
Embedded Systems Project

USBTMC support to the Atmel’s UC3 Software Framework

Massimiliano Gentile

September 3, 2010

1

Embedded Systems Project CONTENTS

Contents

1 Introduction 3
1.1 Purpose . 3
1.2 Organization . 3
1.3 Related Documents . 3

2 Analysis 4
2.1 USBTMC and USBTMC-USB488 . 4
2.2 Atmel’s UC3 Software Framework . 6

2.2.1 USB Software Library . 7

3 Implementation of the USBTMC protocol driver 10
3.1 Enumeration process . 10

3.1.1 Configuring the USB library . 10
3.2 Specific Requests . 11

3.2.1 GET CAPABILITIES . 12
3.3 Interface Endpoints . 12

3.3.1 Helper Functions . 12
3.4 Sample Application . 14

A Appendix A - USBTMC specification 16
A.1 Descriptors . 16

A.1.1 Device Descriptor . 16
A.1.2 Device Qualifier Descriptor . 16
A.1.3 Configuration Descriptor . 16
A.1.4 Other Speed Configuration Descriptor . 18
A.1.5 Interface Descriptor . 19
A.1.6 Endpoint Descriptors . 19
A.1.7 String Descriptors . 20

A.2 Interface Endpoints and Characteristics . 20
A.2.1 Default control endpoint . 20
A.2.2 Bulk-OUT endpoint . 20
A.2.3 Bulk-IN endpoint . 24

A.3 Control endpoint requests . 29
A.3.1 Standard requests . 29
A.3.2 USBTMC class specific requests . 30

2

Embedded Systems Project 1 INTRODUCTION

1 Introduction

1.1 Purpose

The goal of this project is to add the support to the USB Test and Measurement Class (USBTMC) standard
to the Atmel’s UC3 software framework. This implementation will be useful for everyone looking at the
usage of a UC3 device as a measurement instrument (i.e. low sample rate ADCs or digital signal analyzers).

USBTMC, introduced in 2002, is a vendor-independent standard for programmatic control of USB-
based test instruments. The standard defines the protocol that is used to send command messages to an
instrument and read back responses but it does not define the format of the messages. Most USB-based
instruments available today adheres to the USBTMC standard.

The UC3 Software framework provides software, drivers and libraries to help designing and building any
application for AVR32 UC3 devices. The software framework is written in C code and it contains drivers
for each AVR32 UC3 peripheral, software libraries optimized for AVR32, hardware components drivers and
RTOS-ready source code. Furthermore, high level user documentation including examples, getting started
and tutorials are provided. This framework already provides support for many USB classes (i.e. mass
storage, audio, DFU, CDC and HID) but it still does not include the support to the USBTMC protocol.

1.2 Organization

This report is organized as follows.

Chapter 2 provides a more detailed analysis of the USBTMC protocol and of the Atmel’s Software
Framework. Chapter 3 describes the details of the implementation of the USBTMC protocol driver. The
document is completed by an appendix with a synthesis of the USBTMC specification for the devices.

1.3 Related Documents

• Universal Serial Bus Specification, Revision 2.0, April 27, 2000, http://www.usb.org

• USB Test and Measurement Class (USBTMC) specification, Revision 1.0, http://www.usb.org

• USB Test and Measurement Class USB488 subclass specification, Revision 1.0,
http://www.usb.org

• AVR276: USB Software Library for AT90USBxxx Microcontrollers, http://www.atmel.com

3

Embedded Systems Project 2 ANALYSIS

2 Analysis

2.1 USBTMC and USBTMC-USB488

USBTMC is a protocol built on top of USB that allows GPIB-like communication with USB devices. From
the user’s point of view, the USB device behaves just like a GPIB device. USBTMC allows instrument
manufacturers to upgrade the physical layer from GPIB to USB while maintaining software compatibil-
ity with existing software, such as instrument drivers and any application that uses Virtual Instrument
Software Architectures (VISA).

USBTMC-USB488 is a subclass of the USBTMC protocol that can be used with devices that wish to
communicate using messages that are based on the IEEE-488.1 and IEEE-488.2 standards, adding items
such as triggering, remote/local signaling, service requests, and communication protocols to properly detect
IEEE-488.2 errors such as unterminated and interrupted conditions.
Therefore, USBTMC and its subclass define the protocol for exchanging messages between hosts and
devices without defining a new format for the commands.
As it is possible to see in Figure 1, a USBTMC-USB488 device typically contains four endpoints. These
endpoints are the default control endpoint, the bulk-out endpoint, the bulk-in endpoint and the interrupt-
in endpoint.
The control endpoint is required by the USB 2.0 specification. The Bulk-OUT endpoint is required and

is used to provide a high performance, guaranteed delivery data path from the Host to the device. The
Host must use the Bulk-OUT endpoint to send USBTMC command messages to the device and to set up
all transfers on the Bulk-IN endpoint, and the device must process the USBTMC command messages in

Figure 1: USBTMC communication model

4

Embedded Systems Project 2 ANALYSIS

the order they are received.
The Bulk-IN endpoint is required and is used to provide a high performance, guaranteed delivery data
path from the device to the Host. The Host must use the Bulk-IN endpoint to receive USBTMC response
messages from the device.
The Interrupt-IN endpoint is an optional endpoint and is used by the device to send notifications to the
Host. This endpoint can be required by a USBTMC subclass specification.
A list of the messages that are sent across these endpoints is reported in Table 1.

Message Endpoint Standard Description
CHECK ABORT BULK IN STATUS Control USBTMC Returns the status of the previously sent INI-

TIATE ABORT BULK IN transfer.
CHECK ABORT BULK OUT STATUS Control USBTMC Returns the status of the previously sent INI-

TIATE ABORT BULK OUT transfer.
CHECK CLEAR STATUS Control USBTMC Returns the status of the previously sent INI-

TIATE CLEAR transfer.
GET CAPABILITIES Control USBTMC Returns attributes of the USBTMC interface.
INDICATOR PULSE Control USBTMC (Optional) Pulses the activity indicator light

for identification purposes.
INITIATE ABORT BULK IN Control USBTMC Aborts a Bulk-IN transfer.
INITIATE ABORT BULK OUT Control USBTMC Aborts a Bulk-OUT transfer.
INITIATE CLEAR Control USBTMC Clears the device.
GO TO LOCAL Control USBTMC-USB488 Equivalent of GTL command byte.
LOCAL LOCKOUT Control USBTMC-USB488 Equivalent of LLO command byte.
READ STATUS BYTE Control USBTMC-USB488 Reads the IEEE Status byte.
REN CONTROL Control USBTMC-USB488 Simulates REN line.
DEV DEP MSG OUT Bulk-Out USBTMC Send data bytes to the device.
REQUEST DEV DEP MSG IN Bulk-Out USBTMC Request response from device.
REQUEST VENDOR SPECIFIC IN Bulk-Out USBTMC Request vendor data from device.
VENDOR SPECIFIC OUT Bulk-Out USBTMC Send vendor data to device.
TRIGGER Bulk-Out USBTMC-USB488 Triggers the device.
DEV DEP MSG IN Bulk-In USBTMC Send data to host.
VENDOR SPECIFIC IN Bulk-In USBTMC Send vendor data to host.

Table 1: USBTMC Messages

It is possible to identify the ways used by the USBTMC protocol to emulate the GPIB characteristics.
The synchronization is necessary to properly emulate GPIB, which uses a three-wire handshake that has
the controller initiate an action by placing a command byte on the bus, with the device indicating the
action has been completed by finishing the handshake. As USB doesn’t let the device delay completing the
handshake until the action is finished, the USBTMC standard converts these out-of-band messages into
split transactions to guarantee proper synchronization. The first part of a split transaction corresponds to
the GPIB controller placing the data on the bus; it’s known as the initiate action. The second part allows
the controller to poll the device to determine whether the action has been completed.
One common message used in the Bulk-Out endpoint is DEV DEP MSG OUT (Device-Dependent Mes-
sage Output). It’s the equivalent of a GPIB write from the controller to the device. The message-specific
header for this message ID contains a transfer count to indicate the total number of bytes in this transfer,

5

Embedded Systems Project 2 ANALYSIS

and an end-of-message bit, which is used to emulate the GPIB EOI (End-or-Identify) signal to indicate
whether the last byte of this transfer is the last byte in the total message.
For the bulk-in endpoint the USBTMC protocol uses headers similar to the ones used by the bulk-
out endpoint. All bulk-in endpoint transfers start with a bulk-out transfer that contains a message
DEV DEP MSG IN (Device-Dependent Message Input). The message-specific header contains a transfer
count field to indicate the maximum number of bytes that the device can transfer to host. This guarantees
that the device will never transfer more data than asked for by the instrument control application. By
doing this, the host doesn’t need to buffer any data, and if the device needs to flush its output queue, there
will be no data integrity problems.
The purpose of the Interrupt endpoint is to emulate the GPIB service request mechanism. It’s optional
for devices that don’t wish to use service requests. In GPIB, an SRQ (service request) line is used by a
device to inform the controller that it requires service. As all traffic in USB is initiated by the host, an
interrupt endpoint is used to emulate a system interrupt. However, it isn’t a real interrupt; it’s actually a
high-priority bulk-in endpoint that’s polled at a periodic rate. To work around the long first-byte latency
of USB, USBTMC devices automatically serial-poll themselves when they need to request service, and
return both the SRQ line and the status byte in a single transmission. The advantage is that the host can
receive the status byte without generating another USB transaction.

2.2 Atmel’s UC3 Software Framework

This framework provides software drivers and libraries to build any application for AVR32 UC3 devices.
It has been carefully developed to help develop and glue together the different components of a software
in order to be easily integrable into an operating system as well as to operate in a stand-alone way.
The framework is divided into several modules. Each module is provided with full source code, example
of usage and a rich HTML documentation. The modules are:

• UC3 Drivers (directory/DRIVERS)
This directory contains software drivers such as ADC, GPIO or Timer peripherals. Each driver is
composed of a driver.c and driver.h file that provides low level functions to access the peripheral.

• Software Services (directory/SERVICES)
This directory provides application-oriented piece of software such as a USB mass storage class, a
FAT file system and an optimized DSP library.

• Hardware Components (directory/COMPONENTS)
This directory provides software drivers to access hardware components such as external memory or
LCD.

• C/C++ Utilities (directory/UTILS)
This directory provides several linker script files and C/C++ files with general usage defines, macros
and functions.

6

Embedded Systems Project 2 ANALYSIS

Figure 2: Block Diagram Overview

• Demo Applications (directory/APPLICATIONS)
This directory provides application examples that are based on services, components and drivers
modules.

2.2.1 USB Software Library

The USB Software Library is designed to hide the complexity of the USB development. The architecture
of the USB firmware is designed to avoid any hardware interfacing (drivers layer should not be modified
by the user). The USB software library can manage both device or host enumeration process. The global
USB firmware architecture is illustrated in Figure 3 with an example of a dual role sample application.

The source files are organized as follows:

• lib mcu/usb/usb drv.c
USB Interface Low Level drivers

• modules/usb/device chap9/usb device task.c
USB device chapter 9 management (connection, disconnection, suspend, resume and call for enumer-
ation process)

7

Embedded Systems Project 2 ANALYSIS

Figure 3: USB Firmware Architecture for a dual role application

• modules/usb/device chap9/usb standard request.c
Device enumeration process

• modules/usb/host chap9/usb host task.c
USB host chapter 9 management (device connection, disconnection, suspend, resume and high level
enumeration process)

• modules/usb/host chap9/usb host enum.c
Low level enumeration functions (check VID/PID, configure the host pipe according device descrip-
tors)

• modules/usb/usb task.c
Entry point for USB task management

An example of a template for a demo application can be organized as follows:

8

Embedded Systems Project 2 ANALYSIS

• demo/template/conf/config.h
Global Configuration file for the application

• demo/template/conf/conf usb.h
Configuration file for the USB software library

• demo/template/conf/conf scheduler.h
Scheduler configuration (tasks declaration)

• demo/template/main.c
Main entry point (scheduler initialisation)

• demo/template/usb specific request.c
User or class specific device enumeration requests (none standard enumeration requests)

• demo/template/usb descriptors.c
Device descriptors structures (used for device enumeration process)

• demo/template/device template task.c
High level user application for USB device mode (sample device application)

• demo/template/host template task.c
High level user application for USB host mode (sample host application)

9

Embedded Systems Project 3 IMPLEMENTATION OF THE USBTMC PROTOCOL DRIVER

3 Implementation of the USBTMC protocol driver

3.1 Enumeration process

Every USB device communicates its requirements to the host through a process called enumeration. During
the enumeration phase, the host asks the device several descriptor values to identify it and load the correct
drivers. The device descriptors are transferred to the host which assigns a unique address to the device.
Each USB device should have at least this descriptors, in order to be recognized by the host:

• Device descriptor
The USB device can have only one device descriptor. This descriptor describes the entire device. It
gives information about the USB version, the maximum packet size of the endpoint 0, the vendor ID,
the product ID, the product version, the number of the possible configurations the device can have,
etc.

• Configuration descriptor(s)
The USB device can have more than one configuration descriptor, however the majority of devices
use a single configuration. This descriptor specifies the power-supply mode (self-powered or bus-
powered), the maximum power that can be consumed by the device, the interfaces belonging to the
device, the total size of all the data descriptors, etc.

• Interface descriptor(s)
A single device can have more than one interface. The main information given by this descriptor is
the number of endpoints used by this interface and the USB class and subclass.

• Endpoint descriptor(s)
This descriptor is used to describe the endpoint parameters such as: the direction (IN or OUT), the
transfer type supported (Interrupt, Bulk, Isochronuous), the size of the endpoint, the interval of data
transfer in case of interrupt transfer mode, etc.

• Class Specific descriptor(s)

• String descriptor(s)

3.1.1 Configuring the USB library

To enable the USB device mode of the library, the USB DEVICE FEATURE should be defined as EN-
ABLED. The device specific configuration section of “CONFIG/conf usb.h” file contains the definition of
the endpoints used by the device application and a set of user specific actions that can be executed upon
special events during the USB communication. For example it is possible to map a function executed upon
each USB start of frame event or USB bus reset.
The device descriptors used for the device enumeration process are stored in “SERVICES/USB/CLASS/US-
BTMC/ENUM/usb descriptors.c” and “SERVICES/USB/CLASS/USBTMC/ENUM/usb descriptors.h”

10

Embedded Systems Project 3 IMPLEMENTATION OF THE USBTMC PROTOCOL DRIVER

files. The descriptors structures are declared in usb descriptors.h file, so all the enumeration parame-
ters for the configuration of the device should be declared in this file. All these parameters are used to fill
up the descriptor fields declared in usb descriptors.c file. In this phase it’s not necessary to implement any
method or to know the USB enumeration process more precisely, since all the functions that handle this
process are provided by the USB library of the Atmel’s UC3 Software Framework.

When the host controller performs the enumeration process, its requests are decoded thanks to the
standard request.c enumeration functions and the user defined descriptors are sent to the host con-
troller. The device user application task knows that the device is properly enumerated thanks to the
Is device enumerated() function that returns TRUE once the SET CONFIGURATION request has been
received from the host.
An example of what can be configured in the usb descriptors.c is shown in Listing 1. In this case it is
possible to see the declaration of the vendor and product IDs and the definition of the Bulk-OUT endpoint.

#define VENDOR ID ATMEL VID
#define PRODUCT ID USBTMC PID
#define NB CONFIGURATION 1
#define NB INTERFACE 1
#define NB ENDPOINT 3
. . .

// USB Endpoint 1 d e s c r i p t o r
// Bulk OUT

#define ENDPOINT NB 1 BULKOUT EP
#define EP ATTRIBUTES 1 TYPE BULK
#define EP IN LENGTH 1 FS 0x40
#define EP IN LENGTH 1 HS 512
#define EP SIZE 1 FS EP IN LENGTH 1 FS
#define EP SIZE 1 HS EP IN LENGTH 1 HS
#define EP INTERVAL 1 0x00

Listing 1: Example of code from usb descriptors.h

3.2 Specific Requests

The USBTMC protocol defines a set of class specific requests for commands sent through the Control
endpoint, as it is possible to see in Table 1. When the USB library receives an unsupported USB request,
the method usb user read request in the file “usb specific request.c” is invoked. Then it is possible to
identify if the request is class specific with a switch-case statement. The usb user read request method
returns TRUE when the request is processed, FALSE if it’s not supported and in this case a STALL

11

Embedded Systems Project 3 IMPLEMENTATION OF THE USBTMC PROTOCOL DRIVER

Bool u s b u s e r r e a d r e q u e s t (U8 type , U8 reques t)
{

switch (r eques t)
{

case USBTMC GET CAPABILITIES :
u s b t m c g e t c a p a b i l i t i e s () ;
return TRUE;

. . .
default :

return FALSE;
}

}

Listing 2: Example of code in method usb user read request

handshake will be automatically sent by the standard USB read request function.

3.2.1 GET CAPABILITIES

This is an example of a specific request that has been implemented. This request is used to provide addi-
tional attributes and capabilities of a USBTMC interface. The method is implemented in “SERVICES/US-
B/CLASS/USBTMC/ENUM/usb specific request.c” as usbtmc get capabilities(). After having acknowl-
edged the Setup packet and reset the queue of the Control endpoint, the attributes and capabilities are
sent according to the format specified in the USBTMC specification. In Listing 3 it is shown the imple-
mentation of the function. It is possible to notice that the device will inform the host of its capability
of accepting the INDICATOR PULSE request and supporting the TermChar character to end a Bulk-IN
transfer.

3.3 Interface Endpoints

In order to let the USBTMC device communicate with the host, a set of helper commands has been
implemented with the purpose of a better ease of use of the device driver. These methods are defined in
“SERVICES/USB/CLASS/USBTMC/device usbtmc helper.c”

3.3.1 Helper Functions

The first function that has been implemented is named usb read. It is necessary to provide a pointer to
a struct S usbtmc bulk out header that will contain the header received from the host and a pointer to
an array of bytes that will contain the data part of the message. The size of the data message can be
read in the transferSize value of the header. First, the header bytes are read and, based on the message

12

Embedded Systems Project 3 IMPLEMENTATION OF THE USBTMC PROTOCOL DRIVER

void u s b t m c g e t c a p a b i l i t i e s (void)
{

U s b a c k s e t u p r e c e i v e d f r e e () ;
U s b r e s e t e n d p o i n t f i f o a c c e s s (EP CONTROL) ;
Usb wr i t e endpo int data (EP CONTROL, 8 , USBTMC STATUS SUCCESS) ;
Usb wr i t e endpo int data (EP CONTROL, 8 , 0) ;
Usb wr i t e endpo int data (EP CONTROL, 16 , bcdUSBTMC) ;
Usb wr i t e endpo int data (EP CONTROL, 8 , USBTMC ACCEPT INDICATOR PULSE) ;
Usb wr i t e endpo int data (EP CONTROL, 8 , USBTMC ACCEPT TERMCHAR) ;
Usb wr i t e endpo int data (EP CONTROL, 64 , 0) ;
Usb wr i t e endpo int data (EP CONTROL, 64 , 0) ;
Usb wr i t e endpo int data (EP CONTROL, 16 , 0) ;
. . .

}

Listing 3: Example of code to implement the GET CAPABILITIES class specific request

#define NB MS BEFORE FLUSH 10
void usb read (S usbtmc bulk out header ∗ header , U32∗ data rx) ;
void usb wr i t e (S usbtmc bulk out header header bulkout , U32∗ data to send ,

int s i z e) ;
void u sb t im e o ut f l u s h (void) ;
Bool u s b t e s t h i t (void) ;

Listing 4: Exposed interfaces for helper functions

13

Embedded Systems Project 3 IMPLEMENTATION OF THE USBTMC PROTOCOL DRIVER

ID, the S usbtmc bulk out header is filled. Then if the message is a DEV DEP MSG OUT or a VEN-
DOR SPECIFIC OUT, the data part is read with the help of the usb read data function. In this simple
version I don’t take into account the possibility to send messages over different transactions. This is an
acceptable assumption considering that the typical Test&Measurement messages are short. With a more
complex implementation of the message exchange protocol, it may be necessary to reconsider this assump-
tion. The second exported helper function is named usb write, and is used to write responses to request
messages. This is the case of REQUEST DEV DEP MSG IN and REQUEST VENDOR SPECIFIC IN.
Based on the type of request receive, the appropriate header is sent to the host followed by a data message
that must be passed to this method as a parameter, specifying even its size in bytes. The data message is
terminated by the TermChar character received in the request header.
Another function that can be used is the usb flush timeout. It is useful to flush the Bulk IN endpoint
buffer every NB MS BEFORE FLUSH milliseconds, a parameter that can be specified in the header file
“device usbtmc helper.h”. To conclude, it is possible to use the function usb test hit to test whether some
data was received in the Bulk OUT endpoint.

3.4 Sample Application

To simplify the development of an extension to this driver, in order to generate a message exchange protocol
that permits the management of the USBTMC device, it has been implemented a stub application in the
file device usbtmc.c. This application executes a function in an infinite loop. In Listing 5 it is possible
to see the core of the function. First, the function waits until it receives a message. Then it decodes the

usb read(&header bulkout , b u f f e r) ;
switch (header bulkout . msgID) {

case USBTMC DEV DEP MSG OUT:
case USBTMC VENDOR SPECIFIC OUT:
{

proce s s input mes sage (header bulkout , b u f f e r) ;
break ;

}
case USBTMC REQUEST DEV DEP MSG IN:
case USBTMC REQUEST VENDOR SPECIFIC IN:
{

U32∗ re sponse = e l a b o r a t e r e s p o n s e (header bulkout , b u f f e r) ;
u sb wr i t e (header bulkout , response , s izeof (re sponse)) ;
break ;

}
}

Listing 5: A sample of code from the stub application

14

Embedded Systems Project 3 IMPLEMENTATION OF THE USBTMC PROTOCOL DRIVER

message ID of the header. If it is received an output message, device dependent or vendor specific, the
data content, saved in the variable buffer, is processed. When a request message is received, the device
elaborates a response and write it as the answer. In the case of this stub application, the input message is
just memorized and the elaborate response method simply returns the same data content saved in the last
output message. To extend and improve the possibility to exchange messages, it is necessary to modify
the implementation of the methods process input message and elaborate response.

15

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

A Appendix A - USBTMC specification

The USBTMC specification specifies the shared attributes, common services, and data formats for devices
with a USBTMC compliant test and measurement interface. This specification addresses the common
specification needs that apply to minimal devices (i.e. ADCs, sensors, and transducers), devices that
communicate with IEEE 488 messages or devices with sub-addressable components (i.e. mainframes with
instrument cards).

A.1 Descriptors

This is the list of Descriptor types as specified in table 9-5 of the USB 2.0 specification.

Descriptor Types Value
DEVICE 1
CONFIGURATION 2
STRING 3
INTERFACE 4
ENDPOINT 5
DEVICE QUALIFIER 6
OTHER SPEED CONFIGURATION 7
INTERFACE POWER 8

Table 2: Descriptor Types

A.1.1 Device Descriptor

A device descriptor describes general information about a USB device. It includes information that applies
globally to the device and all of the device’s configurations. A USB device has only one device descriptor.

A.1.2 Device Qualifier Descriptor

The device qualifier descriptor describes information about a high-speed capable device that would change
if the device were operating at the other speed. For example, if the device is currently operating at full-
speed, the device qualifier returns information about how it would operate at high-speed and vice-versa.

A.1.3 Configuration Descriptor

The configuration descriptor describes information about a specific device configuration. The descriptor
describes the number of interfaces provided by the configuration. Each interface may operate independently.
A USB device has one or more configuration descriptors. Each configuration has one or more interfaces
and each interface has zero or more endpoints. An endpoint is not shared among interfaces within a single

16

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 bLength 1 0x12 Size of this descriptor in bytes.
1 bDescriptorType 1 0x01 DEVICE Descriptor Type as specified in Ta-

ble 2.
2 bcdUSB 2 BCD (0x0200 or greater) Binary coded decimal field indicating the USB

specification level used in the design of this
device. As specified in USB 2.0 specification,
section 9.6.1.

4 bDeviceClass 1 0x00 Class found in interface descriptor.
5 bDeviceSubClass 1 0x00 Subclass found in interface descriptor.
6 bDeviceProtocol 1 0x00 Protocol found in interface descriptor.
7 bMaxPacketSize0 1 Number Maximum packet size for endpoint zero (only

8, 16, 32, or 64 are valid). If the device is
operating at high-speed, this field must be 64
indicating a 64 byte maximum packet.

8 idVendor 2 ID Required. Vendor ID assigned by USB-IF
10 idProduct 2 ID Required. Product ID assigned by the manu-

facturer
12 bcdDevice 2 BCD Device release number in binary coded deci-

mal.
14 iManufacturer 1 Index Index of string descriptor describing manufac-

turer. Required to be non-zero. Specified
in USB 2.0 specification, section 9.6.1. The
bLength for the iManufacturer string descrip-
tor must be ¿= 4 and ¡= 128 (1 ¡= number of
Unicode characters ¡= 63).

15 iProduct 1 Index Index of string descriptor describing product.
Required to be non-zero. Specified in USB 2.0
specification, section 9.6.1 and section 5.7 of
this USBTMC document. The bLength for the
iProduct string descriptor must be ¿= 4 and
¡= 128 (1 ¡= number of Unicode characters ¡=
63).

16 iSerialNumber 1 Index Index of string descriptor describing the de-
vices serial number. Required to be non-
zero. Specified in USB 2.0 specification, sec-
tion 9.6.1. The combination of idVendor, id-
Product, and iSerialNumber must be unique
for every instance of a device. The bLength
for the iSerialNumber string descriptor must
be ¿= 4 and ¡= 128 (1 ¡= number of Unicode
characters ¡= 63).

17 bNumConfigurations 1 Number Number of possible configurations at the cur-
rent operating speed.

Table 3: Device Descriptor

configuration unless the endpoint is used by alternate settings of the same interface. Endpoints may be
shared among interfaces that are part of different configurations without this restriction. Once configured,
devices may support limited adjustments to the configuration.

17

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 bLength 1 0x0A Size of this descriptor in bytes.
1 bDescriptorType 1 0x06 DEVICE QUALIFIER Descriptor Type as

specified in Table 2.
2 bcdUSB 2 BCD USB specification version number (e.g., 0200H

for V2.00).
4 bDeviceClass 1 0x00 Class found in interface descriptor.
5 bDeviceSubClass 1 0x00 Subclass found in interface descriptor.
6 bDeviceProtocol 1 0x00 Protocol found in interface descriptor.
7 bMaxPacketSize0 1 Number Maximum packet size for other speed.
8 bNumConfigurations 1 Number Number of Other-speed Configurations.
9 Reserved 1 0x00 Reserved for future use, must be zero

Table 4: Device Qualifier Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor in bytes.
1 bDescriptorType 1 0x02 CONFIGURATION Descriptor Type as spec-

ified in Table 2.
2 wTotalLength 2 Number Total length of data returned for this config-

uration. Includes the combined length of all
descriptors (configuration, interface, endpoint,
and class- or vendor-specific returned for this
configuration.

4 bNumInterfaces 1 Number Number of interfaces supported by this con-
figuration. A device may have multiple
USBTMC interfaces.

5 bConfigurationValue 1 Number Value to use as an argument to the SetConfig-
uration() request to select this configuration.

6 iConfiguration 1 Index Index of string describing this configuration.
7 bmAttributes 1 Bitmap Configuration characteristics

D7: Reserved (set to one)
D6: Self-powered
D5: Remote Wakeup
D4..0: Reserved (reset to zero)

8 bMaxPower 1 mA Maximum power consumption of the USB de-
vice from the bus in this specific configuration
when the device is fully operational. It is ex-
pressed in 2 mA units (i.e., 50 = 100 mA).

Table 5: Configuration Descriptor

A.1.4 Other Speed Configuration Descriptor

The other speed configuration descriptor describes a configuration of a high-speed capable device if it
were operating at its other possible speed. The structure of the other speed configuration is identical to
a configuration descriptor, except for the bDescriptorType field that has a value of 0x07 as specified in
Table 2.

18

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

A.1.5 Interface Descriptor

The interface descriptor describes a specific interface withing a configuration. A configuration provides one
or more interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within
the configuration. An interface descriptor is always returned as part of a configuration descriptor. An
interface may include alternate settings that allow the endpoints and/or their characteristics to be varied
after the device has been configured. Alternate settings allow a portion of the device configuration to be
varied while other interfaces remain in operation. If a configuration has alternate settings for one or more
of its interfaces, a separate interface descriptor and its associated endpoints are included for each setting. A

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor in bytes.
1 bDescriptorType 1 0x04 INTERFACE Descriptor Type as specified in

Table 2.
2 bInterfaceNumber 1 Number Number of this interface. Zero-based value

identifying the index in the array of concurrent
interfaces supported by this configuration.

3 bAlternateSetting 1 0x00 Value used to select this alternate setting for
the interface identified in the prior field.

4 bNumEndpoints 1 Number Number of endpoints used by this interface
(excluding endpoint zero). If this value is zero,
this interface only uses the Default Control
Pipe.

5 bInterfaceClass 1 Class = 0xFE Application-Class class code, assigned by
USB-IF. The Host must not load a USBTMC
driver based on just the bInterfaceClass field.

6 bInterfaceSubClass 1 0x03 Subclass code, assigned by USB-IF.
7 bInterfaceProtocol 1 Protocol Protocol code

0: USBTMC interface. No subclass specifica-
tion applies.
1: USBTMC USB488 interface.
2-127: Reserved.

8 iInterface 1 Index Index of string descriptor describing this inter-
face.

Table 6: Interface Descriptor

USBTMC interface with a bInterfaceProtocol = 0x00 must have exactly one Bulk-OUT endpoint, exactly
one Bulk-IN endpoint, and may have at most one Interrupt-IN endpoint. Additional endpoints must be
placed in another interface.

A.1.6 Endpoint Descriptors

For USBTMC interfaces it’s necessary to specify at least the Bulk-IN Endpoint and the Bulk-OUT end-
point. Following the USBTMC USB488 subclass specification it is also necessary to specify an Interrupt-IN
Endpoint.
Each endpoint used for an interface has its own descriptor. This descriptor contains the information re-

19

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

quired by the host to determine the bandwidth requirements of each endpoint. There is never an endpoint
descriptor for endpoint zero.

A.1.7 String Descriptors

String descriptors use UNICODE encodings as defined by The Unicode Standard, Worldwide Character
Encoding, Versione 3.0, The Unicode Consortium, Addison-Wesley Publishing Company, Reading, Mas-
sachusetts. The strings in a USB device may support multiple languages. When requesting a string
descriptor, the requester specifies the desired language using a sixteen-bit language ID (LANGID) defined
by the USB-IF. All devices with a USBTMC interface must implement at least string descriptors with
LANGID = 0x0409 (English, United States). The format of string descriptors are as specified in the USB
2.0 specification, section 9.6.7.

A.2 Interface Endpoints and Characteristics

A.2.1 Default control endpoint

The default control endpoint must support control transfers as required in the USB 2.0 specification. The
default control endpoint is used to send standard, class and vendor-specific requests to the device, interface,
or endpoint. The default control endpoint number must be 0.

A.2.2 Bulk-OUT endpoint

The Host uses the Bulk-OUT endpoint to send USBTMC command messages to the device. For all Bulk-
OUT USBTMC command messages the Host must begin the first USB transaction in each Bulk-OUT
transfer of command message content with a Bulk-OUT Header.
The following rules apply to all Bulk-OUT USBTMC command messages:

1. The Host must send the USBTMC message data bytes (if applicable) immediately after the USBTMC
Bulk-OUT Header in the same USB transaction in the same DATA payload, subject to maximum
packet size constraints.

2. The total number of bytes in each Bulk-OUT transaction must be a multiple of 4. The Host must
add 0 to a maximum of 3 extra alignment bytes to the last transaction payload to achieve 4-byte
(32-bit) alignment. The alignment bytes should be 0x00-valued, but this is not required.

3. The Host must not send a new USBTMC Bulk-OUT Header if a previous Bulk-OUT transfer has
not yet completed.

4. The Host must consider a Bulk-OUT data transfer complete when it has transferred exactly the
amount of data expected (all of the message data bytes and alignment bytes). If the last data payload
is wMaxPacketSize, the Host should not send a zero-length packet. The device must consider the

20

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 0x05 ENDPOINT Descriptor Type as specified in

Table 2.
2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB de-

vice described by this descriptor, encoded as
follows:
Bit 3..0: The endpoint number
Bit 6..4: Reserved, reset to zero
Bit 7: Direction,
0 = OUT endpoint
1 = IN endpoint

3 bmAttributes 1 Bitmap This field describes the endpoint’s attributes
when it is configured using the bConfigura-
tionValue.
Bits 1..0: Transfer Type,
00 = Control
01 = Isochronous
10 = Bulk
11 = Interrupt
Since no isochronous endpoints are used in
USBTMC, all other bits must be set to zero.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is capable
of sending or receiving when this configuration
is selected. Bits 10..0 specify the maximum
packet size (in bytes). For the Bulk-OUT end-
point the maximum packet size (in bytes) must
be a multiple of 4. For high speed interrupt
endpoints:
Bits 12..11: specify the number of additional
transaction opportunities per microframe,
00 = None
01 = 1 additional
10 = 2 additional
11 = Reserved
All other bits must be set to zero.

6 bInterval 1 Number Interval for polling endpoint for data transfers.
Expressed in frames or microframes depending
on the device operating speed. For full-speed
or low-speed interrupt endpoints, the value of
this field may be from 1 to 255. For high-speed
interrupt endpoints this value must be in the
range from 1 to 16, and it is used as the expo-
nent for a 2bInterval−1 value. For high-speed
bulk OUT endpoints, the bInterval must spec-
ify the maximum NAK rate of the endpoint. A
value of 0 indicates the endpoint never NAKs.
Other values indicate at most 1 NAK each bIn-
terval number of microframes. This value must
be in the range from 0 to 255.

Table 7: Endpoint Descriptor

21

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

transfer complete when it has received and processed exactly the amount of data expected or the
device received and processed a packet with payload size less than wMaxPacketSize. See the USB
2.0 specification, section 5.8.3.

5. The Host must send a complete USBTMC command message with a single transfer. This is illustrated
below in Figure 4. If the Host fails to do so, the device must Halt the Bulk-OUT endpoint. The only
exception is if, in the specification of a particular USBTMC command message, explicit permission
is given to send the command message with multiple transfers.

Figure 4: Bulk-OUT USBTMC message sent with a single transfer

Bulk-OUT USBTMC command DEV DEP MSG OUT The Host uses DEV DEP MSG OUT to
identify a transfer that sends a USBTMC device dependent command message from the Host to a device.
The Bulk-OUT Header command specific content for this command is shown below in Table 8.

The Host may send this USBTMC command message with multiple transfers, as the data becomes
available. This is illustrated below in Figure 5. This ability is needed because Host applications may not
send a complete message all at once. Another benefit of this ability is that some devices may make use of
USBTMC message content as it is delivered.

22

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 MsgID 1 0x01 Specifies this specific USBTMC message.
1 bTag 1 Value A transfer identifier. The Host must set bTag

different than the bTag used in the previous
Bulk-OUT Header. The Host should incre-
ment the bTag by 1 each time it sends a new
Bulk-OUT Header. The Host must set bTag
such that 1 <= bTag <= 255.

2 bTagInverse 1 Value The inverse (ones complement) of the bTag.
For example, the bTagInverse of 0x5B is 0xA4.

3 Reserved 1 0x00 Reserved. Must be 0x00.
4-7 TransferSize 4 Number Total number of USBTMC message data bytes

to be sent in this USB transfer. This does
not include the number of bytes in this Bulk-
OUT Header or alignment bytes. Sent least
significant byte first, most significant byte last.
TransferSize must be ¿ 0x00000000.

8
bmTransfer Attributes 1 Bitmap D7..D1 Reserved. All bits must be 0.

D0 EOM.
1 - The last USBTMC message data byte in
the transfer is the last byte of the USBTMC
message.
0 The last USBTMC message data byte in the
transfer is not the last byte of the USBTMC
message.

9-11 Reserved 3 0x000000 Reserved. Must be 0x000000.

Table 8: DEV DEP MSG OUT Bulk-OUT Header

Bulk-OUT USBTMC command REQUEST DEV DEP MSG IN The Host uses REQUEST DEV DEP MSG IN
to identify the transfer as a USBTMC command message to the device, allowing the device to send a
USBTMC response message containing device dependent message data bytes.
The REQUEST DEV DEP MSG IN Bulk-OUT Header and command specific content is shown below in
Table 9.

Bulk-OUT USBTMC command VENDOR SPECIFIC OUT The Host uses VENDOR SPECIFIC OUT
to identify a transfer that sends a USBTMC vendor specific command message from the Host to a device.
The Bulk-OUT Header command specific content for this command is shown below in Table 10. The Host
may send this USBTMC command message with multiple transfers, as the data becomes available. This is
illustrated in Figure 3. This ability is needed because Host applications may not send a complete message
all at once. Another benefit of this ability is that some devices may make use of USBTMC message content
as it is delivered.

Bulk-OUT USBTMC command REQUEST VENDOR SPECIFIC IN The Host uses REQUEST VENDOR SPECIFIC IN
to identify the transfer as a USBTMC command message to the device, allowing the device to send a
USBTMC response message containing vendor specific message data bytes.

23

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Figure 5: Bulk-OUT USBTMC message sent with multiple transfers

The REQUEST VENDOR SPECIFIC IN Bulk-OUT Header and command specific content is shown below
in Table 11.

A.2.3 Bulk-IN endpoint

The Host uses the Bulk-IN endpoint to read USBTMC response messages from the device. For all Bulk-
IN USBTMC response messages, whether defined in this specification, a USBTMC subclass specification,
or some other specification, the device must begin the first USB transaction in each Bulk-IN transfer of
USBTMC response message content with a Bulk-IN Header.
The following rules apply to Bulk-IN USBTMC response messages:

1. USBTMC client software must queue a request to the USB Host Controller to send a USBTMC
command message that expects a response before queuing a request to the USB Host Controller that
will result in Bulk-IN requests being sent to the USBTMC interface.

2. If a USBTMC interface receives a Bulk-IN request prior to receiving a USBTMC command message
that expects a response, the device must NAK the request.

24

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 MsgID 1 0x02 Specifies this specific USBTMC message.
1 bTag 1 Value A transfer identifier. The Host must set bTag

different than the bTag used in the previous
Bulk-OUT Header. The Host should incre-
ment the bTag by 1 each time it sends a new
Bulk-OUT Header. The Host must set bTag
such that 1 <= bTag <= 255.

2 bTagInverse 1 Value The inverse (ones complement) of the bTag.
For example, the bTagInverse of 0x5B is 0xA4.

3 Reserved 1 0x00 Reserved. Must be 0x00.
4-7 TransferSize 4 Number Maximum number of USBTMC message data

bytes to be sent in response to the command.
This does not include the number of bytes in
this Bulk-IN Header or alignment bytes. Sent
least significant byte first, most significant
byte last. TransferSize must be ¿ 0x00000000.

8
bmTransfer Attributes 1 Bitmap D7..D2 Reserved. All bits must be 0.

D1 TermCharEnabled.
1 The Bulk-IN transfer must terminate on
the specified TermChar. The Host may
only set this bit if the USBTMC inter-
face indicates it supports TermChar in the
GET CAPABILITIES response packet.
0 The device must ignore TermChar.
D0 Must be 0.

9 TermChar 1 Value If bmTransferAttributes.D1 = 1, TermChar is
an 8-bit value representing a termination char-
acter. If supported, the device must termi-
nate the Bulk-IN transfer after this character
is sent.
If bmTransferAttributes.D1 = 0, the device
must ignore this field.

10-11 Reserved 2 0x0000 Reserved. Must be 0x0000.

Table 9: REQUEST DEV DEP MSG IN Bulk-OUT Header

3. The device must not queue any Bulk-IN DATA until it receives a valid USBTMC command message
that expects a response.

4. The Host must consider the Bulk-IN transfer to be in progress once the transaction containing the
Bulk-OUT Header for the USBTMC command message has been ACKd.

5. The device must consider the Bulk-IN transfer to be in progress when the device parses the MsgID
of a valid USBTMC command message that expects a response.

6. The device is not required to respond immediately after receiving a USBTMC command message
that expects a response. A device must not send a DATA payload until a termination condition is
detected (EOM, TermChar, or the maximum number of USBTMC response message data bytes the
Host has specified to send are available) or until the device can not buffer any more data.

25

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 MsgID 1 0x7E Specifies this specific USBTMC message.
1 bTag 1 Value A transfer identifier. The Host must set bTag

different than the bTag used in the previous
Bulk-OUT Header. The Host should incre-
ment the bTag by 1 each time it sends a new
Bulk-OUT Header. The Host must set bTag
such that 1 <= bTag <= 255.

2 bTagInverse 1 Value The inverse (ones complement) of the bTag.
For example, the bTagInverse of 0x5B is 0xA4.

3 Reserved 1 0x00 Reserved. Must be 0x00.
4-7 TransferSize 4 Number Total number of USBTMC message data bytes

to be sent in this USB transfer. This does
not include the number of bytes in this Bulk-
OUT Header or alignment bytes. Sent least
significant byte first, most significant byte last.
TransferSize must be ¿ 0x00000000.

8-11 Reserved 4 0x00000000 Reserved. Must be 0x0000000.

Table 10: VENDOR SPECIFIC OUT Bulk-OUT Header

Offset Field Size Value Description
0 MsgID 1 0x7F Specifies this specific USBTMC message.
1 bTag 1 Value A transfer identifier. The Host must set bTag

different than the bTag used in the previous
Bulk-OUT Header. The Host should incre-
ment the bTag by 1 each time it sends a new
Bulk-OUT Header. The Host must set bTag
such that 1 <= bTag <= 255.

2 bTagInverse 1 Value The inverse (ones complement) of the bTag.
For example, the bTagInverse of 0x5B is 0xA4.

3 Reserved 1 0x00 Reserved. Must be 0x00.
4-7 TransferSize 4 Number Maximum number of USBTMC message data

bytes to be sent in response to the command.
This does not include the number of bytes in
this Bulk-IN Header or alignment bytes. Sent
least significant byte first, most significant
byte last. TransferSize must be ¿ 0x00000000.

8-11 Reserved 4 0x00000000 Reserved. Must be 0x0000000.

Table 11: REQUEST VENDOR SPECIFIC IN Bulk-OUT Header

7. The first USB transaction in a Bulk-IN transfer must begin with a complete Bulk-IN Header.

8. The USBTMC message data bytes must immediately follow the USBTMC Bulk-IN Header in the
same USB transaction in the same DATA payload, subject to maximum packet size constraints.

9. A device may return less than the maximum number of USBTMC response message data bytes
the Host specified to send. When the Bulk-IN transfer is completed, if more message data bytes
are expected, the Host may send a new USBTMC command message to read the remainder of the

26

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

message.

10. The device must always terminate a Bulk-IN transfer by sending a short packet. The short packet may
be zero-length or non zero-length. The device may send extra alignment bytes (up to wMaxPacketSize
1) to avoid sending a zero-length packet. The alignment bytes should be 0x00- valued, but this is
not required. A device is not required to send any alignment bytes.

11. Once a transfer is terminated, the device must not queue any more Bulk-IN DATA until it receives
another USBTMC command message that expects a response.

12. A device may defer the parsing and processing of Bulk-OUT data while a Bulk-IN transfer is in
progress.

13. The device may send a Bulk-IN message using multiple transfers, as the data becomes available. This
is illustrated below in Figure 6. This ability is needed because some devices may not have enough
memory to buffer a complete USBTMC message. Another benefit of this ability is that some Hosts
may make use of USBTMC message content as it is delivered.

Figure 6: Bulk-IN USBTMC message sent with multiple transfers

27

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Bulk-IN USBTMC command DEV DEP MSG IN The device uses DEV DEP MSG IN to iden-
tify the transfer as a USBTMC response message to the Host sending a REQUEST DEV DEP MSG IN
USBTMC command message. The response specific content is shown in Table 12. A device may set Trans-

Offset Field Size Value Description
0 MsgID 1 0x02 Specifies this specific USBTMC message.

Must match MsgID in the USBTMC command
message transfer causing this response.

1 bTag 1 Value Must match bTag in the USBTMC command
message transfer causing this response.

2 bTagInverse 1 Value Must match bTagInverse in the USBTMC
command message transfer causing this re-
sponse.

3 Reserved 1 0x00 Reserved. Must be 0x00.
4-7 TransferSize 4 Number Total number of message data bytes to be sent

in this USB transfer. This does not include the
number of bytes in this header or alignment
bytes. Sent least significant byte first, most
significant byte last. TransferSize must be ¿
0x00000000.

8
bmTransfer Attributes 1 Bitmap D7..D2 Reserved. All bits must be 0.

D1
1 - All of the following are true:
The USBTMC interface supports TermChar
The bmTransferAttributes.TermCharEnabled
bit was set in the RE-
QUEST DEV DEP MSG IN.
The last USBTMC message data byte in
this transfer matches the TermChar in the
REQUEST DEV DEP MSG IN.
0 - One or more of the above conditions is not
met.
D0 EOM.
1 - The last USBTMC message data byte in
the transfer is the last byte of the USBTMC
message.
0 The last USBTMC message data byte in the
transfer is not the last byte of the USBTMC
message.

9-11 Reserved 3 0x000000 Reserved. Must be 0x000000.

Table 12: DEV DEP MSG IN Bulk-IN Header

ferSize larger than the number of message data bytes it can buffer, provided the device knows the exact
number of USBTMC message data bytes it will eventually send in the transfer. The Host must ignore
EOM if the device does not send TransferSize message data bytes.

Bulk-IN USBTMC command VENDOR SPECIFIC IN The device uses VENDOR SPECIFIC IN
to identify the transfer as a USBTMC response message to the Host sending a REQUEST VENDOR SPECIFIC IN
USBTMC command message. The response specific content is shown in Table 13. A device may set Trans-

28

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 MsgID 1 0x7F Specifies this specific USBTMC message.

Must match MsgID in the USBTMC command
message transfer causing this response.

1 bTag 1 Value Must match bTag in the USBTMC command
message transfer causing this response.

2 bTagInverse 1 Value Must match bTagInverse in the USBTMC
command message transfer causing this re-
sponse.

3 Reserved 1 0x00 Reserved. Must be 0x00.
4-7 TransferSize 4 Number Total number of message data bytes to be sent

in this USB transfer. This does not include the
number of bytes in this header or alignment
bytes. Sent least significant byte first, most
significant byte last. TransferSize must be ¿
0x00000000.

8-11 Reserved 4 0x00000000 Reserved. Must be 0x0000000.

Table 13: VENDOR SPECIFIC IN Bulk-IN Header

ferSize larger than the number of message data bytes it can buffer, provided the device knows the exact
number of USBTMC message data bytes it will eventually send in the transfer.

A.3 Control endpoint requests

A.3.1 Standard requests

USBTMC devices must support the standard requests required by the USB 2.0 specification, section 9.4.
In addition, they must follow the behaviors below:

• The Host, after sending a CLEAR FEATURE request to clear a Halt condition on a USBTMC
interface Bulk-OUT endpoint, must begin the next Bulk-OUT transaction with a Bulk-OUT Header.

• The device, after receiving the CLEAR FEATURE request, must interpret the first part of the next
Bulk-OUT transaction as a new USBTMC Bulk-OUT Header.

• The Host, after sending a CLEAR FEATURE request to clear a Halt condition on a USBTMC
interface Bulk-IN endpoint, must interpret the next Bulk-IN transaction as a new transfer beginning
with a new USBTMC Bulk-IN Header.

• The device, after receiving the CLEAR FEATURE request, must not queue any Bulk-IN DATA until
it receives a USBTMC command message that expects a response.

29

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

A.3.2 USBTMC class specific requests

All USBTMC class specific requests must be sent with a Setup packet as shown below in Table 14. All
USBTMC class-specific requests return data to the Host (bmRequestType direction = Device-to-host) and
have a data payload that begins with a 1 byte USBTMC status field. The USBTMC status values are
defined below in Table 16.

Offset Field Size Value Description
0 bmRequestType 1 Bitmap D7: Data transfer direction

0 - Host-to-device
1 - Device-to-host
D6..D5: Type
0 - Standard
1 - Class
2 -Vendor
3 - Reserved
Type = Class for all control endpoint requests
specified in this USBTMC specification
D4..D0: Recipient
0 - Device
1 - Interface
2 - Endpoint
3 - Other
4..31 - Reserved

1 bRequest 1 Value Specify request. See Table 15
2 wValue 2 Value Word sized field that varies according to re-

quest. See the USB 2.0 specification, section
9.3.3.

4 wIndex 2 Index or Offset Word sized field that varies according to re-
quest, typically used to pass an index or offset.
See the USB 2.0 specification, section 9.3.4.

6 wLength 2 Count Number of bytes to transfer if there is a Data
stage. See the USB 2.0 specification, section
9.3.5.

Table 14: USBTMC class specific request format

A response with USBTMC status indicating a failure (>= 0x80) must contain all of the required re-
sponse bytes. Devices should send the most appropriate and most specific USBTMC status.
Devices must return a STALL PID in response to the next Data stage transaction or in the Status stage
of the message, when the device receives a request that is not defined for the device, is inappropriate for
the current setting of the device, or has values that are not compatible with the request.
If a Setup transaction is received by an endpoint before a previously initiated control transfer is completed,
the device must abort the current transfer/operation and handle the new control Setup transaction.

USBTMC split transactions USBTMC split transactions are specified for operations that on some
test and measurement devices may take a long time. USBTMC split transactions are done with an INITI-

30

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

bRequest Name Required/Optional Comment
0 Reserved Reserved Reserved.
1 INITIATE ABORT BULK OUT Required Aborts a Bulk-OUT transfer.
2 CHECK ABORT BULK OUT STATUS Required Returns the status of the previously sent INI-

TIATE ABORT BULK OUT request.
3 INITIATE ABORT BULK IN Required Aborts a Bulk-IN transfer.
4 CHECK ABORT BULK IN STATUS Required Returns the status of the previously sent INI-

TIATE ABORT BULK IN request.
5 INITIATE CLEAR Required Clears all previously sent pending and unpro-

cessed Bulk-OUT USBTMC message content
and clears all pending Bulk-IN transfers from
the USBTMC interface.

6 CHECK CLEAR STATUS Required Returns the status of the previously sent INI-
TIATE CLEAR request.

7 GET CAPABILITIES Required Returns attributes and capabilities of the
USBTMC interface.

8-63 Reserved Reserved Reserved for use by the USBTMC specifica-
tion.

64 INDICATOR PULSE Optional A mechanism to turn on an activity indicator
for identification purposes. The device indi-
cates whether or not it supports this request
in the GET CAPABILITIES response packet.

65-127 Reserved Reserved Reserved for use by the USBTMC specifica-
tion.

128-191 Reserved Reserved Reserved for use by USBTMC subclass speci-
fications.

192-255 Reserved Reserved Reserved for use by the VISA specification.

Table 15: USBTMC bRequest values

ATE request followed by a CHECK STATUS request. After receiving the INITIATE request, the device
must queue the appropriate control endpoint response packet with the most appropriate USBTMC status,
that the Host should not interpret as a warning. If a device receives an INITIATE request, sends a control
endpoint response packet with USBTMC status = STATUS SUCCESS, and then receives a new control
endpoint request other than the expected CHECK STATUS, the device behaviors depend on the request
type.
If it is a Class endpoint requests and the device has a prepared CHECK STATUS response packet, the de-
vice must discard it. All other actions started by the INITIATE should complete. If all other actions have
already completed, the device must handle the new request. If the actions have not completed, the device
must send the appropriate response packet with USBTMC status = STATUS SPLIT IN PROGRESS.
For Standard control endpoint requests, whenever possible, all actions started by the INITIATE should
complete. If this is not possible, due to a resource conflict between the device resources affected by the
standard request and the device resources being used or affected by the INITIATE, the device must abort
the INITIATE.
In the case of Vendor control endpoint requests, the device must assume the USBTMC client software will
never send a CHECK STATUS request. If the device has a prepared CHECK STATUS response packet,

31

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

USBTMC status MACRO Recommended inter-
pretation by Host
software

Description

0x00 Reserved Reserved Reserved
0x01 STATUS SUCCESS Success Success
0x02 STATUS PENDING Warning This status is valid if a device has received a

USBTMC split transaction CHECK STATUS
request and the request is still being processed.

0x03-0x1F Reserved Warning Reserved for USBTMC use.
0x20-0x3F Reserved Warning Reserved for subclass use.
0x40-0x7F Reserved Warning Reserved for VISA use.
0x80 STATUS FAILED Failure Failure, unspecified reason, and a more specific

USBTMC status is not defined.
0x81 STATUS TRANSFER

NOT IN PROGRESS
This status is only valid if a device has received
an INITIATE ABORT BULK OUT or INITI-
ATE ABORT BULK IN request and the spec-
ified transfer to abort is not in progress.

0x82 STATUS SPLIT NOT
IN PROGRESS

Failure This status is valid if the device received a
CHECK STATUS request and the device is
not processing an INITIATE request.

0x83 STATUS SPLIT IN
PROGRESS

Failure This status is valid if the device received a new
class-specific request and the device is still pro-
cessing an INITIATE.

0x84-0x9F Reserved Failure Reserved for USBTMC use.
0xA0-0xBF Reserved Failure Reserved for subclass use.
0xC0-0xFF Reserved Failure Reserved for VISA use.

Table 16: USBTMC status values

the device must discard it. All other actions started by the INITIATE should complete. If all other actions
have completed, the device must handle the new request. If the actions have not completed, the device
must respond with a Request Error.

INITIATE ABORT BULK OUT A Host may use the INITIATE ABORT BULK OUT request to
abort a Bulk-OUT transfer and restore Bulk-OUT synchronization. A Host should only send an INI-
TIATE ABORT BULK OUT request when re-synchronization is necessary. After receiving an INITI-
ATE ABORT BULK OUT request, the device must return a control endpoint response packet as shown
in Table 17.

CHECK ABORT BULK OUT STATUS The Host uses CHECK ABORT BULK OUT STATUS to
determine if the device has completed all processing associated with a previously received INITIATE ABORT BULK OUT
request. After receiving a CHECK ABORT BULK OUT STATUS request, the device must return a con-
trol endpoint response packet as shown in Table 18.

32

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

STATUS SUCCESS: the specified transfer is in progress.
STATUS TRANSFER NOT IN PROGRESS: there is a
transfer in progress, but the specified bTag does not match
or there is no transfer in progress, but the Bulk-OUT FIFO
is not empty.
STATUS FAILED: there is no transfer in progress and the
Bulk-OUT FIFO is empty.

1 bTag 1 Value The bTag for the the current Bulk-OUT transfer. If there is no
current Bulk-OUT transfer, bTag must be set to the bTag for
the most recent bulk-OUT transfer. If no Bulk-OUT transfer
has ever been started, bTag must be 0x00.

Table 17: INITIATE ABORT BULK OUT response packet

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

STATUS PENDING: The device has not yet aborted the spec-
ified transfer and is unable to calculate NBYTES RXD
STATUS SUCCESS: The device has aborted the specified
transfer. The device must set NBYTES RXD to the appro-
priate value.

1-3 Reserved 3 0x000000 Reserved. Must be 0x000000.
4 NBYTES RXD 4 Number The total number of USBTMC message data bytes (not in-

cluding Bulk-OUT Header or alignment bytes) in the transfer
received, and not discarded, by the device. The device must
always send NBYTES RXD bytes to the Function Layer. Sent
least significant byte first, most significant byte last.

Table 18: CHECK ABORT BULK OUT STATUS response packet

INITIATE ABORT BULK IN A Host may use the INITIATE ABORT BULK IN request to abort a
Bulk-IN transfer and restore Bulk-IN synchronization. A Host should only send an INITIATE ABORT BULK IN
request when resynchronization is necessary. After receiving the request, the device must return a control
endpoint response packet as shown in Table 19.

CHECK ABORT BULK IN STATUS The Host uses CHECK ABORT BULK IN STATUS to de-
termine if the device has completed all processing associated with a previously received INITIATE ABORT BULK IN
request. After receiving the request, the device must return a control endpoint response packet as shown
in Table 20.

INITIATE CLEAR The Host uses INITIATE CLEAR to clear all input buffers and output buffers
associated with the specified USBTMC interface. After receiving the request, the device must Halt the
Bulk-OUT endpoint, queue the control endpoint response shown in Table 21, and clear all input buffers
and output buffers.

33

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

STATUS SUCCESS: the specified transfer is in progress.
STATUS TRANSFER NOT IN PROGRESS: there is a
transfer in progress, but the specified bTag does not match
or there is no transfer in progress, but the Bulk-OUT FIFO
is not empty.
STATUS FAILED: there is no transfer in progress and the
Bulk-OUT FIFO is empty.

1 bTag 1 Value The bTag for the current Bulk-IN transfer. If there is no
current Bulk-IN transfer, bTag must be set to the bTag for
the most recent bulk-IN transfer. If no Bulk-IN transfer has
ever been started, bTag must be 0x00.

Table 19: INITIATE ABORT BULK IN response packet

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

STATUS PENDING: if a short packet has not been sent or the
device is not ready to receive a USBTMC command message
that expects a response.The device must set NBYTES TXD
= 0x00000000.
STATUS SUCCESS: if a short packet has been sent, the
Bulk-IN FIFO is empty, and the device is ready to receive
a USBTMC command message that expects a response. The
device must set NBYTES TXD to the appropriate value.

1 bmAbortBulkIn 1 Bitmap D7..D1: Reserved. All bits must be 0.
D0 BulkInFifoBytes
1 - The device either has some queued DATA bytes in
the Bulk-IN FIFO or has a short packet that needs to be
sent to the Host. The USBTMC status must not be STA-
TUS SUCCESS.
0 - The Bulk-IN FIFO is empty.

2-3 Reserved 2 0x0000 Reserved. Must be 0x0000.
4 NBYTES TXD 4 Number The total number of USBTMC message data bytes (not in-

cluding Bulk-IN Header or alignment bytes) sent in the trans-
fer. Sent least significant byte first, most significant byte last.

Table 20: CHECK ABORT BULK IN STATUS response packet

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

STATUS SUCCESS: if it has set up a Halt condition on the
Bulk-OUT endpoint. The device, after the response packet is
queued, must clear input and output buffers.

Table 21: INITIATE CLEAR response packet

CHECK CLEAR STATUS The Host uses CHECK CLEAR STATUS to determine if the device has
completed all processing associated with a previously received INITIATE CLEAR request. Upon receiv-

34

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

ing the CHECK CLEAR STATUS request, the device must determine if it is still processing an INITI-
ATE CLEAR and then queue the control endpoint response packet shown below in Table 22.

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

STATUS PENDING: Either the device has not yet finished
clearing input buffers and output buffers, or the Bulk-IN FIFO
is not empty, or the Function Layer is not ready for Bulk trans-
fers.
STATUS SUCCESS: The device has finished clearing the in-
put and output buffers, the Bulk-IN FIFO is empty, and the
Function Layer is ready for Bulk transfers.

1 bmClear 1 Bitmap D7..D1: Reserved. All bits must be 0.
D0 BulkInFifoBytes
1 - The device either has some queued DATA bytes in the
Bulk-IN FIFO that it could not remove, or has a short packet
that needs to be sent to the Host. The USBTMC status must
not be STATUS SUCCESS.
0 - The device has completely removed queued DATA in the
Bulk-IN FIFO and the Bulk-IN FIFO is empty.

Table 22: CHECK CLEAR STATUS response packet

GET CAPABILITIES The Host uses GET CAPABILITIES to read additional attributes and capa-
bilities of a USBTMC interface. A device must be ready to receive a GET CAPABILITIES request at any
time. When a device receives this request, the device must queue the control endpoint response shown
below in Table 23.

INDICATOR PULSE This request provides the Host with a mechanism to turn on an activity indica-
tor for identification purposes. A device indicates whether it supports this request in the GET CAPABILITIES
response packet. A device must be ready to receive an INDICATOR PULSE request at any time. If not
implemented, the device must respond with a Request Error. When a device receives this request, the
device must queue the control endpoint response shown below in Table 24. If the device supports the
request, the device then turns on an implementation-dependent activity indicator for a human detectable
length of time (recommend time is >= 500 milliseconds and <= 1 second). The activity indicator then
automatically turns off.

35

Embedded Systems Project A APPENDIX A - USBTMC SPECIFICATION

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

STATUS PENDING: if a short packet has not been sent or the
device is not ready to receive a USBTMC command message
that expects a response.The device must set NBYTES TXD
= 0x00000000.
STATUS SUCCESS: if a short packet has been sent, the
Bulk-IN FIFO is empty, and the device is ready to receive
a USBTMC command message that expects a response. The
device must set NBYTES TXD to the appropriate value.

1 Reserved 1 0x00 Reserved. Must be 0x00.
2 bcdUSBTMC 2 BCD (0x0100 or greater) BCD version number of the relevant USBTMC specification

for this USBTMC interface. Format is as specified for bcdUSB
in the USB 2.0 specification, section 9.6.1.

4 USBTMC Interface Capabilities 1 Bitmap D7..D3: Reserved. All bits must be 0.
D2
1 - The USBTMC interface accepts the INDICATOR PULSE
request.
0 - The USBTMC interface does not accept the INDI-
CATOR PULSE request. The device, when an INDICA-
TOR PULSE request is received, must treat this command
as a non-defined command and return a STALL handshake
packet.
D1
1 - The USBTMC interface is talk-only.
0 - The USBTMC interface is not talk-only.
D0
1 - The USBTMC interface is listen-only.
0 - The USBTMC interface is not listen-only.

5 USBTMC Device Capabilities 1 Bitmap D7..D1: Reserved. All bits must be 0.
D0
1 - The device supports ending a Bulk-IN transfer from this
USBTMC interface when a byte matches a specified Term-
Char.
0 - The device does not support ending a Bulk-IN transfer
from this USBTMC interface when a byte matches a specified
TermChar.

6 Reserved 6 All bytes must be 0x00. Reserved for USBTMC use. All bytes must be 0x00.
12 Reserved 12 Reserved Reserved for USBTMC subclass use. If no subclass specifica-

tion applies, all bytes must be 0x00.

Table 23: GET CAPABILITIES response packet

Offset Field Size Value Description
0 USBTMC status 1 Value Status indication for this request.

Table 24: INDICATOR PULSE response packet

36

	Introduction
	Purpose
	Organization
	Related Documents

	Analysis
	USBTMC and USBTMC-USB488
	Atmel's UC3 Software Framework
	USB Software Library

	Implementation of the USBTMC protocol driver
	Enumeration process
	Configuring the USB library

	Specific Requests
	GET_CAPABILITIES

	Interface Endpoints
	Helper Functions

	Sample Application

	Appendix A - USBTMC specification
	Descriptors
	Device Descriptor
	Device_Qualifier Descriptor
	Configuration Descriptor
	Other_Speed_Configuration Descriptor
	Interface Descriptor
	Endpoint Descriptors
	String Descriptors

	Interface Endpoints and Characteristics
	Default control endpoint
	Bulk-OUT endpoint
	Bulk-IN endpoint

	Control endpoint requests
	Standard requests
	USBTMC class specific requests

