
Smart sensing daemon for Miosix
Design of an energy efficient sensor daemon for Miosix

Rizzi Alessandro Maria

Matr. 783504, (alessandromaria.rizzi@mail.polimi.it)

Report for the master course of Real Time Operating Systems

Reviser: PhD. Patrick Bellasi (bellasi@elet.polimi.it)

Received: March, 05 2013

Abstract

The goal of the project is to design and implement a daemon for Miosix embedded OS performing the "smart-sensing",

which is a new power-efficient way of performing a series of reads from a sensor spaced out by a fixed amount of time.

The difference between this method and a normal data acquisition from the sensor lies in the fact that the board remains

in suspension most of the time, waking up in a low-consumption mode only to read sensor data.

1 Introduction

In context of wireless sensor network great attention is

given to energy-efficiency issues.

The reason for this is the fact that every node of the net-

work must operate continuously for a long time period

of time without any physical maintenance, which would

be impractical due to the large number of nodes and their

barely reachable location.

Besides, the main purpose af a WSN is the monitoring of

some quantities acquired by some sensors.

From these two general properties of WSN it’s clear that

data acquisition from sensors is a key activity for such a

network and should be optimized as much as possible on

the energy-efficiency aspect.

We can imagine that on each node of the WSN will be ex-

ecuted different task. The major part of the task would be

devoted to data acquisition and elaboration which means

that will be busy for a certain amount of time perfoming

some reads from a sensor and the spending some time in

elaborating the data.

It would be reasonable suppose that the node would spend

most of the time in waiting the data from the sensors. In the

most simple implementation the board would remain al-

ways active, maybe just reducing the microcontroller con-

sumption.

Otherwise it’s possible to improve the energy consumption

of the node first of all by making the board be suspended

if there are no active task. The suspension mode is a spe-

cial mode which is present in most of microcontroller plat-

forms which has very little energy consumption: both the

microcontroller and the memory are not powered.

Then it’s possible to improve further the energy-efficiency

by performing the requested reads in a special low-

consumption mode.

The project aims to the development of the complete in-

frastracture for this activity, starting from an operating

system which is able to run multiple task and to sus-

pend/resume them.

The rest of the section is divided as follows: in subsection

1.1 is presented the Miosix Embedded OS; in subsection

1.2 the board used.

1.1 Miosix Embedded OS

Figure 1: Miosix kernel architecture.

Miosix is a kernel for microcontrollers. Its goals are to

provide an environment as much "standard compliant" as

possible (in which developing application for an embed-

ded system isn’t much different than developing a standard

desktop application) and avoiding performance or code-

footprint penalties for the unused features. It provides:

• Multithreading with a pthread-like API

• C and C++ support including standard C and STL

libraries.



• Device drivers for most complex devices

• Filesystem support with POSIX-like API

• Different scheduler to be chosen

It supports only 32bit microcontrollers and has an experi-

mental support for multitasking which lacks some features

(like dynamic-loading of executables from the filesystem).

Its basic architecture is presented in Figure 1.

For this project has been particularly important some re-

cent additions to it, which are multitasking with the pos-

sibility of suspending the system when there are no active

tasks.

1.2 The stm3220g-eval board

Figure 2: Picture of the STM stm3220g-eval board.

The board used in the project is the ST Microelectronics

stm3220g-eval (Figure 2).

It has a 120MHz Cortex-M3 microcontroller

(STM32F207IG), which has 1MiB of FLASH, 128KiB

of RAM and 2MiB of external SRAM.

The board is pretty rich in terms of hardware features, in-

cluding an USB port, an RS-232 port, an audio DAC, a

320x240 3,2" LCD display, a MicroSD card slot, 4 LEDs,

a 4-direction joystick, an RTC with backup battery and a

potentiometer (which has been used as source of acquisi-

tion data).

In addition were added 128KiB of MRAM in order to save

the processes during suspension.

In the development of the project the board has been

flashed through the USB port, which has been used also

as a serial console. Due to the lack of a JTAG in-circuit de-

bugger, this feature has not been used in the development

phase.

2 ADC driver

The first step in the development of the project has been the

implementation of a module for Miosix capable of perform

reads from a sensor.

This operation has been implemented as performing ana-

log reads from a specific GPIO pin.

In particular the module has to be able to perform the fol-

lowing operations:

• Initialize a specific GPIO pin on a specific GPIO port

to perform analog reads

• Initialize a specific ADC to perform an analog read

• Perform a single read on a given ADC channel

For the specific application context (WSN) characterized

by a very low frequency of reads, high performances are

not required.

So it’s no need of using DMA. In fact also the initialization

phase is repeated at every read.

One problem arised regarding the way of determinating

the following informations of a given input: GPIO pin,

GPIO port, ADC to be used, ADC channel connected to

the GPIO port. This informations are not easily derivable

from the other ones (it’s necessary to look at the reference

manual to obtain the correct mapping informations). Be-

sides, while the ADC mechanism is quite general in all the

ST Microelectronics’ microcontrollers family (it has been

succesfully tested in STM32F4 Discovery board), the map-

ping between GPIO pin, ADC and ADC channel are sub-

ject to change on different boards.

So the solution adopted has been to pack all the required

informations into a 32bit integer as following:

• bits 0-4: ADC channel (0 the first, 1 the second,

etc...)

• bits 5-7: ADC (0 the first, 1 the second, etc...)

• bits 8-15: GPIO pin

• bits 16-19: GPIO port (A=0, B=1, C=2, etc...)

• bits 20-31: Not used

In this way an input is identified by a single 32 bit integer.

The input used in the project test has been the potentiome-

ter: this because it has many possible values and it’s easy

to modify it and check the correctness.

The relevant part of implementation is shown in Figure

3. In particular the init method initialize both the GPIO

and ADC as shown. There are two version of read the



first, which accepts no parameters, is meanto for perform-

ing a read from an already initialized object. The second

one, which requires the deviceId, is a static method which

perform all the require operations (initilization, read) in a

single step and is the only used outside the class.

Figure 3: Extract from ADC driver implementation

3 SmartSensing module

This part is the core of the project.

It has the task of keep track of the data requests and sched-

ule them. It’s main idea is quite simple: it keeps track of

the request of an acquisition job and schedule the correct

time to perform the required reads either by scheduling a

new wake up or by the kernel daemon if they occour when

the system is already running.

The module can be divided in the following conceptual

part:

• Data structures

• Reqest registration and query

• Kernel daemon

In the rest part of this section we analyze these different

conceptual parts plus the integration with the rest of the

kernel from the module point of view.

3.1 Data structures

In this subsection are described the data structures utilized

and the methods which operate upon them.

The basic idea it to subdivide the data requested in two

sets: one with the data which are in common with all the

acquisiton jobs, and one with the group of data of each job.

Since the data must survive the suspension process dur-

ing which all the RAM content is lost, it is allocated at

the end of the backup SRAM, which is maintained during

the whole process, as shown in Figure 4. The reason for

this allocation is to minimize the compatibility issues with

Miosix.

Figure 4: Structure of the end of backup SRAM

The data is disposed as follows: first the general data,

which is formed by a canary, used to check if the other data

structures haven’t been overwritten by other data stored in

the backup SRAM, and an integer which store the next sys-

tem full boot time in milliseconds. Then there is a fixed-

size array of the data of each job. This choice has been

done due to the extremely low number of allowed jobs

which are a consequece of the low number of tasks allowed

(just 4).

More precisely the job acquisition data is composed of a

fixed-size array which holds the data acquired, the num-

ber of total samples requested at the job, the number of

remaining acquisition, the time in milliseconds when the

next acquisition has to be taken, the space in milliseconds

between two acquisitions, the device identifier and the id

of the process which has requested the job. Each array ele-

ment is referred from now on in this report and in the code

as "queue" because it behaves like a queue which mantains

the data coming from the sensor.

Figure 5: Data structures

Due to the extremely low size of the number of jobs, the



algorith implemented for searching values into the array is

just an exaustive scan.

The methods for access and manipulate the queues can be

subdivided in the following categories:

• Methods for retrive a single queue which match a

given parameter/condition

In this category there are getFirstFreeQueue (Fig-

ure 6) which retrive the first unused queue and

getQueueFromProcessId (Figure 7) which retrive

the index of the first queue which belongs to a pro-

cess with the given id.

Figure 6: getFirstFreeQueue method

Figure 7: getQueueFromProcessId method

• Methods performing operations on a single queue

Here there are initQueue (Figure 8), readQueue

(Figure 9) and resetQueue (Figure 10), which re-

spectively initalize a queue with the given data, add

to a queue a new read from its associated input; and

set a queue not utilized.

Figure 8: initQueue method

Figure 9: readQueue method

Figure 10: resetQueue method

• Methods for extract timing information from the

whole set of queues

We consider the methods getNextEvent and get-

NextSecond (Figure 11) which given the current

time and optionally an event time return the first oc-

currency in the future which is either a queue read

event or the event given, respectively in millisecond

and second. In particular the latter has been designed

to cope with the different granularity of time, which

is potentially problematic.

Figure 11: getNextEvent and getNextSecond meth-

ods

• Methods performing operations on the entire set of

queues

Here there are methods which scans all the queue

checking if they match a condition and, if so, per-

form an action on the selected queue.

The method updateQueue (Figure 12), given the

current time in milliseconds, apply the readQueue

method to all those queues which require a new read.

The method wakeCompletedProcess (Figure 13)

wakes up all the processes whose queue requires no

further reads.



Figure 12: updateQueue method

Figure 13: wakeCompletedProcess method

3.2 Request registration and query

In this subsection we discuss about the methods used by

the rest of the operating system to interact with the mod-

ule to allocate a new acquisition job or retrive the data of a

completed one (Figure 14).

The former (setQueue) just initializes a new jobs after

checking that the provided data are correct.

The latter (readQueue) retrives the reads from a completed

job and frees the place in the array occupied by it.

Figure 14: setQueue and readQueue methods

3.3 Kernel daemon

It has the task of performing reads which can occour when

the kernel is active.

It is simply composed of a thread (Figure 15) which de-

lays itself on the next acquisition time, performs the read

and so on. If there are no active jobs it just wait until a new

one is created.

It’s interesting to note the peculiar usage of C++ RAII de-

sign pattern in the lock and unlock mechanisms: a mu-

tex lock (or unlock) is associated to an object. When it

goes out of scope, the mutex is automatically unlocked (or

locked); otherwise i.e. the lack of a mutex lock after the

unlock at line 453 appears wrong. This usage is encour-

aged by the Miosix design.

Figure 15: kernel daemon thread

3.4 System integration

In this subsection we discuss the system integration from

the smart sensing module point of view. We defer to the

next section the description of how the whole system inter-

act with the module.

Basically it’s composed by the methods onBoot and on-

Suspend (Figure 16).

The onBoot method is executed before that the system is

fully started. It has the task of perform the required reads

and either continue the boot process if a full start is re-

quired (or is the first boot of the board) or reschedule the

next wakeup and suspend the board.

The onSuspend method instead deals with the definition of

the next wake up time that must include the ones required

for the scheduled reads.



Figure 16: onBoot and onSuspend methods

4 System integration

In this section is described how the new module is inte-

grated into Miosix, in particular in three phase: the boot,

the suspension and the process syscall.

4.1 Boot integration

The boot integration is performed by placing an hook in

the boot process of Miosix (Figure 17) just before that the

kernel is started with the call of onBoot, which has been

previosly presented, at line 134.

Figure 17: _init procedure

Moreover has been modified the main procedure (Figure

18), called after the completion of the kernel boot process.

This has been done in order to start the daemon which per-

forms the reads occourring when the system is active. The

modifications are the addition of call to startKernelDae-

mon at lines 48 and 52.

Figure 18: main procedure

4.2 Suspension integration

This part is particularly important because it coordinates

the suspension manager of Miosix and our smart sensing

module.

The suspension manager has the task of keeping track of

which processes are active and if there are no active task it

can decide to put the system into suspesion.

It’s important to specify that at the moment all the pro-

cesses which are "suspension-ready" (the ones who are in

a state where can be useful to suspend the system) have an

associated resume time.

The only syscall that allows the system suspension is the

sleep one, mainly because it’s the only syscall during

which the system can really do nothing; while in all other

cases the process is waiting for something carried out by

another process/the operating system itself, which requres

the operating system being active (as we see later this

project have caused further modifications reagarding this

aspect).

So if there are no working processes and the suspension

manager decides to put the system into suspension (this

happens in order to avoid the suspension process overhead

when the time to be spent in suspension is too little) it saves

the status of all the processes into the MRAM/backup

SRAM and then the system is put into suspension.

This task is performed, in particular, by the hibernateDae-

mon procedure (Figure 19) which is run in a separate

thread.

More precisely the last part of it (which sets the suspen-

sion time and actually performs the suspension) has been

divided in the suspend method (Figure 20). In its stead has

been put a call to the onSuspend method (line 217), which

has been previosly discussed.

This has been done in order to allow the smart sensiong

module to change the suspension time.



In addition this was necessary because the suspend method

is called also by the onBoot method in smart sensing mod-

ule, which has the necessity of performing a new suspen-

sion after that some reads were carried out. In this special

case there is no need of saving the state (it hasn’t been al-

ready changed) while it’s useful to re-suspend the system.

Figure 19: hibernateDaemon procedure

Figure 20: suspend method

4.3 Syscall integration part 1

The project has the purpose of give an useful tool to the

processess. However in order to be utilized by them there

must be provided a way of communication between the

processes and the smart sensing module. This has been

first of all achieved by the usage of non-blocking syscalls:

one for schedule the reads, and one for retriving the data.

In order to make them work they must be spaced by a sleep

of the requried time.

This method has the advantage of having a simple imple-

mentation (the behaviour of the suspension manager has

not to be modified) and has been chosen to test the entire

module.

A more advanced implementation is presented in the next

subsection.

4.4 Syscall integration part 2

In this implementation all the work is performed by a sin-

gle syscall which is a blocking read.

This has required an additional effort because first of all

the smart sensing module has to wake up a process whose

required job has been completed. Then also the suspen-

sion manager logic has to be modified because there is a

new suspension-prone syscall which hasn’t a defined re-

sume time. In addition also the process manager has to

be modified because the new particular syscall has to be

resumed INSIDE the same syscall, while previously was

resumed at the first instruction of the process AFTER the

syscall. This last problem is caused by the peculiar way

in which the suspension is performed: during a suspension

ALL the kernel data is lost and only the processes ones

data (i.e. stack and registers) are saved.

To cope with this several modification has been made.

First of all has been added in the SuspendManager class a

new method, wakeUpProcess (Figure 21), which has the

task of wake up a process whose smart sensing operation

has finished.

Figure 21: wakeUpProcess and wakeupDaemon methods

Then the process manager of Miosix has been modified in

order to perform a two part syscall.

First has been added a variable to the Process class which

keep track of a pending syscall related to the process. The

method create in the class Process (Figure 22) has been

modified by adding the variable pendingOperation, which

if it’s true, it means that a smart sensing read syscall is

pending.



Figure 22: create method

This variable is used in the start method of Process class

(Figure 23), which is used to complete the syscall be-

fore continuing the execution of the process, with the

method completeSmartSensingOperation that simply copy

the reads into the memory of the process and set as return

value the number of bytes read (as the standard POSIX

read requires).

Figure 23: completeSmartSensingOperation and part of

start methods

The core of the syscall is presented at Figure 24. Here

we can notice a swith over the possible syscall, where the

interesting part is the read one (with id equal to 4).

The code first of all check the value of the file description.

If it’s equal to 4 it’s interpreted as 5 reads from the poten-

tiometer spaced by 1 second each.

This trick has been used because the filesystem managent

is beyond the scope of this project and this has been a

rapid way for testing the smart sensing mechanism. We

can imagine that the information of device id, number of

reads and period can be memorized in some data structures

by a modified open syscall and then utilized here.

So the smart sensing operation is set and at line 567 is sig-

naled to the suspension manager that the process can en-

ter to suspension. Here is used another trick to mantain

as much as possible the compatibility with the suspension

manager: the smart sensing read is treated like a sleep of a

very long interval.

The rest of the syscall (line 568-569) wait and complete

the syscall in the case that all the smart sensing operation

is performed without putting the system in suspension. In

this case the thread of the process is woken up by the smart

sensing class when the job is finished. The whole mecha-

nism works because in case of suspension all the kernel

data is lost and so both the process thread status and the

thread id inside the SmartSensing class.

The last addition is in line 598, which calls the method

cleanUp in the smart sensing module when the process is

being destroyed. This is necessary to eventually free the

queues of the process inside the SmartSensing class.

Figure 24: extract from start method

In summary we recap the whole syscall mechanism which

is quite complex due to the various suspension call. This

can be summed up with the following steps:

1. The process invoke a smart sensing read syscall.

2. The syscall manager inside the kernel sets up the

smart sensing operation, signals to the suspension

module the possibility of a suspension and waits.



3. If the operation is completed without any suspen-

sion the process wakes up and the syscall returns

normally, otherwise a suspension is performed.

4. The system can be started and suspended several

times. The last one the smart sensing module calls

the wakeUpProcess in the SuspendManager class di-

rectly if the read occours when the kernel is already

started or when the smart sensing daemon is started

if the last read happens before the boot process.

5. The wakeUpProcess wake up the corresponding pro-

cess with the flag of the pending syscall set.

6. The start method in the Process class detects the

pending syscall, completes it and return the control

to the process.

7. The process continues its execution as nothing were

happened between.

5 Testing

For the testing of the project were used two programs.

The first (Figure 25) performs a series of a smart sensing

acquisition composed of 5 reads spaced by 1 second and 3

seconds of active wait (it’s like a sleep but it doesn’t allow

the system going into suspension).

Figure 25: code of the first testing program

The second one (Figure 26) instead performs just a series

of smart sensing acquisition again of 5 reads spaced by 1

second.

Figure 26: code of the second testing program

The resulting log correctly outlines the alternation of smart

sensing reads and system activations; also the kernel dae-

mon part behaves correctly and the values read from the

potentiometer were correct.

References

[1] Wolfgang Wieser. Programming STM32 F2, F4 ARMs

under Linux: A Tutorial from Scratch, 2012.

[2] Trevor Martin. The Insider’s Guide To The STM32

ARM Based Microcontroller - 2nd Edition. 2009.

[3] ST Microelectronics. STM3220G-EVAL evaluation

board user manual (UM1057), 2012.

[4] ST Microelectronics. STM32F2xx reference manual

(RM0033), 2011.

[5] ST Microelectronics. STM32F2xx programming man-

ual (PM0056), 2011.

[6] Federico Terraneo. Control based design of OS com-

ponents, 2011.


