the separator character (exluded) are
the filename. The bytes following the separator character
are the gzip-compression of the content of the file, which
must be uncompressed. Once the filename and the content
of the file are collected, the corresponding decoded file can
be saved to storage.

4.3 Usage Scenarios

Due to the small size of encodable files, usage scenarios
are obviously reduced. Nevertheless, there are various sit-
uations in which encoding of a small file instead of merely
textual information could be interesting.

4

A nice example is the encoding of small MIDI files. They
could be advertising-related melodies, used for marketing
purposes and displayed on websites or printed on walls,
buildings, public transports and potentially everywhere ads
are already placed on. They could remind the user a nice
tune already listened on television/radio spots, making him
remember about the sponsored product. They could also
be ringtones for mobile phones. Or they could be used for
musical television games where the interaction with audi-
ence at home is desired. As a last example, they could be
printed on gadgets or business cards as “musical brand” of
a company. This kind of encoding should be particularly
attractive from the user’s point of view because it would
implicitly map the information from one sensorial domain
to another, that is, from sight to hearing and vice versa.

Another reason to encode binary files in a QR instead of
text could be because a binary format for a custom appli-
cation already exists, and it is used by an already estab-
lished legacy infrastructure. If the existing scenario could
be profitably extended with the use of QR codes, than prob-
ably it would be easier to use directly the binary format in-
stead of translating it in an intermediary textual representa-
tion. Moreover, the binary format would probably be more
compact than the textual equivalent. An example could be
the usage of small binary configuration files for some kind
of machinery, maybe where the machine itself can decode
on the fly its configuration reading the QR code.

4.4 Source Code

Every Android application is made of Java classes, of
XML configuration files, of resource files like texts, im-
ages and sounds, and optionally of .jar libraries linked
to the application. The Java source code is contained
in standard Java packages inside the src/ directory,
while resource/configuration files are inside res/ folder:
there is a subfolder for each kind of resource files,
like res/drawables/ for images, res/layout/
for XML files describing the layout of each Activ-
ity, res/values/ for texts and other values, and
so on. The application general configuration file,
AndroidManifest.xml, is placed in the top folder.
Included libraries could be placed anywhere, for example
in a lib/ folder.

The Java source code of File2QR is organized in four pack-
ages (the prefix feltrinelli.project.android.file2qr is omit-
ted). In the following some details about each package is
given.

4.4.1 activity package

It contains all the Activity classes, which are responsible
for the interaction with the user, display of UI elements

and exploitation of the decode/encode engine classes. Its
classes are:

• MainActivity: the first started, it lets the user choose
whether to go to the decode section (DecodedListActiv-
ity) or the encode one (EncodedListActivity)

• DecodedListActivity: displays a list of the decoded files,
which the user can manipulate in several ways. It lets
the user start the decoding of a file from a QR either by
loading an image from filesystem (OI FileManager ac-
tivities) or through the camera (CameraDecodeActivity).
The decoded file is added to the list.

• CameraDecodeActivity: it lets the user decode a QR ac-
quiring it from the camera input, which is displayed on
screen so that the user can direct camera lens towards it.
If a file is decoded, it is reported back to (DecodedLis-
tActivity).

• EncodedListActivity: displays a list of the encoded QR
images, which the user can manipulate in several ways.
It lets the user load a file from filesystem (OI FileMan-
ager activities) and start the encoding to QR (Encode-
Activity). The encode QR image is added to the list.

• EncodeActivity: encodes the given file to a QR. If the
encoding is successful, the QR is shown and also saved
to storage.

4.4.2 engine package

It contains the decode/encode engine classes. Its main
classes are:

• FileFromQrDecoder: gets the raw bytes from a QR
found in an image and interprets them according to the
procedure described in 4.2 to get the file encoded in it.

• FileToQrEncoder: reads the given file and returns the
Bitmap of the QR in which it is encoded, according to
the procedure described in 4.2. It uses a QrByteWriter
to get the ByteMatrix containing the bytes of the bitmap
of the QR, and convert this matrix to a Bitmap.

• QrByteWriter: returns a ByteMatrix of greyscale values
which are the bytes of the bitmap of the QR. It uses a
QrByteEncoder to get a QRCode object; the QRCode
contains a ByteMatrix in which the color of each mod-
ule has value 0-1 (0=white, 1=black), so it must be con-
verted to a ByteMatrix in which color range is 0-255 as
in greyscale (0=black, 255=white), scaling also the QR
with a factor of 4 to fit the screen, and adding the white
margins.

• QrByteEncoder: returns a ByteMatrix of black/white
values. It works out the encoding as described in QR
standards.

5

4.4.3 manager package

Managers are a way to unify common operations done
by activities within a single module. Currently there are
two implemented managers, FileManager and Notifica-
tionManager:

• FileManager: used by every Activity to operate on files.

• NotificationManager: used by every Activity to show
various kind of notifications to the user.

4.4.4 utility package

It contains various utility classes, like for example:

• ByteUtilities: it provides methods to compress, decom-
press and merge arrays of bytes.

• FolderCursor: it extends Cursor to provide the abstrac-
tion of a database-like access to the files of a specified
folder.

5 Conclusions

In this paper File2QR, an Android application that lets the
user decode/encode any small file from/to QR Codes, was
introduced. This is, to the best of our knowledge, the first
public application that encodes arbitrary binary data in a
QR Code, because there are no standards for this. File2QR
proposes an encoding procedure.

The QR Code world is quickly developing, making closer
and closer to reality the concept of World of Things, or
Object Hyperlinking. Usage scenarios will be more and
more common in the next future, and hopefully File2QR
will have given its small contribution to this.

References

[1] ISO/IEC: Information technology - Automatic iden-
tification and data capture techniques - QR Code

2005 bar code symbology specification, ISO/IEC
18004:2006

[2] Denso Wave: About QR Code, Retrieved 21
Sep. 2010, <http://www.denso-wave.com/
qrcode/aboutqr-e.html>

[3] Denso Wave: Symbol Version, Retrieved 21
Sep. 2010, <http://www.denso-wave.com/
qrcode/qrgene2-e.html>

[4] Barcode Reader Resource Center: What
is QR Code?, Retrieved 21 Sep. 2010,
<http://www.keyence.com/barcode/
technology/barcode_2d_qr_code.php>

[5] Y.Swetake: How to create QRcode, Retrieved 21
Sep. 2010, <http://www.swetake.com/qr/
qr1_en.html>

[6] Richard Wheeler: Example of QR code, high-
lighting functional elements, Retrieved 21 Sep.
2010, <http://en.wikipedia.org/wiki/
File:QR_Code_Structure_Example.svg>

[7] NTT DoCoMo: Bar Code, Outline of Func-
tions, Retrieved 21 Sep. 2010, <http:
//www.nttdocomo.co.jp/english/
service/imode/make/content/barcode/
function/index.html>

[8] ZXing: ZXing (“Zebra Crossing”), Retrieved 21
Sep. 2010, <http://code.google.com/p/
zxing/>

[9] ZXing: Barcode Contents, Retrieved 21
Sep. 2010, <http://code.google.com/p/
zxing/wiki/BarcodeContents>

[10] ZXing: How to scan a barcode from another
Android application via Intents, Retrieved 21
Sep. 2010, <http://code.google.com/p/
zxing/wiki/ScanningViaIntent>

[11] ZXing: QRCode for binaries data, Retrieved 21
Sep. 2010, <http://code.google.com/p/
zxing/issues/detail?id=382>

6

http://www.denso-wave.com/qrcode/aboutqr-e.html
http://www.denso-wave.com/qrcode/aboutqr-e.html
http://www.denso-wave.com/qrcode/qrgene2-e.html
http://www.denso-wave.com/qrcode/qrgene2-e.html
http://www.keyence.com/barcode/technology/barcode_2d_qr_code.php
http://www.keyence.com/barcode/technology/barcode_2d_qr_code.php
http://www.swetake.com/qr/qr1_en.html
http://www.swetake.com/qr/qr1_en.html
http://en.wikipedia.org/wiki/File:QR_Code_Structure_Example.svg
http://en.wikipedia.org/wiki/File:QR_Code_Structure_Example.svg
http://www.nttdocomo.co.jp/english/service/imode/make/content/barcode/function/index.html
http://www.nttdocomo.co.jp/english/service/imode/make/content/barcode/function/index.html
http://www.nttdocomo.co.jp/english/service/imode/make/content/barcode/function/index.html
http://www.nttdocomo.co.jp/english/service/imode/make/content/barcode/function/index.html
http://code.google.com/p/zxing/
http://code.google.com/p/zxing/
http://code.google.com/p/zxing/wiki/BarcodeContents
http://code.google.com/p/zxing/wiki/BarcodeContents
http://code.google.com/p/zxing/wiki/ScanningViaIntent
http://code.google.com/p/zxing/wiki/ScanningViaIntent
http://code.google.com/p/zxing/issues/detail?id=382
http://code.google.com/p/zxing/issues/detail?id=382

	Overview
	QR Codes
	Structure
	Character Encoding
	Error Correction
	Version
	Standards

	ZXing
	Integration
	Binary Encoding

	File2QR
	Features
	Encode Procedure
	Usage Scenarios
	Source Code
	activity package
	engine package
	manager package
	utility package

	Conclusions

