
I2C on a Linux based embedded system
Design of a bus driver and a client driver for the Nomadik NHK8815 platform

Ghiringhelli Fabrizio
Matr. 753368, (fabrizio.ghiringhelli@mail.polimi.it)

Report for the master course of Embedded Systems
Reviser: PhD. Patrick Bellasi (bellasi@elet.polimi.it)

Received: October, 5th 2012

Abstract
This article describes design and development of I2C device drivers for the Nomadik NHK8815 evaluation board running
GNU/Linux. Specifically, attention is given to the implementation of drivers for an I2C bus controller of the ST Microelec-
tronics STn8815 System On Chip (SOC), and for an I2C bus client, namely the LIS3LV02DL three-axis accelerometer.
Both devices equip the NHK8815 board. The intended outcome of this work is to give a contribution in understanding
how to access I2C devices on any Linux based systems, not only embedded systems. This is the reason why I focus on
both a bus driver and a client driver. Besides, some testing techniques along with some solutions to interface the drivers
with the user space are presented in some detail.

1 Introduction

Today Linux is the operating system choice for many com-
puter systems which include, not only desktop and server
supercomputers, but also a wide range of special-purpose
electronic devices known as embedded systems. An em-
bedded system is specifically designed to perform a set of
designated activities, and it generally uses custom, hetero-
geneous processors. This makes Linux a flexible operating
system capable of running on a variety of architectures,
such as ARM, PowerPC, MIPS, SPARC, x86, and many
others.

However, this flexibility doesn’t come for free. While it’s
true that the Linux highly modular architecture facilitates
the porting phase, still a lot of efforts are required to build
new kernel components to fully support the target platform.

A big part of these efforts are in developing the low-level
interfaces commonly referred to as device drivers. A de-
vice driver (driver for short) is a piece of software de-
signed to direct control a specific hardware resource using
an hardware-independent well defined interface.

This paper details the design of two I2C drivers for the No-
madik NHK8815 platform: a client driver for an on-board
inertial sensor, presented in section 2, and a bus driver for
the I2C controller of the SOC (section 3). Section 4 is ded-
icated to testing issues.

The rest of this section provides an overview of the I2C
protocol (1.1), a brief description of the NHK8815 eval-
uation board (1.2), and detail information regarding the
project environment (1.3).

1.1 I2C protocol overview

The Inter-Integrated Circuit, or I2C , is a synchronous
master-slave messaging protocol designed to connect a
pool of devices by means of a two-wire bus. It is a sim-
ple and low-bandwidth protocol which allows for short-
distance on board communications, while being extremely
modest in its hardware resource requirements. The original
standard specified a standard clock rate of 100KHz. Later
updates to the standard introduced a fast speed of 400KHz
and a high speed of 1.7 or 3.4 MHz.

The I2C bus consists of two bi-directional lines, one line
for data (SDA) and one for clock (SCL), by means of
which a single master device can send informations seri-
ally to one ore more slave devices (Figure 1). To prevent
any conflict every device hooked up to the bus has its own
unique address. The standard I2C specifies two different
addressing schema, 7 and 10 bits, allowing at most 128
and 1024 devices connected at the same time.

Figure 1: Sample I2C implementation (adapted from
embedded-lab.com).

Each I2C transaction is always initiated by the master
which is in charge of the bus for the entire duration of the
transaction, meaning that it controls the clock and gener-
ates the START and STOP sequences. The start and stop
sequences mark the beginning and the end of a transaction
and are the only places where the SDA line is allowed to
change while the SCL is high.

All data are transfered one byte at a time. In 7-bit address-
ing mode, the slave address occupies the seven most sig-
nificant bits of the first byte, with the least significant bit
serving as a read/write flag to indicate whether data will
be written to the slave (’0’) or data will be read from the
slave (’1’). For every byte received, the slave device sends
back an acknowledge bit. Figure 2 shows an example of a
typical I2C transaction.

The I2C protocol supports multiple masters. In a multi-
master environment two or more masters may simultane-
ously attempt to initiate a data transfer. In such a scenario,
each master must be able to detect a collision and to fol-
low the arbitration logic that leeds to the election of a win-
ner master. The winner master can then safely begin its
transaction. The Nomadik NHK8815 platform, like most
system designs, operates in a single-master environment.

Figure 2: Sample I2C transaction (adapted from
www.ermicro/blog).

The Linux I2C subsystem

The Linux kernel I2C framework consists of a core layer
where resides all the routines and data structures available
to bus drivers and client drivers (Figure 3). The core also
provides a level of indirection that allows the underlying
drivers to change from one system to another without af-
fecting I2C subsystem that relies on them.

This philosophy of a core layer and its attendant bene-
fits is an example of how Linux helps portability. For in-
stance, enabling I2C on a new platform (which is precisely
the objective of this project) requires only to design the
hardware-dependent components, namely the bus driver
and the client drivers, whereas the core layer needs not to
be changed.

Figure 3: The Linux I2C subsystem (reprinted from [1], p.
236).

1.2 The Nomadik NHK8815 platform
The NHK8815 is a full-featured evaluation board for the
ST Microelectronics Nomadik STn8815 (Figure 4). It
is a fan-less embedded computer equipped with a wide
range of peripheral devices including USB, UART, LAN,
WLAN, Bluetooth, FM radio, SIM card reader, SD/MMC
card reader, color LCD with touch screen controller, key-
pad, video encoder, audio codec, FM radio, three-axis ac-
celerometer, etc..

Figure 4: The Nomadik NHK8815 evaluation board.

The core of the board is the Nomadik STn8815 multimedia
application processor. The STn8815 is a System On Chip
that combines an ARM9 core up to 332MHz with level-two
cache to audio, video, imaging and graphics accelerators.
Among other peripherals, the STn8815 integrates two I2C
high speed controllers that support the physical and data-
link layer of the I2C protocol. Below is a list of the I2C
controllers’ main features:

• Slave transmitter/receiver and master transmitter/re-
ceiver modes.

• Standard (100kHz), fast (400kHz) and high-speed
(3,4MHz) baud rates.

• 7-bit or 10-bit addressing.
• Compliance with I2C standards.

In a traditional I2C bus topology such as the one in figure 1,
the STn8815 I2C embedded controller plays the role of the
master. In order for the controller to access the I2C bus, a
corresponding driver must be implemented and registered
with the I2C subsystem. This step is covered in section 3,
"I2C bus driver."
Because on the NHK8815 evaluation board the major-
ity of the on-board peripheral devices is connected to the
STn8815 I2C bus 0, in this project I focus the attention on
this bus rather than on bus 1. Table 1 reports the list of
devices on the I2C bus 0, with their 7-bit address.
Just like in the case of the bus driver, in order for each
slave device to function a corresponding driver must be
registred to the I2C subsystem. My choice for this project
was the LIS3LV02DL, a MEMS inertial sensor mapped at
the address 1D on the Nomadik board. The design of the
LIS3LV02DL driver is detailed in section 2, "I2C client
driver."

Device type Description 7-bit address
STw5095 Stereo audio codec 1A
LIS3LV02DL Inertial sensor 1D
STw8009 Video digital encoder 21
TDA8023TT Smart Card interface 22,23
STw4811 Power management 2D
STMPE2401 Port expanders 43,44
TSC2003IPW Touch screen controller 48
STw4102 Battery charger 70

Table 1: Device address map of NHK8815 I2C bus 0.

1.3 Project setup

The first step to the project is to get the Linux kernel source
and to configure it for the target board. Instead of using a
vendor supplied kernel such as like STLinux, my personal
strategy for this project was to work with the official ker-
nel from www.kernel.org. This decision was motivated by
the need to keep the development process as neat as pos-
sible, and to avoid performing tasks that are not strictly
concerned with the project.
It should be noted that the official kernel offers only lim-
ited support for the Nomadik NHK8815 platform. This
includes basic definitions and register addresses, interrupt
management, resource definitions and timers. A generic
I2C bus driver that uses general purpose I/O lines for the
interface (i.e. i2c-gpio and i2c-algo-bit) is also included
in the kernel, but no driver for the NHK8815 I2C on-board
devices is provided whatsoever.

Here is how I proceeded to set up the project environment.
First, I cloned the git repository at kernel.org on a local ma-
chine folder located outside the project workspace. Then,
from the tag 3.3 I created a new branch called i2cdevel,
where to commit the kernel updates. My rule was to gener-
ate one patch per commit. All patches are numbered in se-
quence and stored in a folder inside the project workspace
called linux-3.3.0-patches.
One benefit of this approach is that the project workspace,
which is a git repository as required, also holds all the data
needed to obtain the modified kernel from the official one.
Table 3 shows the project workspace layout. In addition,
to ease the project management I defined a set of environ-
mental variables. as listed in Table 2.
Finally, a note about the root filesystem. It was built using
BusyBox version 1.18.4 ([2]). More precisely, I used a
tool called bbfs 1.3, developed by Alessandro Rubini and
released under GNU GPL license (see [3] for details).

Variable Decription
PRJROOT The project root directory
KERNELDIR The root directory of the kernel source

tree
PATCHESDIR The linux-3.3.0-patches directory
ROOTFS The directory where is stored the target

root filesystem
MODULESDIR The directory for temporary holding of

the loadable driver modules

Table 2: Project environmental variables.

2 I2C client driver
This section describes the design of the driver for the
LIS3LV02DL inertial sensor which equips the NHK8815
evaluation board. The LIS3LV02DL is a three axes lin-
ear accelerometer that provides the measurement accelera-
tion signals to the external world through an I2C interface.
The LIS3LV02DL driver was written before the bus driver.
Its debug was possible by using the gpio-based I2C bus
driver available in the original kernel. Once completed and
tested, the LIS3LV02DL driver was then used for debug-
ging the STN8815 I2C bus driver.

2.1 Initializing and probing
During initialization the driver registers itself with the
I2C core. This is achieved by populating a struct
i2c_driver and passing it as argument to the function
i2c_add_driver(), as shown in Listing 1.
The structure i2c_driver holds pointers to the probe and
remove functions that are executed respectively on device
probing and when the device is removed (if ever). The
id_table member of the structure i2c_driver informs
the I2C framework about which slave devices are supported

Directory Content
linux-3.3.0-patches Patches to the Linux kernel and kernel configuration file .config
drivers I2C bus driver and client driver (one subfolder per each driver)
report The LATEXsources of this paper
script Shell scripts (copied to the root directory of the target filesystem)
tools User-space programs to evaluate the drivers (copied to the root directory of the target

filesystem)
sdcard U-Boot command file, kernel binary image and ramdisk with the root filesystem

Table 3: Project directory layout.

by the driver. In this case the only chip supported is named
lis3lv02d. The names of the supported devices are im-
portant for binding, as explained next.

1 /* Device and driver names */
2 #define DEVICE_NAME "lis3lv02d"
3
4 /* I2C client structure */
5 static struct i2c_device_id lis3lv02d_idtable [] = {
6 { DEVICE_NAME , 0 },
7 {}
8 };
9 MODULE_DEVICE_TABLE(i2c , lis3lv02d_idtable);

10
11 static struct i2c_driver lis3lv02d_driver = {
12 .driver = {
13 .name = DRIVER_NAME
14 },
15 .probe = lis3lv02d_probe ,
16 .remove = __devexit_p(lis3lv02d_remove),
17 .id_table = lis3lv02d_idtable ,
18 };
19
20 /* Module init */
21 static int __init lis3lv02d_init(void)
22 {
23 return i2c_add_driver (& lis3lv02d_driver);
24 }

Listing 1: Registration of the LIS3LV02DL driver
(from lis3lv02d-nhk8815.c).

The binding process consists of associating a device with a
driver that can control it. In embedded systems where the
number of the I2C bus and the devices connected to it are
known for a fact, it is possible to declare in advance the
I2C slaves which live on the bus. This is typically done in
the board setup file (Listing 2).
The nhk8815_platform_init function is executed on
board startup and, among other tasks, registers the I2C
slave devices by invoking the i2c_register_board_info
function with arguments that specify the number of the bus
(zero in this case) and the devices connected with it. This
is done through an array of struct i2c_board_info(),
each item of which specifies the device name and the de-
vice address, with the former that must match with the
name registered by the driver in order for binding to suc-
ceed. In this case struct i2c_board_info holds only
one item which corresponds to the LIS3LV02DL inertial
sensor.
Seeing that this sensor’s chip has an interrupt line tied to
the cpu (gpio 82), the irq member is also specified with

the respective IRQ number. By means of another member
called platform_data it is possible to define custom data
for the driver; if not specified like in this case, the driver
uses its default settings, as explained in section 2.5.

1 /* I2C devices */
2 static struct i2c_board_info nhk8815_i2c_devices [] = {
3 {
4 I2C_BOARD_INFO("lis3lv02d", 0x1D),
5 .irq = NOMADIK_GPIO_TO_IRQ (82),
6 /* No platform data: use driver defaults */
7 },
8 };
9

10 static void __init nhk8815_platform_init(void)
11 {
12 ...
13 /* Register I2C devices on bus #0 (scl0 , sda0) */
14 i2c_register_board_info (0, nhk8815_i2c_devices ,
15 ARRAY_SIZE(nhk8815_i2c_devices));
16 ...
17 }

Listing 2: Registration of the I2C devices (from
board-nhk8815.c).

During boot the kernel looks for any I2C driver that has
registered a matching device name, that is "lis3lv02d".
Upon finding such a driver, the kernel invokes its probe()
function passing a pointer to the LIS3LV02DL device as a
parameter. This process is called probing.
The probe function is responsible for the per-device initial-
ization, that is initializing hardware, allocating resources,
and registering the device with any appropriate subsystem.
More in detail, the LIS3LV02DL probe function takes the
following actions:

1. Allocate memory for lis3lv02d_priv private data
structure.

2. Load the device settings.
3. Idendify the LIS3LV02DL chip.
4. Configure the device hardware.
5. Create the per-device sysfs nodes.
6. If the free-fall feature is enabled, request the inter-

rupt and register the IRQ for the free-fall detection.
7. If the device polling feature is enabled, register the

device with the input subsystem.

On successful completion of all the above steps, meaning
a successful probing, the device is bound to the driver.

2.2 Sysfs interface

Sysfs is an in-memory virtual filesystem that provides a
view of the kernel’s structured device model. It offers a
convenient yet simple way to implement functionality as
sysfs attribute in the appropriate directory. An attribute
provides a way to map kernel data to files in sysfs: a sin-
gle attribute maps to a single file which can be readable,
writable or both, depending on which function it exports.
A driver wishing to use sysfs needs to register the
sysfs attributes and implement their respective func-
tions. Table 4 shows the list of sysfs nodes han-
dled by the LIS3LV02DL driver. They are located in
/sys/devices/platform/lis3lv02d/.

Attribute Access Function
position r Show the acceleration along

the x,y,z axis
enable r Show the enable status of the

device
w Enable/disable the device

ff_enable r Show the enable status of the
free-fall feature

poll_enable r Show the enable status of the
polling feature

w Enable/disable the device
polling

read r Read the register at the cur-
rent address

w Set the current address for
reading

write w Write a register. The low
byte holds the register value
and the high byte holds the
register address

Table 4: LIS3LV02DL sysfs attributes.
Below is a dump of a shell session executed on the target
board, providing a short demonstration of how to play with
the LIS3LV02DL sysfs interface.

Figure 5: Example of usage of the LIS3LV02DL sysfs in-
terface.

The cat enable command returned ’n’, meaning that the
device was disabled. Turning the device on is achieved by

typing echo 1 > enable. The cat position command
returned the values 56, -4, 1043 which correspond to to
acceleration along the x-y-z axes, measured in mg. cat
ff_anable showed that the free-fall feature is enabled.
The last two commands perform a reading at the address
0F, getting as answer 3A. 1.

2.3 Device polling
Generally speaking polling is a technique in which one de-
vice periodically monitors multiple other devices or makes
requests from those devices (e.g. check their state). In this
project’s context, the polling device is the SOC while the
LIS3LV02DL inertial sensor is the device being polled.
To implement the polling feature the LIS3LV02DL driver
registers itself with the kernel’s input subsystem; this
involves registering open(), close() and poll() call-
back functions, specifying the polling interval, setting up
the type of events involved, etc. The input subsystem
takes care of calling the poll() function at the speci-
fied rate, registering any event notification reported by the
driver and dispatching it to the user-space via sysfs in
/dev/input/eventX (’X’ is a numeric identifier assigned
when the driver registers with the input core). A demon-
stration of how the device polling works is given in the
section 4.2.
Listing 3 shows the sequence of instructions required to
registers with the input core. The driver executes them
upon enabling polling. It allocates the input device, in-
stalls the callback function pointers (lines 8-10), programs
the ABS events related to the x,y,z acceleration data (lines
14-17), and registers the input device (line 26). Lines
20 through 23 relates to the free-fall feature which is ex-
plained in the next section.

1 struct input_polled_dev *input_polled;
2 struct input_dev *input;
3
4 /* Allocate memory for the input device */
5 input_polled = input_allocate_polled_device ();
6
7 /* Setup input parameters */
8 input_polled ->open = lis3lv02d_open;
9 input_polled ->close = lis3lv02d_close;

10 input_polled ->poll = lis3lv02d_poll;
11 input = input_polled ->input;
12
13 /* Setup ABS input events */
14 set_bit(EV_ABS , input ->evbit);
15 set_bit(ABS_X , input ->absbit);
16 set_bit(ABS_Y , input ->absbit);
17 set_bit(ABS_Z , input ->absbit);
18
19 /* Setup KEY event for free -fall (only if enabled) */
20 if (priv ->ff_enabled) {
21 set_bit(EV_KEY , input ->evbit);
22 set_bit(KEY_FREE_FALL , input ->keybit);
23 }
24
25 /* Register input polled device */
26 input_register_polled_device(input_polled);

Listing 3: Device registration with the input subsys-
tem (from lis3lv02d_poll_enable() in lis3lv02d-
nhk8815.c).

10F is the address of the WHO_AM_I register which holds the device identification number (3A for the LIS3LV02DL chip)

To disable polling the driver unregisters the input device
and frees its previously allocated memory, as shown be-
low.

1 /* Unregister input device */
2 input_unregister_polled_device(priv ->input_polled);
3 input_free_polled_device(priv ->input_polled);

Listing 4: Device unregistration (from
lis3lv02d_poll_disable() in lis3lv02d-
nhk8815.c).

Upon loading the LIS3LV02DL driver, the polling func-
tion may be either enabled or not enabled, depending on
whether the default or custom settings were used (see sec-
tion 2.5 for details). Once the driver is up and running, the
polling can be enabled/disabled via the sysfs poll_enable
file.

2.4 Free-fall detection

The LIS3LV02DL may be configured to generate an
inertial wake-up/free-fall interrupt signal when a pro-
grammable acceleration threshold is crossed at least in one
of the three axes.
The LIS3LV02DL driver installs a threaded ISR to handle
the free-fall detection. Upon receiving an interrupt request
the driver reads the acceleration values from the sensor and
notifies an appropriate event to the input core for being dis-
patched to the user-space. Indeed the driver relies on the
input subsystem to "inform" the user-space about a free-
fall event. This implies that the device polling be enabled.
Usage of the free-fall feature can be enabled only stati-
cally (i.e at compile time) either by adjusting the driver’s
defaults or by passing custom settings from the board
initialization code (through platfom_data). From user-
space the free-fall enable status can be seen via the sysfs
ff_enable file (see table 4).
If the free-fall is enabled, the driver’s probe() registers
the IRQ number (as provided by the device) and installs its
respective threaded ISR (lines 5-8 of listing 5).

1 /* Get IRQ (only if free -fall is enabled) */
2 if (pdata ->free_fall_cfg & LIS3_FF_ALL) {
3 ...
4 /* Register IRQ */
5 err = request_threaded_irq(client ->irq , NULL ,
6 lis3lv02d_isr_thread ,
7 IRQF_TRIGGER_RISING | IRQF_ONESHOT ,
8 DEVICE_NAME , priv);
9 ...

10 priv ->ff_enabled = true;
11 }

Listing 5: Registration of the free-fall IRQ (from
probe() in lis3lv02d-nhk8815.c).

The free-fall is notified in form of a KEY event. As
for all the input events this requires two steps: reg-
istering with the input subsystem and reporting upon
detection of free-fall. The former being executed by
lis3lv02d_poll_enable() (lines 20-23 of listing 3), and

the latter being handled by the free-fall ISR as shown be-
low.

1 /* Report free -fall (KEY) event */
2 input_report_key(input , KEY_FREE_FALL , true);
3 input_report_key(input , KEY_FREE_FALL , false);
4 input_sync(input);

Listing 6: Notification of a free-fall KEY event (from
lis3lv02d_isr_thread() in lis3lv02d-nhk8815.c).

2.5 LIS3LV02DL settings
The customization of the LIS3LV02DL settings is done
based on platform data. These are data attached to a plat-
form device, that are completely specific to a given device.
It allows the board initialization file to transmit detailed
and custom information about the device to the driver. In
this project’s context, the platform data is represented in
form of a lis3lv02d_nhk8815_platform_data structure
(Listing 7) which allows to set a number of LIS3LV02DL
parameters including the acceleration full-range (2g or 6g),
free-fall settings, polling interval, etc..

1 /* Platform data */
2 struct lis3lv02d_nhk8815_platform_data {
3 unsigned char device_cfg;
4 unsigned char free_fall_cfg;
5 unsigned int free_fall_threshold;
6 unsigned char free_fall_duration;
7 unsigned int poll_interval;
8 }

Listing 7: LIS3LV02DL driver’s platform data (from
lis3lv02d-nhk8815.h).

The board initialization code may omit to transmit custom
data, as it relies on the driver using its default settings. This
is precisely the solution adopted for this project (line 6 of
listing 2). One may choose the other way round and set up
the platform_data member of i2c_board_info to point
to a lis3lv02d_nhk8815_platform_data structure with
custom settings.
Upon probing the driver checks whether platform_data
holds a valid pointer and, if this is the case, loads the cus-
tom settings. Otherwise it uses the default values. Below
is the code responsible for this action.

1 /* Save pointer to platform data */
2 pdata = client ->dev.platform_data;
3 if (!pdata) {
4 dev_info (&client ->dev ,
5 "no platform data , using defaults\n");
6 pdata = &lis3lv02d_default_init;
7 }

Listing 8: Loading of LIS3LV02DL platform data
(lis3lv02d_probe() in lis3lv02d-nhk8815.c).

Listing 9 shows the default settings for the LIS3LV02DL
device as they are defined in lis3lv02d-nhk8815.c.
The driver was built as a module and manually loaded into
the kernel using the insmod program. Upon successful
load the driver delivers an information message about its

settings to the kernel as shown in Figure 6. The last com-
mand, lsmod, outputs the list of modules currently loaded
into the kernel (only lis3lv02d-nhk8815 in this exam-
ple).

1 /* LIS3LV02DL default configuration */
2 static const struct lis3lv02d_nhk8815_platform_data
3 lis3lv02d_default_init = {
4
5 .device_cfg = LIS3_ODR_40HZ | LIS3_FS_2G ,
6 .poll_interval = 500,
7 .free_fall_cfg = LIS3_FF_XL | LIS3_FF_YL | LIS3_FF_ZL ,
8 .free_fall_threshold = 600,
9 .free_fall_duration = 5, /* 1/ODR [s] */

10 };

Listing 9: LIS3LV02DL default setup (from
lis3lv02d-nhk8815.c).

3 I2C bus driver
As mentioned in section 1.2 the STn8815 processor inte-
grates two I2C controllers that can be programmed to work
in standard, fast or high-speed mode. Each controller is
designed to operate in a multi-master environment, either
as a master or as a slave. However, because the STn8815 is
the only master on board, and seeing that at this time Linux
only operates I2C in master mode, the I2C bus driver pre-
sented here supports master mode only.

3.1 Initializing and probing
Initializing and probing the STn8815 I2C bus driver is per-
formed in a similar way as for LIS3LV02DL client driver
(section 2.1), with the major difference being that the for-
mer uses a platform bus.
The platform bus requires that any I2C adapter (or equiv-
alently controller) 2, which is controlled by the bus driver,
be registered using a platform_device structure. This
structure represents the bus adapter and provides informa-
tion such as the device name, the device resources and the
adapter number, to the bus driver.
Usually the registration of the I2C adapters with the plat-
form bus is performed by the board initialization file, as
the information needed are highly board specific. And this
case is no exception.
Listing 10 shows the part relevant to this matter, taken
from arch/arm/mach-nomadik/i2c-8815nhk.c. Because of
the STn8815 has two I2C adapters, two platform devices
need to be defined: one for bus 0 and one for bus 1. In
this example the former uses the platform data mechanism
to customize the driver settings, while to the latter relies
on the driver defaults (see section 3.4 for details about the
driver settings).
The resource and num_resources fields allow to define
the device resources (for brevity not shown here), includ-
ing the memory area (base address and size) and the inter-
rupt number.

1 /* first bus: i2c0 */
2 static struct platform_device nhk8815_i2c_dev0 = {
3 .name = "stn8815_i2c",
4 .id = 0,
5 .resource = &nhk8815_i2c_resources [0],
6 .num_resources = 2,
7 .dev = {
8 .platform_data = &nhk8815_i2c_dev0_data ,
9 },

10 };
11
12 /* second bus: i2c1 */
13 static struct platform_device nhk8815_i2c_dev1 = {
14 .name = "stn8815_i2c",
15 .id = 1,
16 .resource = &nhk8815_i2c_resources [2],
17 .num_resources = 2,
18 /* No platform data: use driver defaults */
19 };
20
21 static int __init nhk8815_i2c_init(void)
22 {
23 ...
24 platform_device_register (& nhk8815_i2c_dev0);
25 ...
26 platform_device_register (& nhk8815_i2c_dev1);
27 ...
28 }
29 arch_initcall(nhk8815_i2c_init);

Listing 10: Registration of the I2C adapter with the
platform bus (from i2c-8815nhk.c).

On the driver’s side, the registration with the platform bus
is achieved by populating a struct platform_driver
and passing it to the macro module_platform_driver()
as argument (Listing 11). The platform bus simply com-
pares the driver.name member against the name of each
device, as defined in the platform_device data structure
(Listing 10); if they are the same the device matches the
driver.

1 #define DRIVER_NAME "stn8815_i2c"
2
3 static const struct dev_pm_ops stn8815_i2c_pm_ops = {
4 SET_RUNTIME_PM_OPS(stn8815_i2c_runtime_suspend ,
5 stn8815_i2c_runtime_resume ,
6 NULL)
7 };
8
9 static struct platform_driver stn8815_i2c_driver = {

10 .probe = stn8815_i2c_probe ,
11 .remove = __devexit_p(stn8815_i2c_remove),
12 .driver = {
13 .name = DRIVER_NAME ,
14 .owner = THIS_MODULE ,
15 .pm = &stn8815_i2c_pm_ops ,
16 },
17 };
18 module_platform_driver(stn8815_i2c_driver);

Listing 11: Registration of the I2C bus driver with
the platform bus (from i2c-stn8815.c).

As usual, binding a device to a driver involves calling the
driver’s probe() function passing a pointer to the device
as a parameter. The sequence of operations performed on
probing are the following:

1. Get the device resource definitions.
2. Allocate the appropriate memory and remap it to a

virtual address for being accessed by the kernel.
2The two terms are interchangeable in meaning and refer to the peripheral device that drives the bus (i.e. the master device)

Figure 6: Message showed upon loading LIS3LV02DL module with default settings.

3. Load the device settings.
4. Configure the device hardware.
5. Register with the power management system.
6. Create the per-device sysfs nodes.
7. Request the interrupt and register the IRQ.
8. Set up the struct i2c_adapter and register the

adapter with the I2C core.

Once all the above steps successfully complete the driver is
bounded to the devices representing the two STn8815 I2C
controllers.

3.2 Data transfer
In the Linux I2C subsystem a bus driver consists of an
adapter driver and an algorithm driver. The motivation
behind this further division is to improve the software reuse
and to allow portability. In fact, an algorithm driver is in-
tended to contain general code that can be used for a whole
class of I2C adapters, while each specific adapter driver ei-
ther depends on one algorithm driver, or includes its own
implementation.
However, while having a generic algorithm that works for
multiple adapters is suitable for many cases, in embedded
systems, where each I2C bus adapter has its own way of
interfacing with the processor and the bus, it is usual to
develop the adapter driver together with its corresponding
algorithm driver. This is also the case of the STn8815 I2C
bus driver.
The bus driver registers with the I2C subsystem by using
a struct i2c_adapter that is instantiated and initialized
by the driver’s probe() function, as shown in Listing 12.
The i2c_adapter structure’s algo member is set up to
point to a struct i2c_algorithm which in turn holds two
pointers:

• master_xfer points to the function that implements
the actual I2C transmit and receive algorithm.

• functionality points to a function that returns the
features supported by the I2C adapter.

To communicate with a client the I2C subsystem offers two
class of functions: one for I2C plain communication which
includes i2c_master_send(), i2c_master_recv() and
i2c_transfer(), and a second one that uses SMBus com-
mands 3. However, whichever method is used, the data

transfer relies on the bus driver’s function pointed to by
master_xfer, as the I2C core ultimately calls this func-
tion for the actual transfer to take place.

1 /* I2C algorithm structure */
2 static struct i2c_algorithm stn8815_i2c_algo = {
3 .master_xfer = stn8815_i2c_xfer ,
4 .functionality = stn8815_i2c_func ,
5 };
6
7 /* Probe function */
8 static int __devinit stn8815_i2c_probe
9 (struct platform_device *pdev)

10 {
11 ...
12 adap = kzalloc(sizeof(struct i2c_adapter),
13 GFP_KERNEL);
14 ...
15 adap ->algo = &stn8815_i2c_algo;
16 ...
17 err = i2c_add_numbered_adapter(adap);
18 ...
19 }

Listing 12: Registration of the I2C adapter (from i2c-
stn8815.c).

As shown in listing 12, stn8815_i2c_xfer() is the
transfer function installed by the STn8815 I2C bus
driver. This function receives an array of messages
as argument and processes them in sequence by calling
stn8815_i2c_xfer_rd() or stn8815_i2c_xfer_wr()
depending on whether the message being processed is
marked for read or write. Once all messages have been
sent stn8815_i2c_xfer() succesfully returns, otherwise,
upon detecting a communication error, aborts the transmis-
sion and returns an appropriate error code.
The I2C bus driver uses the STn8815 I2C controller’s inter-
rupt capability to handle the data transfer. More precisely
it uses interrupts to trigger the completion of a transac-
tion and to detect a bus error. Handling these interrupts is
in charge of stn8815_i2c_isr() interrupt service routine
(ISR). Its role is to identify the interrupt source, complete
the transaction by reporting the result to the task-level 4

function that initiated it (either stn8815_i2c_xfer_wr()
or stn8815_i2c_xfer_rd()), and to clear the interrupt
condition from the I2C controller.
A completion variable is used to synchronize between
the task-level function and the ISR. The former initi-
ates the transmission and waits on the completion vari-
able while the I2C controller performs the transaction;
upon completion, the controller issues an interrupt re-
quest which is processed by stn8815_i2c_isr(); once it

3SMBus is a subset of I2C
4Task-level refers to code not running in interrupt context (as opposed to interrupt-level)

Figure 7: Sequence diagram of an I2C transaction.

has accomplished its job, upon returning from interrupt,
stn8815_i2c_isr() uses the completion variable to wake
up the task-level function. Additionally, a timeout is spec-
ified to limit the time spent by the task-level function on
waiting on the completion variable. The whole process is
depicted in the sequence diagram of Figure 7.

1 /* I2C master read */
2 static int stn8815_i2c_xfer_rd(
3 struct i2c_adapter *adap ,
4 struct i2c_msg *pmsg , bool stop)
5 {
6 ...
7 /* Initialize completion */
8 init_completion (&dev ->msg_complete);
9 ...

10
11 /* Wait for completion */
12 i = wait_for_completion_timeout (&dev ->msg_complete ,
13 I2C_TIMEOUT);
14 if (i < 0)
15 return i;
16 if (i == 0) {
17 dev_err(dev ->dev , "Controller timeout\n");
18 return -ETIMEDOUT;
19 }
20 ...
21 }
22
23 /* ISR */
24 static irqreturn_t stn8815_i2c_isr(int irq ,
25 void *dev_id)
26 {
27 ...
28 /* Complete */
29 complete (&dev ->msg_complete);
30 return IRQ_HANDLED;
31 }

Listing 13: Task-level and ISR synchronization us-
ing a completion variable (from i2c-stn8815.c).

Listing 13 shows how the synchronization mechanism is
implemented. The completion variable is dynamically
created and initialized via init_completion() (line 8).
Afterwards, a call to wait_for_completion_timeout()
(line 12) suspends the task until either the ISR signals the
completion by calling complete() (line 29) or the timeout
expires. In either case the return value is tested for error
conditions.

3.3 Power management
The I2C bus driver relies on the power management
infrastructure of the Linux kernel to achieve run-time
power savings. To use this feature the kernel needs
to be configured with "Runtime power management"
(CONFIG_PM_RUNTIME) option enabled.
The functions that implements the driver’s power sav-
ing policy are registered upon registering the driver with
the platform bus (refer to listing 11 on page 7). This
is done by initializing the driver.pm member of the
platform_driver structure with a pointer to struct
dev_pm_ops which in turn holds the address of the driver’s
power management functions.
When the power management subsystem in Linux deter-
mines that the I2C adapter is to be suspended, it calls
stn8815_i2c_runtime_suspend(). This function sim-
ply disables the I2C controller. When the adapter is to be
resumed, stn8815_i2c_runtime_resume() is called and
consequently the I2C controller is re-enabled.
The power management framework creates for the I2C

Figure 8: Message showed upon loading the STN8815 I2C bus driver module with default settings.

adapter 0 a set of sysfs nodes that allow to query
or modify its power status. They are all located in
/sys/devices/platform/stn8815_i2c.0/power/.
For example, typing cat runtime_status returns the
adapter’s power status, while echo ’off’ > control dis-
ables the adapter’s runtime power management.

3.4 I2C bus adapter settings
As for LIS3LV02DL, the I2C bus driver receives custom
settings from the board initialization code via the platform
data mechanism. Looking back at listing 10, the adapter 0
uses a custom setup (line 8), while the adapter 1 relies on
the driver’s defaults (line 18).
The platform data of the I2C adapter is defined in i2c-
stn8815.h and reported in Listing 14. It is represented
in form of a i2c_stn8815_platform_data structure and
allows to specify the speed mode (standard, fast or high-
speed), the bus filtering and the master code.

1 /* Platform data */
2 struct i2c_stn8815_platform_data {
3 unsigned char filter;
4 unsigned char speed;
5 unsigned int master_code;
6 }

Listing 14: STN8815 I2C bus driver’s platform data
(from i2c-stn8815.h).

The driver loads the platform data on probing and,
if not provided, uses the default setup as defined by
nhk8815_i2c_default_init (Listing 15). The information
message sent to the kernel by the driver on successful load
is shown in Figure 8.

1 /* STN8815 -I2C platform data default */
2 static struct i2c_stn8815_platform_data
3 nhk8815_i2c_default_init = {
4 .filter = I2C_STN8815_FILTER_NONE ,
5 .speed = I2C_STN8815_SPEED_STANDARD ,
6 .master_code = 0,
7 };

Listing 15: STN8815 I2C bus adapter default setup
(from i2c-stn8815.c).

4 Testing
As I said in section 1.3 my choice for this project was to
work with the official kernel, which yet lacks many drivers
necessary to fully operate the Nomadik NHK8815 board.
Clearly this choice influenced the way the design process

was conducted. For example, the on-board LCD display
and keypad were not used for interfacing to the system be-
cause of the absence of the respective drivers in the kernel.
Instead, I connected to the target board through a serial line
(UART) and interfaced with it using a terminal emulator.
This was achieved by configuring appropriately the boot-
loader installed on the target, namely U-Boot ([4]).
A number of tools and scripts were used to help testing
the drivers throughout the design process. They all run in
user-space and interface with the Linux kernel, each one
using either the sysfs interface, the evdev interface or the
i2c-dev interface. Figure 9 shows a view of the whole
driver system including the tools mentioned above. This
section describes some simple techniques that allows to
test the drivers using these tools. The tests are classified
based on the type of interface they rely on.

4.1 Testing via the sysfs interface

The usage the LIS3LV02DL sysfs interface was previously
described in section 2.2. This interface turns out to be use-
ful also for debugging activity even during the early stages
of design, when most of the driver functions are yet to be
implemented. An example of this is represented by the
sysfs nodes read and write which were designed solely to
assist debugging (in fact they are available only if the driver
is built for debugging, i.e the keyword LIS3LV02D_DEBUG
is defined in the driver’s source file).
read and write together are used in the shell script
lis3_read.sh to implement a simple technique for testing
the drivers. This script allows to read a user defined set
of registers from the accelerometer, and has the following
syntax:

lis3_read.sh <filename>

where <filename> refers to a file holding the list of reg-
isters with their respective address. Below is an exam-
ple of this file (from lis3_registers provided along with the
script):

Register name Register Address
(hex format)

CTRL_REG1 20
CTRL_REG2 21
CTRL_REG3 22
STATUS_REG 27
FF_WU_CFG 30
FF_WU_SRC 31
FF_WU_THS_L 34
FF_WU_THS_H 35
FF_WU_DURATION 36

Figure 9: The LIS3LV02DL inertial sensor and STn8815 I2C host controller complete driver structure.

For each register in the list lis3_read.sh performs two
steps:

1. Sets up the address of the register via sysfs write.
2. Reads the address content via sysfs read.

Below is the output of the script when invoked with
lis3_registers as a command line parameter.

Figure 10: Output of the script lis3_read.sh with
lis3_registers as a register file.

4.2 Testing via the evdev interface
In Linux the directory /dev is conventionally used to store
the device files, i.e. files representing interfaces for de-
vice drivers. They allow user programs to access hardware
devices through their respective drivers. Linux classifies
drivers in three categories: character, block and network
drivers.
LIS3LV02D driver fits in neither of the above three cat-
egories, as it doesn’t create a corresponding device file.
Consequently it’s not possible for a user program to di-
rectly operate on the accelerometer via a node in /dev. In-
stead, upon enabling the device polling, an indirect access

is provided by the evdev interface of the input subsystem
via a /dev/input/eventX node. The accelerometer driver
reports the events to the input core, which in turn writes
them to this file in an appropriate format for being pro-
cessed by a user program.

Figure 11: Example of usage of evtest.

An example of such a program is evtest [5]. It is a free soft-
ware released under GNU GPL license and available on-

line in many versions; 1.23 is the one used in this project.
This tool allows to display the events reported by an input
device. Figure 11 shows a sample output from evtest on
the target system.
Initially evtest shows some information about the in-
put device and its supported event types (Sync, Key
and Absolute) then, starting from the line Testing ...
(interrupt to exit), keeps displaying any data re-
ceived from the event node. Since the accelerometer driver
terminates each notification by a "sync" event, from the
sample dump we can identify three distinct groups of
events. Both the first and the second groups represent ab-
solute events corresponding to the acceleration measured
along the three cartesian axes. The third group regards the
free-fall which is reported as a key press (value 1) and re-
lease (value 0) sequence of events.

4.3 Testing via the i2c-dev interface
The i2c-dev interface was designed to allow driving the
I2C devices from user space. Each I2C adapter is assigned
a number, say X, and a corresponding device file is created
in /dev/i2c-X. It is indeed possible for a user mode driver
to access an I2C client by operating the adapter X through
its node /dev/i2c-X.
However, in this project the i2c-dev interface was used
with the only purpose of testing the I2C bus driver. To
this aim I wrote a user program called i2cexe which allows
to transmit custom messages to a generic I2C client. In
the above scenario this tool plays the role of a user mode
device driver without effectively being a real driver, as it
performs only a single I2C transaction.
Note that, unlike the testing techniques presented so far,
this method requires no I2C client driver whatsoever, i.e.
only the I2C bus driver under test is needed in order to
communicate with any device on the bus. In addition, the
Linux kernel must be configured with with "I2C device in-
terface" (CONFIG_I2C_DEV) option enabled.
evtest can be used to transmit either a read message or a
write message, depending on whether it is invoked with
the command line option -r or -w. Below is its syntax:

i2cexe -r SLAVE_ADDR [-o offset] [-n nbytes]
i2cexe -w SLAVE_ADDR [-o offset] VALUE

where (each value is expressed in hexadecimal format):

SLAVE_ADDR is the address of the I2C client.
offset is the offset relative to the client address space.
nbytes specifies the number of bytes to read (default 1).
VALUE is the value to write.

Figure 12 shows a sample run where eight bytes of data
are read from the accelerometer device (client address 1D),
starting at offset 28 (this area maps to three signed inte-
ger, stored in little endian format, and corresponding to the
x-y-z acceleration values, which equals to 57,-5,-1071 in
decimal).

Figure 12: Example of usage of i2cexe.

As explained, one major advantage of using the i2c-dev in-
terface is the possibility to access any device on the I2C
bus without the need to install a kernel device driver for
it. Indeed i2cexe can be used to communicate with I2C
devices other than the accelerometer. This idea is imple-
mented by the shell script i2cprobe.sh which uses i2cexe
to "ping" some devices from the list of table 1. The ping
action consists of a simple read with no offset value. Upon
receiving an answer the device is marked as found, mean-
ing that the I2C trasaction was performed correctly. Below
is the output of the script:

Figure 13: Output of the script i2cprobe.sh

i2cexe came in handy also to debug the I2C bus driver dur-
ing the first attempts to plug in the driver to the kernel or in
presence of communication errors (e.g. time out). To help
to examine these situations I used a digital oscilloscope
connected to the SDA and SCL line of the I2C bus. Fig-
ure 14 shows the I2C bus waveforms of a current address
read at standard speed (100kHz).

Figure 14: SCL and SDA waveforms of a current address
read operation performed at standard speed (SDA on ch1,
SCL on ch2).

After the START bit the host transmits the 7-bit slave
address 1D and the read bit. The client sends back an

acknowledge bit (ack) followed by the value 3A. Then
the host terminates the transaction by a not-acknowledge
(nack) and a stop bit.
To verify the controller speed configuration, the same
transaction was performed in fast speed mode (400Khz)
as well. Figure 15 shows the corresponding I2C bus wave-
forms.

Figure 15: SCL and SDA waveforms of a current address
read operation performed at fast speed.

The sawtooth-like characteristic of the signals is due to the
open-drain configuration of the bus, which is essential to
allow concurrent operation of multiple master, but on the
other hand, negatively affects the bandwidth. This is es-
pecially evident in the rising edge because the high level
is achieved by terminator resistors which "pulls" the line
back up when all devices release it. Together with the wire
capacitance these pull-up resistors are responsible for the
exponential rising edges.
Here is a further example of using i2-dev, this time to ac-
cess the on-board battery charger (slave address 70). For
example, the command i2cexe -r 70 -o 2 performs a
random read of one byte from slave address 70.

Figure 16: SCL and SDA waveforms of a random read
operation from slave address 70 at offset 2.

The corresponding I2C bus waveforms of Figure 16 re-
veal that the whole transaction is broken down in two parts.
First, the host writes the offset where the desired read will
start (2 in the example). Then the hosts sends a repeated
start bit followed by a current address read instruction.

5 Conclusion

This paper has dealt with the I2C device driver design in
a Linux embedded system environment. Due to the tight
coupling between these types of drivers and the underlying
hardware, usually their development is undertaken by the
manufacturer of the embedded system. Therefore most of
the commercial boards ship with a tailored Linux distribu-
tion which has all the drivers necessary for the devices on
the board. This way the engineers can focus on develop-
ing the application specific software rather than building
kernel components.
Nevertheless, this paper gives an insight into how the
Linux kernel supports I2C , making it helpful for those who
need to modify an existing implementation to fit their own
needs.
Some methods to interface the device driver with the user
land have been presented as well. Although implemented
for testing purposes, these methods also apply to real ap-
plications. Many other solutions may be adopted to extend
this work in many ways. Some example include updating
the accelerometer driver with a character driver interface
and power saving features, adding support for I2C high-
speed mode to the bus driver, etc.
This report and all the source code are publicly avail-
able through the git repository at https://github.com/
fghiro/i2c-nomadik.

References

[1] Venkateswaran, S.: Essential Linux Device Drivers.
Prentice Hall Open Source Software Development
Series. Prentice Hall (2008)

[2] BusyBox. http://www.busybox.net/

[3] Rubini, A.: bbfs 1.3 - building a filesystem based on
busybox alone. http://www.gnudd.com/wd/bbfs.
html

[4] Das U-Boot, the Universal Boot Loader. http://
www.denx.de/wiki/U-Boot/WebHome

[5] Evtest, the Event Tester. http://www.
freedesktop.org/wiki/Evtest

[6] Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux
Device Drivers. Oreilly Software Series. O’Reilly
Media, Incorporated (2005)

[7] Yaghmour, K., Masters, J., Ben-Yossef, G., Gerum,
P.: Building Embedded Linux Systems. Oreilly Se-
ries. O’Reilly Media, Incorporated (2008)

[8] Sally, G.: Pro Linux Embedded Systems. Apresspod
Series. Apress (2009)

[9] Love, R.: Linux Kernel Development. Developer’s
Library. Addison-Wesley (2010)

[10] The I2C bus specification. http://www.nxp.com/
documents/user_manual/UM10204.pdf

[11] The Linux Kernel Archives. http://www.kernel.
org/

[12] Loeliger, J., McCullough, M.: Version Control with
Git: Powerful tools and techniques for collaborative
software development. O’Reilly Media (2012)

