Smart sensing daemon for Miosix

Design of an energy efficient sensor daemon for Miosix

Rizzi Alessandro Maria
Matr. 783504, (alessandromaria.rizzi @mail.polimi.it)

Received: March, 05 2013

Abstract

Report for the master course of Real Time Operating Systems

Reviser: PhD. Patrick Bellasi (bellasi@elet.polimi.it)

The goal of the project is to design and implement a daemon for Miosix embedded OS performing the "smart-sensing",
which is a new power-efficient way of performing a series of reads from a sensor spaced out by a fixed amount of time.
The difference between this method and a normal data acquisition from the sensor lies in the fact that the board remains
in suspension most of the time, waking up in a low-consumption mode only to read sensor data.

1 Introduction

In context of wireless sensor network great attention is
given to energy-efficiency issues.

The reason for this is the fact that every node of the net-
work must operate continuously for a long time period
of time without any physical maintenance, which would
be impractical due to the large number of nodes and their
barely reachable location.

Besides, the main purpose af a WSN is the monitoring of
some quantities acquired by some sensors.

From these two general properties of WSN it’s clear that
data acquisition from sensors is a key activity for such a
network and should be optimized as much as possible on
the energy-efficiency aspect.

We can imagine that on each node of the WSN will be ex-
ecuted different task. The major part of the task would be
devoted to data acquisition and elaboration which means
that will be busy for a certain amount of time perfoming
some reads from a sensor and the spending some time in
elaborating the data.

It would be reasonable suppose that the node would spend
most of the time in waiting the data from the sensors. In the
most simple implementation the board would remain al-
ways active, maybe just reducing the microcontroller con-
sumption.

Otherwise it’s possible to improve the energy consumption
of the node first of all by making the board be suspended
if there are no active task. The suspension mode is a spe-
cial mode which is present in most of microcontroller plat-
forms which has very little energy consumption: both the
microcontroller and the memory are not powered.

Then it’s possible to improve further the energy-efficiency
by performing the requested reads in a special low-
consumption mode.

The project aims to the development of the complete in-

frastracture for this activity, starting from an operating
system which is able to run multiple task and to sus-
pend/resume them.
The rest of the section is divided as follows: in subsection
1.1 is presented the Miosix Embedded OS; in subsection
1.2 the board used.

1.1 Miosix Embedded OS

Hardware
Board support package
Base kernel
|—| 22 3 o
=h = 3 o
0w 0 o g g 4
28|[aaflaz| %3 o <
3 ol To [+) m +
25l 2 = 8z = o 3|l 3
= < o N [} g 2 Il 2
AR
’ =
Native Pthread C/C++
AR AT . standard library|
Applications

Figure 1: Miosix kernel architecture.

Miosix is a kernel for microcontrollers. Its goals are to
provide an environment as much "standard compliant" as
possible (in which developing application for an embed-
ded system isn’t much different than developing a standard
desktop application) and avoiding performance or code-
footprint penalties for the unused features. It provides:

e Multithreading with a pthread-like API

e C and C++ support including standard C and STL
libraries.

e Device drivers for most complex devices
e Filesystem support with POSIX-like API
o Different scheduler to be chosen

It supports only 32bit microcontrollers and has an experi-
mental support for multitasking which lacks some features
(like dynamic-loading of executables from the filesystem).
Its basic architecture is presented in Figure 1.

For this project has been particularly important some re-
cent additions to it, which are multitasking with the pos-
sibility of suspending the system when there are no active
tasks.

1.2 The stm3220g-eval board

Figure 2: Picture of the STM stm3220g-eval board.

The board used in the project is the ST Microelectronics
stm3220g-eval (Figure 2).

It has a 120MHz Cortex-M3 microcontroller
(STM32F2071G), which has 1MiB of FLASH, 128KiB
of RAM and 2MiB of external SRAM.

The board is pretty rich in terms of hardware features, in-
cluding an USB port, an RS-232 port, an audio DAC, a
320x240 3,2" LCD display, a MicroSD card slot, 4 LEDs,
a 4-direction joystick, an RTC with backup battery and a
potentiometer (which has been used as source of acquisi-
tion data).

In addition were added 128KiB of MRAM in order to save
the processes during suspension.

In the development of the project the board has been
flashed through the USB port, which has been used also
as a serial console. Due to the lack of a JTAG in-circuit de-
bugger, this feature has not been used in the development
phase.

2 ADC driver

The first step in the development of the project has been the
implementation of a module for Miosix capable of perform
reads from a sensor.

This operation has been implemented as performing ana-
log reads from a specific GPIO pin.

In particular the module has to be able to perform the fol-
lowing operations:

e Initialize a specific GPIO pin on a specific GPIO port
to perform analog reads

o Initialize a specific ADC to perform an analog read
e Perform a single read on a given ADC channel

For the specific application context (WSN) characterized
by a very low frequency of reads, high performances are
not required.

So it’s no need of using DMA. In fact also the initialization
phase is repeated at every read.

One problem arised regarding the way of determinating
the following informations of a given input: GPIO pin,
GPIO port, ADC to be used, ADC channel connected to
the GPIO port. This informations are not easily derivable
from the other ones (it’s necessary to look at the reference
manual to obtain the correct mapping informations). Be-
sides, while the ADC mechanism is quite general in all the
ST Microelectronics’ microcontrollers family (it has been
succesfully tested in STM32F4 Discovery board), the map-
ping between GPIO pin, ADC and ADC channel are sub-
ject to change on different boards.

So the solution adopted has been to pack all the required
informations into a 32bit integer as following:

e bits 0-4: ADC channel (0 the first, 1 the second,
etc...)

e bits 5-7: ADC (O the first, 1 the second, etc...)
e bits 8-15: GPIO pin
e bits 16-19: GPIO port (A=0, B=1, C=2, etc...)
e bits 20-31: Not used

In this way an input is identified by a single 32 bit integer.
The input used in the project test has been the potentiome-
ter: this because it has many possible values and it’s easy
to modify it and check the correctness.

The relevant part of implementation is shown in Figure
3. In particular the init method initialize both the GPIO
and ADC as shown. There are two version of read the

first, which accepts no parameters, is meanto for perform-
ing a read from an already initialized object. The second
one, which requires the deviceld, is a static method which
perform all the require operations (initilization, read) in a
single step and is the only used outside the class.

AdcDriver: : AdcDriver (uint32 t deviceld) {
decodeDeviceld(deviceld):

void AdeDriver::init() {
1nitGPIO();
initApc();

unsigned short AdeDriver::read() {
ADC_TypeDef *myADC = Adc[nunADC] ;
ny ADC->SQR3 = ADCchannel:
nyADC->CR3 | = ADC_CR2_SWSTART;
while ((myADC->SR & ABC_SR_EOC) == 0);
unsigned short data = myADC->DR;
return data;

unsigned short AdcDriver: :read (uint32_t deviceld) {
AdcDriver adc(deviceTd):
adc.init():
return adc.read();

void AdcDriver::decodeDeviceld(uint32_t deviceld) {
ADCchannel = (unsigned char) (deviceld & ADC_CHANNEL_MASK);
nunADC = (u char) ((deviceId & ADC_MASK) == 5);
gpioPin = (uns ar) ((deviceld & GPIO_PIN_MASK) = 8);
gpioPort = (un har) ((deviceld & GPIO_PORT MASK) > 16)

oid AdcDriver::initGPIO() {
GpioPin gpio(gpioMappinglgpioPort], gpiePin);
gpie.mode (Mode: : INPUT_ANALOG) ;

void AdeDriver::initADC() {
InterruptDisableLock dlock: //Using the slow one so I don't care if kernel is started or not
RCC-=APB2ENR |= ADC_Reg(numADC] ;
ADC_TypeDef *myADC = Adc[nunADC] ;
ADCT>CCR |= ADC_CCR ADCPRE_L; //ADC prescaler B4MHz/6=14HHz
nyADC->CRL = 0;
nyADC->CR2 = ADC_CR2_ADON; //The first assignment sets the bit
nyADC->SQRL = O //Da only one conversion
nyADC->SQR2 = 0;
nyADC-=SQR3 = 0;
nyADC-SMPRL = 7 << 18; //480 clock cycles of sample time for tenp sensor

Figure 3: Extract from ADC driver implementation

3 SmartSensing module

This part is the core of the project.

It has the task of keep track of the data requests and sched-
ule them. It’s main idea is quite simple: it keeps track of
the request of an acquisition job and schedule the correct
time to perform the required reads either by scheduling a
new wake up or by the kernel daemon if they occour when
the system is already running.

The module can be divided in the following conceptual
part:

e Data structures
e Reqest registration and query

o Kernel daemon

In the rest part of this section we analyze these different
conceptual parts plus the integration with the rest of the
kernel from the module point of view.

3.1 Data structures

In this subsection are described the data structures utilized
and the methods which operate upon them.

The basic idea it to subdivide the data requested in two
sets: one with the data which are in common with all the
acquisiton jobs, and one with the group of data of each job.
Since the data must survive the suspension process dur-
ing which all the RAM content is lost, it is allocated at

the end of the backup SRAM, which is maintained during
the whole process, as shown in Figure 4. The reason for
this allocation is to minimize the compatibility issues with
Miosix.

CANARY
SYSTEM RESTART TIME

ACQUISITION JOB DATA#1

ACQUISITION JOB DATA#2

ACQUISITION JOB DATA#3

ACQUISITION JOB DATA#4
OKFF
END

Figure 4: Structure of the end of backup SRAM

The data is disposed as follows: first the general data,
which is formed by a canary, used to check if the other data
structures haven’t been overwritten by other data stored in
the backup SRAM, and an integer which store the next sys-
tem full boot time in milliseconds. Then there is a fixed-
size array of the data of each job. This choice has been
done due to the extremely low number of allowed jobs
which are a consequece of the low number of tasks allowed
(just 4).

More precisely the job acquisition data is composed of a
fixed-size array which holds the data acquired, the num-
ber of total samples requested at the job, the number of
remaining acquisition, the time in milliseconds when the
next acquisition has to be taken, the space in milliseconds
between two acquisitions, the device identifier and the id
of the process which has requested the job. Each array ele-
ment is referred from now on in this report and in the code
as "queue" because it behaves like a queue which mantains
the data coming from the sensor.

struct SmartSensingStatus {
#ifdef CHECK_CAMARY
S
* gbrief canary
* Canary to check if the backup ram area of the class has been corrupted
L

unsigned long int canary;
#endif

* @brief nextSystemRestart
Time in seconds of the next system restart
)

unsigned long long nextSystemRestart:
L

template <typename T, unsigned int N>
"

* @brief The SSQueue struct
* Structure which holds a queue
~J

struct SSQueus {
T datalnl;
int size;
int remaining:

* @brief nextTime next time in milliseconds
*

unsigned long long int nextTime;

o

* @brief period period in milliseconds

*

unsigned int period;

uint32_t deviceld;
pid_t processId;

Figure 5: Data structures

Due to the extremely low size of the number of jobs, the

algorith implemented for searching values into the array is
just an exaustive scan.

The methods for access and manipulate the queues can be
subdivided in the following categories:

e Methods for retrive a single queue which match a
given parameter/condition

In this category there are getFirstFreeQueue (Fig-
ure 6) which retrive the first unused queue and
getQueueFromProcessld (Figure 7) which retrive
the index of the first queue which belongs to a pro-
cess with the given id.

Jf**
* gbrief getFirstFreeQueue
* Retrive the first queue available
* It's supposed to be invoked only if the kernel is active
* greturn index of the first queue, -1 if none available
*/
int getFirstFreeQueue() const{
for (unsigned int i =0; 1 < Q; i+) {
if (queue[i].size == @) {
return i;

return -1;

Figure 6: getFirstFreeQueue method

-
* gbrief getQueueFronProcessId

* Retrive the queue associated to a given process

can be invoked either during boot phase or when the kernel is active

@paran processId id of the process which owns the queue

* @return index of the requested queue, -1 if no queue correspond the the given process
¥

/
int getQueusFromProcessTd(pid_t processid) const{

for(unsigned int 1=0;i<Q,T++){
if ((queueli] .size=>0) && (queue[il .processId==processId)) {
return (int)i;

¥
return -1;

Figure 7: getQueueFromProcessld method

e Methods performing operations on a single queue

Here there are initQueue (Figure 8), readQueue
(Figure 9) and resetQueue (Figure 10), which re-
spectively initalize a queue with the given data, add
to a queue a new read from its associated input; and
set a queue not utilized.

o
* gbrief initqueue

void initQueue (unsigned in
queus (3] .deviceld = deviceTd.

¥

+ Initialize a queue

+ Tt's supposed to be invoked only if the kemnel is active

* Gparan 1 index of a free queue

+ @paran processId id of the process which owns the corresponding task

+ @paran threadId id of the thread which owns the corresponding task

+ @paran deviceId id which carries the information on the input source of the reads
+ @paran size number of reads to be perforned

+ gparan period tine in milliseconds between two reads

t i, pid_t processId, Thread threadld, uint32_t deviceld, unsigned int size, unsigned int period) {

. e
queue (1] nextTine = getTick() + period;
queue (1] period = period;

this->threadTd[i] =threadId;

Figure 8: initQueue method

YCs

* gbrief readqueue

* Perforns a read on the selected queue

* Can be invoked either during boot phase or when the kernel is active
* No checks are performed either on the index or if the queue is full
* @param i index of the selected queue

.y

void readqueue(int 1) {

unsigned short walue = AdcDriver::read(queueli] deviceld);
queue[i] .data[queue[i] .size - queue[il.remaining] = value:
char debug[200];
sprintf(debug, "T: %5111 PID: %41 SS: %4x",getTick(),queueli].processId,value);
if(iskernelRunning () {
puts (debug);

else{
IRGbootlog(debug) ;
IRQbootlog("\rin”);

}
queuelil. remaining--;

Figure 9: readQueue method

Viid
* @brief resetQueue
Set a given queue as available

* Can be invoked either during boot phase or when the kernel is active

@param 1 index of the queue
* @greturn false if the given index is invalid, true otherwise
*/

bool resetQueue(unsigned int i){
1T ((1<0) || (1>=0)){
return false;

queueli] .size = 0:
queue[i] . remaining = O;
return true;

Figure 10: resetQueue method

Methods for extract timing information from the
whole set of queues

We consider the methods getNextEvent and get-
NextSecond (Figure 11) which given the current
time and optionally an event time return the first oc-
currency in the future which is either a queue read
event or the event given, respectively in millisecond
and second. In particular the latter has been designed
to cope with the different granularity of time, which
is potentially problematic.

o
* gbrief gethextSecond

* Retrive next tine in seconds in which the next event will happen

* Can be invoked either during boot phase or when the kernel is active

* @param currentTine time in millisecond to be considered as current tine

* @paran minTine if different from 0 it counts as an additional event time in milliseconds
* @return next event time in seconds

¥

unsigned int getNextSecond (unsigned Llong long currentTime, unsigned long long minTime) const{
unsigned nt nextEvent-getNextEvent (currentTine, minTine);
17 {{currentTine%1000) > (nextEvent%1000)) {
return nextEvent/1000;

¥
return (nextEvent+999) /1000;

o
* gbrief getNextEvent

* Retrive next tine in milliseconds in which the next event will happen

* Can be invoked either during boot phase or when the kernel is active

* @paran currentTine tine in nillisecond to be considered as current tine

* gparan minTine if different fron 0 it counts as an additional event time in milliseconds
* @return next event time in milliseconds

*/

unsigned long long getNextEvent (unsigned long long currentTime,unsigned long long minTine) const{

for (unsigned int i = @; i

<
if ((queuelil.size > 0) && (queue[il.remaining > 0) && (queuelil.nextTime>currentTime)) {

it ((ninTime == 0) || ((minTime > queue[il.nextTime})) {
minTine = queue(1i].nextTine:
3
¥

¥
return minTine;

Figure 11: getNextEvent and getNextSecond meth-
ods

Methods performing operations on the entire set of
queues

Here there are methods which scans all the queue
checking if they match a condition and, if so, per-
form an action on the selected queue.

The method updateQueue (Figure 12), given the
current time in milliseconds, apply the readQueue
method to all those queues which require a new read.

The method wakeCompletedProcess (Figure 13)
wakes up all the processes whose queue requires no
further reads.

*

-~

*x % ® % x %
L

@brief updateQueue
Update all the initialized queues

will be performed.
void updateQueue (unsi

completedTask=false
for (unsigned int i

ed long long time) {

i<

0: Q: i++) {
if ((queuelil.remaining = 0) & (queue[il.nextTime <= time)) {

readQueue(i);

queue[i].nextTime += queue[i].period;

if(queuelil .nextTime <= time){
queue[i].nextTime = time + queueli].period:

if(queuelil.remainin
completedTask=true;

262
}
1

Figure 12: updateQueue method

/**
* gbrief wakeCompletedProcess
* Wake up all the processes whose tasks have been terminated
* Can be invoked only when the kernel is active
wi
void wakeCompletedProcess (){

for{unsigned int 1=0;i<Q;i++){

1f((queue[i].size>0)&&(queue[i] . remaining==0}){
if(threadId[i] !=NULL){
threadId[i]->wakeup();

}
else{

SuspendManager: :wakeUpProcess (queue [i] .processId);

Figure 13: wakeCompletedProcess method

3.2 Request registration and query

In this subsection we discuss about the methods used by
the rest of the operating system to interact with the mod-
ule to allocate a new acquisition job or retrive the data of a
completed one (Figure 14).

The former (setQueue) just initializes a new jobs after
checking that the provided data are correct.

The latter (readQueue) retrives the reads from a completed
job and frees the place in the array occupied by it.

o
+ @hrief setQueue
+ Initialize a new queue
* @paran processId 1d of the process which own the queue
* gparan threadZd id of the thread vhich invoke the method
* @paran deviceld id of the selected source
* Garan size nusber of sauple to be captured
* @paran sampling interval in millisecond
¢ retum 0L the vork s schediled. 2 negative integer 17 an error occourred

o4 setquene (pid_t processId,Thread* threadld,uint32_t deviceId, unsioned int size, unsigned int period) {

Lock <Mutex> Tock (sharedbata);

it ((size = 0) || (size > M) {
return -

} else if (perlud < 1000) {
return

}else if (ge(QueueFrumPrucessId(prucessld)‘ -1) {//Check that no other queues exist fo the process
return

int index = getFirstFreequeus();
1f (index < 6) {
return -3;

initQueue((unsigned int) index, processId, threadld. deviceld, size. peried);
1f(smartSensingThread!=NULL){

smartSensingThread- swakeup ();

smartSensingThread=NULL;

¥
return 0;

o
* @brief readouene

* Retrive data from a conpleted read

* @paran processId id of the process which own the queue

* @paran data pointer to the place vhere the reads will be stored

* @return -1 if an error occourred, number of sample written otherwise
§ the error can occour iF the process hasn't 3 queus or if the queue
* hasn't been completely filled yet

* In every case the process queue is resetted

*/

int readQueue(pid_t processId, unsigned shortt data) {
Lock<tutex> Lock(sharedData);
int i=getQueueFronProcessId (processId):

ffqueuc 5] rensiring1-0)(
resetQueue (i) ;
return —l,

¥

ursigned St ritingsize = queueld) . size;
for (unsigned int j = 0; j < writingSize: jo+) {
datalj] = queuzlil.dataljl;

resetqueue (i);
return writingSize;

Figure 14: setQueue and readQueue methods

3.3 Kernel daemon

Can be invoked either during boot phase or when the kernel is active
@paran time time in milliseconds. ALl the reads which are before it

It has the task of performing reads which can occour when
the kernel is active.

It is simply composed of a thread (Figure 15) which de-
lays itself on the next acquisition time, performs the read
and so on. If there are no active jobs it just wait until a new
one is created.

It’s interesting to note the peculiar usage of C++ RAII de-
sign pattern in the lock and unlock mechanisms: a mu-
tex lock (or unlock) is associated to an object. When it
goes out of scope, the mutex is automatically unlocked (or
locked); otherwise i.e. the lack of a mutex lock after the
unlock at line 453 appears wrong. This usage is encour-
aged by the Miosix design.

e
* gbrief getDaemonSleepTime

Retrive the time the kernel daemon must wait before performing a read
It's supposed to be invoked only if the kernel is active

@return time in milliseconds before the next read

bt

unsigned int getDaemonSleepTime () const{

1 long nextRead = (long long)getNextEvent (getTick(),0):
long long currentTime = getTick();
if(nextRead & (nextRead-currentTime>0)){

return nextRead-currentTime;

i
return 0;
1
JEE
* @brief innerThread
* This method implements the kernel daemon loop
It's supposed to be invoked only if the kernel is active
b4
void innerThread(){
Lock<Mutex= lock (sharedData):
for(i:){
updateQueue (getTick());
wakeCompletedProcess();
if(getNextEvent(getTick (),0)==0){
smartSensingThread=Thread: :getCurrentThread();
{
Unlock<Mutex= unlock (sharedData);
Thread: :wait()
5)
)
unsigned int sleepTime=getDaemonSleepTime();
1f(sleepTime=0){
Unlock<Mutex> unlock (sharedData):
Thread::sleep(sleepTime):
}
}

Figure 15: kernel daemon thread

3.4 System integration

In this subsection we discuss the system integration from
the smart sensing module point of view. We defer to the
next section the description of how the whole system inter-
act with the module.

Basically it’s composed by the methods onBoot and on-
Suspend (Figure 16).

The onBoot method is executed before that the system is
fully started. It has the task of perform the required reads
and either continue the boot process if a full start is re-
quired (or is the first boot of the board) or reschedule the
next wakeup and suspend the board.

The onSuspend method instead deals with the definition of
the next wake up time that must include the ones required
for the scheduled reads.

Jex
* gbrief onBoot
* Hook of the boot process
*
oid onBoot() {
if (firstBoot()) {
init();

else
#ifdef CHECK_CANARY
1f (status->canary ! =CANARY) {
errortandler (UNEXPECTED) ;

162 gendif|
updatequeue (getTick()):
| debugInt (gethextSecond(getTick (), status->nextSystenRestart¥1000));
if ((completedTask) || (status->nextSystenRestart¥1060 <= (unsigned long Long)getTick())) {
status->nextSystenRestart=0;
IRQbootlog ("S5 Restart\rin®):
return;

T
else if (getNextEvent(getTick(),status->nextSystemRestart*1000) == 0) {
errortandler (UNEXPECTED) ;

else {
updateQueue (getTick ()+4500);//Mo problen
11 (compLetedTask) {
return;
T
/60 to sleep!
Suspendiianager: :suspend (getextSecond (getTick (), s tatus->nex tSystenRestart*1000));

&
¥

o
* @brief onSuspend

* Hook of the suspension process

* gparan resunTine time in seconds to be suspended
¥

void onSuspend (unsigned long long resumeTime) {
Lock<Mutex> lock(sharedData);
status->nextSystenRestart = resuneTime;
unsigned long long currentTime=getTick ();
upda teQueue (currentTine+500) ; //No problen
if(completedTask){

return;

rentTine, status-=nextSystenRestart¥1000));

Figure 16: onBoot and onSuspend methods

4 System integration

In this section is described how the new module is inte-
grated into Miosix, in particular in three phase: the boot,
the suspension and the process syscall.

4.1 Boot integration

The boot integration is performed by placing an hook in
the boot process of Miosix (Figure 17) just before that the
kernel is started with the call of onBoot, which has been
previosly presented, at line 134.

R
* \internal

Performs the part of initialization that must be done before the kernel is
* started, and starts the kernel.

* This function is called by the stage 1 boot which is architecture dependent.
*/

extern "C" void _init()

{

using namesy
if(areInters
IRQbspInit();

//hfter IRQbspInit() serial port is initialized, so we can use BOOTLOG
SMART_SENSING: :getSmartSensingInstance()-=onBoot();
IRQbootlog(getMiosixVersion());

IRgbootlog(*\rinStarting Kernel... ");

//Create the first thread, and start the scheduler.

Thread: :create(mainLoader, MATN_STACK_SIZE, MAIN_PRTORITY, NULL) ;
startkernel();

/#/Never reach here

e miosix;
ptsEnabled()) errorHandler (INTERRUPTS_ENABLED AT _BOOT):

i

Figure 17: _init procedure

Moreover has been modified the main procedure (Figure
18), called after the completion of the kernel boot process.
This has been done in order to start the daemon which per-
forms the reads occourring when the system is active. The
modifications are the addition of call to startKernelDae-
mon at lines 48 and 52.

int main()
1

Thread: :create (ledThread, STACK_MIN);
SuspendManager: :startHibernationDaemon();
iprintf("tick=S1luwn",getTick());

17 (firstBoot())

{

puts("First boot");
| SMART_SENSING: : getSmartSensingInstance ()->startkernelDaemon () ;
}else {
puts("RTC boot");
SuspendManager: : resume();
SMART_SENSING: :getSmartSensingInstance()-=startkernelDaemon();
int ec;
Process: :walt(&ec);
iprintf("Process terminatedin”);
1f (WIFEXITED (ec))
{

iprintf("Exit code is %d\n",WEXITSTATUS(ec)):
} else if (WIFSIGNALED(ec)) {
if (WTERMSIG(ec)==SIGSEGV) iprintf("Process segfaultedin”);

}

ElfProgram progl(reinter
ElfProgram prog2(reinter
for(int i=0;;i+)

{

st<const unsigned int*=(testl_elf).testl_elf_len);
steconst unsigned int*>(test2 elf),test2 elf _len):

getchar();

pid_t child=Process::create(progl);
Process::create(prog2);

int ec;

pid_t pid;

1f(i%2==0) pid=Process::wait(&ec);

else pid=Process::waitpid(child, &ec,0);
iprintf("Process %d terminated\n",pid):
1T (WIFEXITED(ec))

{

iprintf("Exit code is %d\n",WEXITSTATUS(ec)):
} else if (WIFSIGNALED(ec)) {
if (WTERMSIG(ec)==SIGSEGV) iprintf("Process segfaulted\n”);

Figure 18: main procedure

4.2 Suspension integration

This part is particularly important because it coordinates
the suspension manager of Miosix and our smart sensing
module.

The suspension manager has the task of keeping track of
which processes are active and if there are no active task it
can decide to put the system into suspesion.

It’s important to specify that at the moment all the pro-
cesses which are "suspension-ready" (the ones who are in
a state where can be useful to suspend the system) have an
associated resume time.

The only syscall that allows the system suspension is the
sleep one, mainly because it’s the only syscall during
which the system can really do nothing; while in all other
cases the process is waiting for something carried out by
another process/the operating system itself, which requres
the operating system being active (as we see later this
project have caused further modifications reagarding this
aspect).

So if there are no working processes and the suspension
manager decides to put the system into suspension (this
happens in order to avoid the suspension process overhead
when the time to be spent in suspension is too little) it saves
the status of all the processes into the MRAM/backup
SRAM and then the system is put into suspension.

This task is performed, in particular, by the hibernateDae-
mon procedure (Figure 19) which is run in a separate
thread.

More precisely the last part of it (which sets the suspen-
sion time and actually performs the suspension) has been
divided in the suspend method (Figure 20). In its stead has
been put a call to the onSuspend method (line 217), which
has been previosly discussed.

This has been done in order to allow the smart sensiong
module to change the suspension time.

In addition this was necessary because the suspend method
is called also by the onBoot method in smart sensing mod-
ule, which has the necessity of performing a new suspen-
sion after that some reads were carried out. In this special
case there is no need of saving the state (it hasn’t been al-
ready changed) while it’s useful to re-suspend the system.

he following thread function wait for all the processes to be suspended and
* Ihﬂn decide whether to hibernate or not.

vold Suspendvanager: : hibernateaenon (void*)

Lock<Mutex>1 (susphutex);

for(::)

{
hibernMaiting, vait(L);
syscallReturnTine . sort(conpareResuneTine);
list<SyscallResumeTime=: :iterator it
it=syscallReturnTine.begin();
//NOTE: the following if, as well as the upper and lover bunds,
/il be replaced by the policy, once refined
1f ((it->resuneTine-getTick ()/1000)<=hibernationThreshold) continue;

listsProcessStatus*> backupProc;
for(it=syscallReturnTime.begin();it!=syscallReturnTime.end();it++){
napspid_t,Process*=::iterator proc=Process::processes,find(it->pid);
ProcessStatus* procStatus;
if((proc!=Process::processes.end ())&&(proc->second->numActiveThreads==0)){
procStatus=new ProcessStatus (*(it->status));
backupProc . push_back (procstatus) ;
it-»status=procStatus;
13
i3

ProcessStatus* proc=getProcessesBackupAreaBase ()
iprintf("Svapping %d processes\n”,suspendedProcesses.size{));
T1steProcess*s::1terator findProc:

fol |(f1ndec —suspendedProcesses. begin();
ndProc!=suspendedProcesses.end (); findProc++)

(#findProc)->serialize (proc);
if ((*findProc) - >toBeSwappedOut)
{
//TOD0: optimize
Mran& nran=Hran: :instance();
nram, exitSleepHode () ;
/#/Copy the process image from RAM to MRAM
mram.write(reinterpret_cast<unsigned int>(
(+findProc)->inage . getProcessBasePointer())-
ProcessPool::instance(). getBaseAddress (),
(+findProc)->inage.getProcessBasePointer(),
(+findProc)->inage getProcessInagesize());
nran.enterSleepHode ()
//Mow serialize the state of the SRAM allocator
ProcessPool::instance().serialize (getBackupSrangase ()
//Mov serialize the state of the backup SRAM allocator
(*(getBackupSranBase ()+
getAllocatorSramAreaSize () /sizeof (int)))=
suspendedProcesses.size();
T
proc+:

for (st oProcessstatust>: terator St-backupProc.begin();it!-backupPrac.end), 1t1)¢
delet

1 ;MARLSENSING: 1getSnartSensingInstance () ->onSuspend (syscallReturnTine, begin () ->resuneTine) ;
Figure 19: hibernateDaemon procedure

void SuspendManager::suspend(unsigned long long resumeTime) {
long long prev = getTick():
int sleepTime = resumeTime - prev / 1000;
getBackupSramBase () [1021] = prev & Oxffffffff; //FIXME: hack
getBackupSramBase () [1022] = prev => 32;
getBackupSramBase () [1023] = sleepTime;
doSuspend (sleepTime);

Figure 20: suspend method

4.3 Syscall integration part 1

The project has the purpose of give an useful tool to the
processess. However in order to be utilized by them there
must be provided a way of communication between the
processes and the smart sensing module. This has been
first of all achieved by the usage of non-blocking syscalls:
one for schedule the reads, and one for retriving the data.
In order to make them work they must be spaced by a sleep
of the requried time.

This method has the advantage of having a simple imple-
mentation (the behaviour of the suspension manager has
not to be modified) and has been chosen to test the entire
module.

A more advanced implementation is presented in the next
subsection.

4.4 Syscall integration part 2

In this implementation all the work is performed by a sin-
gle syscall which is a blocking read.

This has required an additional effort because first of all
the smart sensing module has to wake up a process whose
required job has been completed. Then also the suspen-
sion manager logic has to be modified because there is a
new suspension-prone syscall which hasn’t a defined re-
sume time. In addition also the process manager has to
be modified because the new particular syscall has to be
resumed INSIDE the same syscall, while previously was
resumed at the first instruction of the process AFTER the
syscall. This last problem is caused by the peculiar way
in which the suspension is performed: during a suspension
ALL the kernel data is lost and only the processes ones
data (i.e. stack and registers) are saved.

To cope with this several modification has been made.

First of all has been added in the SuspendManager class a
new method, wakeUpProcess (Figure 21), which has the

task of wake up a process whose smart sensing operation
has finished.

oid Suspendmanaqer swakeUpProcess (pid_t prucessld){
id_t,Processt>: iterator findPro
Lot keruTons 1(susphutex);
for (115t<SyscallResuneTines iterator i-syscallReturnTine begin();1!=syscallReturnTine, end();it){
1-=pid==processTd){
findProc=Process: :processes. find (processId);
if (findProc!=Process: :processes.end ()){
iprintf("#) PID %i %i\n",processId,i->status->pid):
iprintf("T: %5U1i PID: %4i RESTART SS\n",getTick(),processId);
Process: icreate (i->status,i->threadhum, true);

1
syscallReturnTine. erase (i)
return;
1
¥
3

”
*The following thread create the threds of processes at the time they must be
* resumed
*
void SuspendManager: :wakeupDaenon (void*)
{
map<pid_t,Process®>:iiterator findProc;
Lock<Mutex> 1(suspMutex);
while(syscallReturnTine. empty ()==false)
{

SyscallResuneTine ret=syscallReturnTine. front();
17 (ret. resuneTine<=getTick () /1060)

findProc=Process: :processes, find (ret. pid);

s#check if the process is already alive...it could happen that
//the main thread has already been spawned and is also terminated
7/s0 other threads waiting to be resumed nust be not be created.
7/In any case, at the end of the cycle, the process must be
s/erased fron the syscallReturnTime list
1f (findProc|=Process: :processes.end ()){

//FIXVE: This causes exception

iprintf(*T: &SL11 PID: %41 RESTART GENERIC\r\n‘,getTick(),ret.pid);
N Process: :create (ret, status, ret, threadiun) ;
syscanneturmme pop_front();
1 ng long resumeTine=ret. resuneTine;

UnlockeMutex> u(l);

int curreniTime=resumeTine-getTick()/1000;

1 (currentTine>0){

sleep(currentTine) ;
T

i
¥

Figure 21: wakeUpProcess and wakeupDaemon methods

Then the process manager of Miosix has been modified in
order to perform a two part syscall.

First has been added a variable to the Process class which
keep track of a pending syscall related to the process. The
method create in the class Process (Figure 22) has been
modified by adding the variable pendingOperation, which
if it’s true, it means that a smart sensing read syscall is
pending.

120 pid_t Process::create(ProcessStatus* status, int threadId, bool pendingOperation)
i

LockeMutex> 1(SuspendManager: :suspMutex);

map<pid_t,Process*>::iterator findProc;

findProc=processes. find (status-=pid):

if(findProc==processes.end())
throw runtime_error("Unable to recreate the process after hibernation'):
Process* proc=findProc->second;

proc-=pendingOperation = pendingOperation);
proc->image. resume (status);

//T0D0: look at it -- begin

#ifndef _ CODE_IN_XRAM

//FIXME = begin

//Till a flash file system that ensures proper alignment of the programs

//loaded in flash is implemented, make the whole flash wisible as a big MPU

//region

extern unsigned int _etext asn("_etext");

unsigned int flashEnd=reintery st<unsigned int>(& etext);

if(flashEnd & (flashEnd-1)) flashEnd=1<<fhbs(flashEnd);

proc-=npu=miosix_private::MPUConfiguration (@, flashEnd,

proc->image. getPrucessBaseFumter() proc->image.getProcessInageSize()):

/" mpu=miosix_private::MPUConfiguration(progran.getElfBase (), roundedSize,
/ image.getProcessBasePointer(),image. getProcessImageSize());

J/FLXME -- end

#else //_ CODE_TN_XRAM

loadedProgran=ProcessPool: :instance().allocate (roundedSize);

nemcpy {loadedProgran, program. getElfBase (), elfsize):

mpu=niosix_private::MPUConfiguration(loadedProgram, roundedSize,

image.getProcessBasePointer(),image.getProcessInageSize());
#endif //_ CODE_IN_XRAM
//T000: look at it -- end

Thread *thr=Thread::createUserspace(Process: start,
status-=interruptionPoints[threadId].registers,
Thread: : DEFAULT, proc) ;
proc->toBeSwappedOut=trus;

1f(thr==0)
{

Lock<Mutex> 1(procMutex);
processes.erase (proc->pid);
1f(Thread: :getCurrentThread () ->proc!=0)

Thread: :getCurrentThread()-=proc->childs. remove (proc);
kernelchilds. remove (proc):

roc;
runtime_error("Thread recreation failed");

//Cannot throw bad_alloc due to the reserve in Process's constructor.
//This ensures we will never be in the uncomfortable situation where a
//thread has already been created but there's no memory to list it
//among the threads of a process

proc->threads. push_back (thr);

proc-=numActiveThreads++;

thr-=wakeup (); //Hctually start the thread. now that everything is set up
pid_t result=proc->pid;

return result;

Figure 22: create method

This variable is used in the start method of Process class
(Figure 23), which is used to complete the syscall be-
fore continuing the execution of the process, with the
method completeSmartSensingOperation that simply copy
the reads into the memory of the process and set as return
value the number of bytes read (as the standard POSIX
read requires).

voild Process::completesmartSensingOperation(miosix_private::SyscallParameters &sp){
sp.setReturnValue (niosix:: SMART SENSING: :getSmartSensingTnstance()->readQueue(pid,
reinterpret_casteshort unsigned int*>(sp.getSecondParameter()))):

}
void *Process:istart(void *argy)
{

Process *proc=Thread: :getCurrentThread()->proc;

if (proc==0) errortandler (UNEXPECTED);

unsigned int entry=proc->program-=getEntryPoint();

#ifdef _ CODE

entry=entr ret_cast<unsi
reinte <unsigned int;

#endif //__CODE_IN_XRAM

if (proc->suspended==false)
Thread: : setupUserspaceContext (entry, proc->inage, getProcessBasePointer(),

proc-=image. getProcessImageSize());

d int>(proc->program->getElfBase ())+
roc->loadedProgran) ;

else

iflargv){
17 (proc->pendingOperation){
iprintf("RESTART\n");
miosix_private::SyscallParameters sp(reinterpret_casteunsigned int*s(argu));
proc->conpleteSnartSensingOperation(sp);

}
Thread: : resunelUserspaceContext (reinterpret _casteunsigned int*>(argv)):

else
errorHandler (UNEXPECTED) ;
//in the following block the process is removed from the list of the
//suspended processes, after hibernation
{

Lock<Mutex> 1(SuspendManager: ;suspMutex);
proc-=suspended=false;
P ger::

ocesses. remove (proc);

1

bool running=true;
do {

Figure 23: completeSmartSensingOperation and part of
start methods

The core of the syscall is presented at Figure 24. Here
we can notice a swith over the possible syscall, where the
interesting part is the read one (with id equal to 4).

The code first of all check the value of the file description.
If it’s equal to 4 it’s interpreted as 5 reads from the poten-
tiometer spaced by 1 second each.

This trick has been used because the filesystem managent
is beyond the scope of this project and this has been a
rapid way for testing the smart sensing mechanism. We
can imagine that the information of device id, number of
reads and period can be memorized in some data structures
by a modified open syscall and then utilized here.

So the smart sensing operation is set and at line 567 is sig-
naled to the suspension manager that the process can en-
ter to suspension. Here is used another trick to mantain
as much as possible the compatibility with the suspension
manager: the smart sensing read is treated like a sleep of a
very long interval.

The rest of the syscall (line 568-569) wait and complete
the syscall in the case that all the smart sensing operation
is performed without putting the system in suspension. In
this case the thread of the process is woken up by the smart
sensing class when the job is finished. The whole mecha-
nism works because in case of suspension all the kernel
data is lost and so both the process thread status and the
thread id inside the SmartSensing class.

The last addition is in line 598, which calls the method
cleanUp in the smart sensing module when the process is
being destroyed. This is necessary to eventually free the
queues of the process inside the SmartSensing class.

switch(sp . getsyscallld())

case 2
running=false
Proc- rexi Caden (sp. getFi rstParaeter() § Oxff)<<s;
breaki

sp setReturnialue (vrite (sp getFirstiarancter ().
reinterpret_cast<const chart>(sp.getSecondparaneter()),
o getThirdraranater 0));
break;
e 4
//STUB: ONLY FOR TESTING
¥ (sp. getFirstParanster()==d){
nsigned int size = sp.getThirdParaneter()/sizeof (unsigned short int);
47 (niosix:: SHART_SENSING: :getSnart SensingInstance) ->setQueue (proc->pid, Thread: : getCurrentThread (),
POTENTTOMETER. 1D, size, 1000) <0){
sp. setReturnvalue (-1);
break;

Suspendianager ; ente rInterruptionPoint (proc , threadID, BIG_TINE,S, -1);
Thread : :getCurrentThread () ->wait ()
proc->conpletesnartsensingoperation(sp);

break;

JJFIXVE: check that the pointer belongs to the process

sp-setReturnialue (read (sp, getrirstearaneter),
eint: >(sp.getsecondparaneter()),
sp ge(Th)rdParame(er()))
brask;

e qeteirstparaneter()>-1000000)
Suspendiianager: enteInterruptionPolnt (proc, thrado,
p.getFirstParaneter ()/1
0. setRetumialue uslesp (sp. GHiirstParaneter s

ot
running=fal

prac-nexi Cade=s1GSYS; //Bad syscall

#1fdef WITH_ERRLOG

iprintf(*Unexpected syscall nunber %d\n",sp.getSyscallld ());
#endif //WITH ERRLOG

break;

3

¥
if(Thread: :testTerninate()) running=false;
3 vhile (running);

Lockeuter> 1 (prochutex);
ING: : getSnartSensingInstance () - >cleanUp (proc->pid);
prwc e Seambitciros;
list<Process>: siterator it;
forit-prac-ochilds begin();ittoproc-schilds end() i) (1it)-sppid-0;
for (1t=proc->zonbies begin(); it! -proc->zombies.end ();++it) (¥it)->ppid=0;
Kernelchi s, splice (kernelChilds begin 1, proc.schi Lds)
kernelzonbies splice (kernelZonbies. beqin(),proc- Shoteis);

Figure 24: extract from start method

In summary we recap the whole syscall mechanism which
is quite complex due to the various suspension call. This
can be summed up with the following steps:

1. The process invoke a smart sensing read syscall.

2. The syscall manager inside the kernel sets up the
smart sensing operation, signals to the suspension
module the possibility of a suspension and waits.

3. If the operation is completed without any suspen-
sion the process wakes up and the syscall returns
normally, otherwise a suspension is performed.

4. The system can be started and suspended several
times. The last one the smart sensing module calls
the wakeUpProcess in the SuspendManager class di-
rectly if the read occours when the kernel is already
started or when the smart sensing daemon is started
if the last read happens before the boot process.

5. The wakeUpProcess wake up the corresponding pro-
cess with the flag of the pending syscall set.

6. The start method in the Process class detects the
pending syscall, completes it and return the control
to the process.

7. The process continues its execution as nothing were
happened between.

S Testing

For the testing of the project were used two programs.
The first (Figure 25) performs a series of a smart sensing
acquisition composed of 5 reads spaced by 1 second and 3
seconds of active wait (it’s like a sleep but it doesn’t allow
the system going into suspension).
void printData(unsigned short* data,unsigned int Ten){

unsigned int 1i;

char text[]={"Read 1:"};

for{i=0;i<len;i+){

write(l,text,mystrien{text});
debugHex/(datalil);

}
(I .
int main()
{
static const char strl]="Test 1\n";
static const char str2[]="Unexpected commandin";
for(i:)
{
char result[100];
unsigned short datall00];
write(l,str.mystrlenistr));
write(l,str.mystrilenistri);
int l=read(4,data,10);
char text[]={"Test 1n"};
write(l, text,mystrlen(text));
printData(data,1);
imgs i
for(i=0;1<3000; i++){
waitl():
}
usleep (4000000);
}
}

Figure 25: code of the first testing program

The second one (Figure 26) instead performs just a series
of smart sensing acquisition again of 5 reads spaced by 1
second.

void printData(unsigned short* data,unsigned int Tlen){
unsigned int 1i;
char text[]={"Read 2:"};
for{i=0;i<len;i++){
write(l, text.mystrlen(text));
debugHex (datal1]):

}
int main()
static const char str[]="Test 2\n";
static const char str2[]="Unexpected commandin";
for(;;)
{
char result[100];
unsigned short datalloo];
write(l,str.mystrien(str));
write(l,str.mystrien(str));
int l=read(4,data,10};
char text[]={"Test 2\n"};
write(l, text.mystrlen(text]):
printData(data,l);
}
}

Figure 26: code of the second testing program

The resulting log correctly outlines the alternation of smart
sensing reads and system activations; also the kernel dae-
mon part behaves correctly and the values read from the
potentiometer were correct.

References

[1] Wolfgang Wieser. Programming STM32 F2, F4 ARMs
under Linux: A Tutorial from Scratch, 2012.

[2] Trevor Martin. The Insider’s Guide To The STM32
ARM Based Microcontroller - 2nd Edition. 2009.

[3] ST Microelectronics. STM3220G-EVAL evaluation
board user manual (UM1057), 2012.

[4] ST Microelectronics. STM32F2xx reference manual
(RM0033), 2011.

[5

—_

ST Microelectronics. STM32F2xx programming man-
ual (PM0056), 2011.

[6] Federico Terraneo. Control based design of OS com-
ponents, 2011.

