Android project

Android — My delicious bookmark

Get familiar with Android SDK and develop an
innovative application to demonstrate the

strength points of this new mobile platform.

Pham Tien Thanh (736554)
5/27/2009

Table of contents

O =Y /[T 3
I VAV P 3= g Vo [(o1 o RPN 3
A AN o 1o [goY o I 1 o] a1 (<10 (0 | =TT 4

1. Application Structure..........cccoceeeeeeieeiiiiicceeeeee, 8
N o] o] [Tor= 1 AT g I @Fe] aa] 0 0] o 1=1 o | K- 9
2. INtENE AETINITION. ... 12
3. The AndroidManifest file......coouueiiiiie e 14
4. Process and thead in ANAIOid...........uviiiiiiiiiiiiee e 15

[11. “My Delicious” project......ccccccceeeeiiiiiiiiiiininennenn, 21
1. Delicious BOOKMArk WED SEIVICEoovuuniiiiiieiiiiie e 21
2. PrOJECt FEQUITEMENT. .. .uueiiiieeeceeeeeee eeeeaeeeeeeaeeeaaaaaaaaaaaaens 22
3. Project implementation.........cccceeeeieiiieiieeeeeee 22

IV. CONCIUSION ... 41

V. REIEIENCES. ... et e e e e 42

VI. Tableof figure.....coooeiiii, 42

Page 2 of 42

Overview

. What is android

Android is a software stack for mobile device that includes an operating
system, middleware and applications. Android is powered by Linux kernel,
initially developed by Google and later the Open Handset Alliance. It allows
developers to write managed code in java language, controlling the device via
Google developed java library.

Not like other famous rivals such as Microsoft window mobile or Symbian
OS, android use developed java library because java is not just a programming
language; it’s a complete dynamic platform offers powerful support for
embedded devices that must maintain some form of dynamic behavior.
Moreover, java runtime environment can be integrated into almost any
embedded device while java virtual machine includes interfaces that allow it to
be readily integrated with RTOS and other native library. The RTOS supports
multi-thread (scheduling), memory management, net working, and peripheral

management for java VM.

Java Application

Java Class

A 4

Java Virtual Machine

!

Real-time Operation System (RTOS)

Hardware

Figure 1: General architecture of java platform on embedded device

Page 3 of 42

2. Android architecture:
The figure below shows the Android’s general architecture:

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content

\ctivity Manage }
Activity Manager Manager Providers

Telephony Resource Locaton Matification

i eib Manager Manager Manager Manager

LIBRARIES ANDRDID RUNTIME

Surface Manager Media SQLite Core Libraries

Framework
E5 w 5%!!!

OpenGL | ES FreeType WebKit Machine

SGL libe

LiNuxXx KERMNEL

Display

Flash Memory Binder (IPC)
Driver

Camera Driver : !
b 2 i Driver Driver

Audio Power

Keypad Driver WViFi Driver ;
=P = d = Drivers Management

Figure 2: Android architecture

» Application layer: Android provides a lot of applications which
come with its release including an email client, SMS program,
calendar, maps, browser, contacts, and others. All applications are
written using the Java programming language. Moreover, the
number of developers who interested in developing Android’s
application is increasing and provides a huge market of
application to chose.

» An application framework layer enabling reuse and replacement
of components. Not like Window mobile which restricts developer
from system API, developers have full access to the same
framework APIs used by the core’s applications. The strength
points of Android is that the application architecture is designed
for reusing of components which means any application can

Page 4 of 42

publish its capabilities and any other application may the make

use of those capabilities base on the definition of Intent which will

be described later. Android provide a set of services and system,

including:

® Views: is a flexible definition. It can be a list, a grid, text box,
button or even an embedded web browser. View in Android is
very different from the definition of “view” in Symbian OS or
Window mobile which often means the container in which
graphic components are organized and displayed to user.

® Content provider: store and retrieve data and make it
accessible to all applications. They're the only way to share
data across applications; there's no common storage area that

all Android packages can access.

® Resource manager: Resources are external files (that is,
non-code files such as image, icon, and string for
internationalization) that are used by developer’s code and
compiled into their application at build time. Android
supports a number of different kinds of resource files,
including XML, PNG, and JPEG files. The XML files have
very different formats depending on what they describe.
Resources are externalized from source code, and XML files
are compiled into a binary, fast loading format for efficiency
reasons. Strings likewise are compressed into a more efficient
storage form. All resource has its own id and will be added to
special interface file R.java automatically:

Page 5 of 42

/res Folder R.java

¥ (=res

¥ (= drawable " This ol - generated by t
. * oo a1 from the re e data ound . 1
& icon.png ADT generates L routd ot be mediFicd by bond

¥ [~ layout con telekom.androld. tests;

X usernamepassword.xml

¥ (= values .
Toz02ed;

X strings.xml
o) 7 FOSHA;
@ B50904;
T 71850002;
Q ES?;E"';
A ase000
(=]
a - namepassaa - d-BP O340
: &
Android Package 2

] com.telekom.android.tests.ap
AndroidManifest.xml

classes.dex .
v s Resolved atrantime | ©00€ referrlng to resources
v [drawable public void onCreate(Bundle icicle) {

icon.png super.onCreate(icicle);
¥ L layout setContentView(R. layout. usernamepassword);

usernamepassword.xml }
resources.arsc

Figure 3: Resource management

® Notification manager that enables all application to display
custom alerts in the status bar notify user of what happen in
the back ground.
® Activity manager: manages the lifecycle of application and
provide common navigation back stack. An activity focuses
on what user can do by interact with user. Activity will for
example create a window and place Ul component to be
displayed to user. There are two important methods which are
implemented by most subclass is
<> OnCreate(Bundle) : where we initialize our activity,
setup layout or get handle of each Ul defined
components.
< OnPause(): where we deal with the event when user
leaving our activity
» Libraries: They are all written in C/C++ internally, but youll be
calling them through Java interfaces. These capabilities are
exposed to developers through the Android application framework.
Some of core libraries are:
< System C library - a BSD-derived implementation of the
standard C system library (libc), tuned for embedded
Linux-based devices

Page 6 of 42

<> Media Libraries - based on PacketVideo's OpenCORE;
the libraries support playback and recording of many
popular audio and video formats, as well as static image
files, including MPEG4, H.264, MP3, AAC, AMR, JPG,
and PNG

<~ Surface Manager - manages access to the display
subsystem and seamlessly composites 2D and 3D graphic
layers from multiple applications

< LibWebCore - a modern web browser engine which
powers both the Android browser and an embeddable
web view

<> SGL - the underlying 2D graphics engine

<> 3D libraries - an implementation based on OpenGL ES
1.0 APIs; the libraries use either hardware 3D
acceleration (where available) or the included, highly
optimized 3D software rasterizer

< FreeType - bitmap and vector font rendering

<~ SQLite - a powerful and lightweight relational database
engine available to all applications

» Android Runtime: A set of core libraries provides most the
functionality available in the core library of java programming
language. Android runtime includes the Dalvik Virtual Machine.
Dalvik runs dex files, which are coverted at compile time from
standard class and jar files. Dex files are more compact and
efficient than class files, an important consideration for the
limited memory and battery powered devices that Android targets.
The core Java libraries are also part of the Android runtime. They
are written in Java, as is everything above this layer. Here,
Android provides a substantial set of the Java 5 Standard Edition
packages, including Collections, I/0, and so forth.

» Dalvik Virtual Machine which is optimized for mobile devices.
Dalvik is a major piece of Google’s Android, runs Java platform
applications which have been converted into a compact Dalvik
Excutable format suitable for systems that are constrained in

Page 7 of 42

terms of memory and processor speed. Unlike most virtual
machines an true java virtual machine which are stack machines,
Dalvik VM is a register based architecture. Like the CISC vs.
RISC debate, the relative merits of these two approaches is a
subject of continuous argument but the underlying technology
sometimes blurs the ideological boundaries. Moreover, the
relative advantages of the two approaches depend on the
interpretation/compilation strategy chosen. Generally, however,
stack based machines must use instructions to load data on the
stack and manipulate that data and thus require more instructions
than register machines to implement the same high level code.
However, the instructions in a register machine must encode the
source and destination registers and therefore tend to be larger.
This difference is primarily of importance to VM interpreters
for whom opcode dispatch tends to be expensive and other factors
are relevant for JIT compilation. Being optimized for low memory
requirements, Dalvik VM use less space, has no JIT compiler and
uses its own byte code, not java byte code.

» Linux Kernel: Starting at the bottom is the Linux kernel. Android
uses it for its device drivers, memory management, process
management and networking. How ever we will never be
programming to this layer directly. Android relies on Linux kernel
version 2.6 for core system services. The kernel also acts as an
abstraction layer between the hardware and the rest of the
software stack.

One of the unique and powerful qualities of Android is that all
applications have a level playing field which means that the applications
Google writes have to go through the same public API that we use. We can
even tell Android to make our application replace the standard applications.

Application structure

An android application is developed using Java language. After being
compiled it will be packaged into Android Package (.apk) format which then can
be deployed on to mobile device. Each Android application has its own process

and Java virtual machine that mean application code runs in isolation from the

Page 8 of 42

code of all other applications. Each application is assigned a unique Linux user
ID. Permissions are set so that application’s files are visible only to that user, to
the application itself and there are other ways to export them to other

application (through Content Provider).

. Application Components

An Android application can make use of elements come from other
application if it is permitted to do so. Because of this, system must be able to
start an application process when any part of it is needed, and instantiate the
java object for that part. There for an application here does not have a single
entry point rather, they have essential components that system can instantiate
and run as needed.

a. Activity: An activity work like “view” definition in window mobile which
presents a visual interface to user. Each activity is independent, developer
create his/her own activity by subclassing Activity base class. An
application consists at least one activity which is presented to the user when
application is launched. We can move from one activity to another by
calling method startActivity() or startActivityForResult() from current
activity. Activity work like a container and can make use of window which
fill the screen or might be smaller than the screen and float on top of other
windows like pop-up dialog. Developer often start with the call to method

@verride

public void onCreate (Bundle savedInstanceState) {}
Where the visual content of views — objects are provided. View objects are
derived from View class and each controls a particular retangular space
within window. Developer can create View object from code or in much
easier way using xml file which describes the hierachical organization of
window. Parente views contain and organize the layout of their children.
Views at leaf draw in their retangle and response to user actions directed at
that space. A view hierachy is placed with in an activity’s window by the
Activity.setContentView() method. The code below show normal work
done by Activity when startup:

Page 9 of 42

@verride
protected void onCreate (Bundle savedInstanceState) {
super. onCreate (saved|nstanceState) ;
//Content from XML file
setContentView(R. layout. login) ;
//Get references to view object
(EditText) findViewByld(R. id. edit_username) ;
(EditText) findViewByld(R. id. edit_password) ;

mEditUsername

mEditPassword

b. Services: A service does not have a visual user interface and runs in the
background for indefinite period of time. A service play in role such are
fetching data over the network or calculate something and provide the
result the result to activities that need it. Each service extends the Service
base class. Service run in the main thread of the application process, to
avoid blocking other components or the user interface they often spawn
another thread for time-consuming task. Android provide Handler class to
handle message exchange between thread and not interfear other GUI
thread.

c. Broadcast receiver: is a component that listening and react to broadcast
announcements such as timezone has changed, battery is low, a coming
call.etc..Application can also broadcasts an event to let other applications.
This component do not display to user but they can start another event or
use NotificationManager to alert the user. Developers can implement
broadcast receiver by subclassing BroadcastReceiver base class.

d. Content provider: the onlyway to communicate between application by
make a specific set of application’s data available to others. These data is
store in persistence sense by provider side (the one subclass
ContentProvider base class). ContentProvider provide an interface with
methods to store and retrieve data which then can be used by consumer.
Consumers are subclasses of ContentResolver base class which takk to any
content provider. ContentResolver cooperates with the provider to manage
any interprocess communication that’s involved.

Page 10 of 42

Whenever there's a request that should be handled by a particular
component, Android makes sure that the application process of the component
IS running, starting it if necessary, and that an appropriate instance of the
component is available, creating the instance if necessary. A content provider is
active only while it's responding to a request from a ContentResolver. And a
broadcast receiver is active only while it's responding to a broadcast message.
So there's no need to explicitly shut down these components. Activities, on the
other hand, provide the user interface. They're in a long-running conversation
with the user and may remain active, even when idle, as long as the
conversation continues. Similarly, services may also remain running for a long
time. So Android has methods to shut down activities and services in an orderly
way:

+ An activity can be shut down by calling its finish() method. One
activity can shut down another activity (one it started with
startActivityForResult()) by calling finishActivity().

+ A service can be stopped by calling its stopSelf() method, or by
calling Context.stopService().

Page 11 of 42

2.

mButtonLogin. setOnClickListener (new View. OnClickListener O {
public void onClick (View v) {
String username =
DeliciousActivityUtil. getText (mEditUsername) ;
String password =
DeliciousActivityUtil. getText (mEditPassword) ;
try {
// Test connect by calling getLastUpdate
MyDelicious myDelicious = new MyDelicious (username
password) ;
myDel icious. getLastUpdate () ;
Intent data = new Intent();
data. putExtra (Del iciousConstants. EXTRA_USERNAME
username) ;
data. putExtra (Del iciousConstants. EXTRA_PASSWORD,
password) ;
setResult (RESULT_OK, data);
//Terminate this activity
finish();

} catch (DeliciousExceptions exceptions) {}

Components might also be shut down by the system when they are no
longer being used or when Android must reclaim memory for more active
components.

Intent definition

Activities, services and broadcast receiver are activated by asynchronous
messages which Android call “Intent”s. Intent is an object that holds the content
of the message. There are some pre-defined Intent for system message like
Intent. ACTION_INSERT, Intent. ACTION_SEND...For activities and services,
it names the action being requested and specifies the URI of the data to act on,
among other things. For broadcast receivers, the Intent object names the action
being announced. There are separate methods for activiating each type of
component:

Page 12 of 42

> To activate an activity we by pass an Intent object to method
startActivity() or startActivityForResult(). Intent can contain a lot of
type of data: Boolean, String, Serializable Object..etc..in Extra part
Activated activity can get back Intent message by using getintent()
method and extract sent data by using coresponding getExtra() method .
Snip code below show some example which is used in project.

//New message
Intent intent = new Intent(DeliciousSearchView. this
DeliciousListView. class) ;

//Put message’s data

intent. putExtra (DeliciousConstants. EXTRA_TIMEOUT_POST
timeOutCriteria) ;

intent. putExtra (Del iciousConstants. EXTRA_COUNT_POST
postCountCriteria) ;

intent. putExtra (Del iciousConstants. EXTRA_GETRECENT_POST
getRecentPost) ;

//Start new Activity by this intent

startActivity (intent) ;

// In activated activity get back sent data

Intent data = this. getIntent();

post = (DeliciousPost)

data. getSerializableExtra(DeliciousConstants. EXTRA_POST_INFO) ;

One activity often starts the next one. If it expects a result back
from the activity it's starting, it calls startActivityForResult() instead
of startActivity(). The result is returned in an Intent object that's
passed to the calling activity's onActivityResult() method.

> A service is started (or new instructions are given to an ongoing
service) by passing an Intent object to Context.startService(). Android
calls the service's onStart() method and passes it the Intent object.
Similarly, an intent can be passed to Context.bindService() to establish

Page 13 of 42

an ongoing connection between the calling component and a target
service. The service receives the Intent object in an onBind() call. (If
the service is not already running, bindService() can optionally start it.)

> An application can initiate a broadcast by passing an Intent object to
methods like sendBroadCast(), sendOderedBroadCast(), and
sendSticktBroadCast of Context class in any of their variations.
Android delivers the intent to all interested broadcast receivers by
calling their onReceive() methods.

3. The AndroidManifest file:

AndroidManifest file is an XML file declare application’s components,
naming any libraries the application needs to be linked and identifying any
permission the application expected to be granted. Its name is fixed and is the same
for every application. This can be consider the configuration file of application. The
snip code below show part of XML file which is used by My Delicious project and we
can see the declaration of activities with corresponding class, Intent filter which

dedicate the component is going to receive the intent message..etc.

Page 14 of 42

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas. android. com/apk/res/android”
package="del. icio.us” android:versionCode="1" android:versionName="1.0.0">
<application android:icon="@drawable/icon” android: label="@string/app_name”>
<activity android:name=".delicious” android: label="@str ing/app_name”>
<intent—filter>
<action android:name="android. intent. action. MAIN” />
{category android:name="android. intent. category. LAUNCHER” />
{/intent-filter>

{/activity>

<activity android:name="del. icio.us. activities.DeliciousLogin”
android: label="@string/title_login”
android:theme="@android:style/Theme. Dialog”>

{/activity>

<activity android:name="del. icio.us.activities.DeliciousListView”
android: label="@string/title_list_view”>

{/activity>

<activity android:name="del. icio.us. activities.DeliciousSearchView”
android: label="@string/title_search_view”>

{/activity>

<activity android:name="del. icio.us. activities.DeliciousPostDetails”
android: label="@string/title_post_details”>

{/activity>

{/activity>
</application>
{uses-permission android:name="android. permission. INTERNET”></uses—permission>
</manifest>

4. Process and thead in Android
Android support multi-thread tasking allow developer to spawn additional

threads for any process.

Page 15 of 42

a. Process: The process where a component runs is controlled by the manifest
file. The component elements — <activity>, <service>, <receiver>, and
<provider> — each have a process attribute that can specify a process
where that component should run. These attributes can be set so that each
component runs in its own process, or so that some components share a
process while others do not. They can also be set so that components of
different applications run in the same process — provided that the
applications share the same Linux user ID and are signed by the same
authorities. The <application> element also has a process attribute, for
setting a default value that applies to all components.

All components are instantiated in the main thread of the specified
process, and system calls to the component are dispatched from that thread.
Separate threads are not created for each instance. Consequently, methods
that respond to those calls — methods that report user actions and the
lifecycle notifications always run in the main thread of the process. This
means that no component should perform long or blocking operations (such
as networking operations or computation loops) when called by the system,
since this will block any other components also in the process. You can
spawn separate threads for long operations.

Android may decide to shut down a process at some point, when
memory is low and required by other processes that are more immediately
serving the user. Application components running in the process are
consequently destroyed. A process is restarted for those components when
there's again work for them to do. When deciding which processes to
terminate, Android weighs their relative importance to the user. For
example, it more readily shuts down a process with activities that are no
longer visible on screen than a process with visible activities. The decision
whether to terminate a process, therefore, depends on the state of the
components running in that process.

b. Thread: There will be somtime developers need to spawn a thread to do
some background work. Thread are created in code using standard Java
Thread object. Android provides a number of convenience classes for
managing threads like Looper for running a message loop within a thread,
Handler for processing messages, and HandlerThread for setting up a

Page 16 of 42

thread with a message loop. For example in My Delicious project, many
time we need to perform network operation that takes long time to receive
data. Solution is to perform that kind of work in a different thread while
displaying a progress bar to user. Progress bar will be dimissed when
sub-thread complete:

//Define a handler for sub-thread
private Handler handler = new Handler O {
@verride
public void handleMessage (Message msg) {

progressDialog. dismiss() ;

progressDialog = ProgressDialog. show(this, “Connecting..”
Getting Information”, true, false);

//Start sub-thread work

Thread thread = new Thread(this);

thread. start () ;

@verride
public void run() {
//Heavy workload
list = myDelicious. getRecentPosts (username, password, count
tagCriteria, timeout);
//Notify sub—thread has complete its job
handler. sendEmptyMessage (0) ;

5. Activity lifecycle

Application components have a lifecycle — a beginning when Android
instantiates them to respond to intents through to an end when the instances are

Page 17 of 42

destroyed. In between, they may sometimes be active or inactive,or, in the case
of activities, visible to the user or invisible. Because Activity will be used most
oftenly here we only discusses about the lifecycle of activities including the
states that they can be in during their lifetimes, the methods that notify you of
transitions between states, and the effect of those states on the possibility that
the process hosting them might be terminated and the instances destroyed.

An activity has essentially three states:

> It is active or running when it is in the foreground of the screen (at the top
of the activity stack for the current task). This is the activity that is the
focus for the user's actions.

> It is paused if it has lost focus but is still visible to the user. A paused
activity is completely alive (it maintains all state and member information
and remains attached to the window manager), but can be killed by the
system in extreme low memory situations.

> It is stopped if it is completely obscured by another activity. It still retains
all state and member information. However, it is no longer visible to the
user so its window is hidden and it will often be killed by the system when
memory is needed elsewhere.

If an activity is paused or stopped, the system can drop it from
memory either by asking it to finish , or simply killing its process. When it is
displayed again to the user, it must be completely restarted and restored to its
previous state. As an activity transitions from state to state, it is notified of the
change by calls to the following protected methods:

+void onCreate (Bundle savedinstanceState)
+void onStart ()

+void onRestart ()

+void onResume ()

+void onPause ()

+void onStop ()

+void onDestroy ()

Page 18 of 42

All activities must implement onCreate() to do the initial setup when
the object is first instantiated. Many will also implement onPause() to commit
data changes and otherwise prepare to stop interacting with the user.

Taken together, these seven methods define the entire lifecycle of an
activity. There are three nested loops that you can monitor by implementing
them:

The entire lifetime : An activity does all its initial setup of "global” state in
onCreate(), and releases all remaining resources in onDestroy().

The visible lifetime : During this time, the user can see the activity on-screen,
though it may not be in the foreground and interacting with the user. Between
these two methods, you can maintain resources that are needed to show the
activity to the user. The onStart() and onStop() methods can be called multiple
times, as the activity alternates between being visible and hidden to the user.

The foreground lifetime During this time, the activity is in front of all other
activities on screen and is interacting with the user. An activity can frequently
transition between the resumed and paused states.

The following diagram illustrates these loops and the paths an activity
may take between states. The colored ovals are major states the activity can be
in. The square rectangles represent the callback methods you can implement to
perform operations when the activity transitions between states.

Page 19 of 42

- anCreate()
" User navigates | |

back to the
\acinly) onStart() anRestart()

Activity is " The activity |
running comes to the
_foreground |
"Another activity comes’
. in front of the activity
[The activity |
" Other applications | comes fo the
need memory onPause() __foreground |

—

{ The activity is no longer visible)

onStopl)

—T—

onDestroy()

e
(e)

When the system, rather than the user, shuts down an activity to conserve
memory, the user may expect to return to the activity and find it in its previous
state. To capture that state before the activity is killed, you can implement an
onSavelnstanceState() method for the activity. Android calls this method before
making the activity vulnerable to being destroyed — that is, before onPause() is

Page 20 of 42

called. It passes the method a Bundle object where you can record the dynamic
state of the activity as name-value pairs. When the activity is again started, the
Bundle is passed both to onCreate() and to a method that's called after onStart(),
onRestorelnstanceState(), so that either or both of them can recreate the captured

state.

[11. “My Delicious” project

1. Delicious Bookmark web service

Delicious or formerly call del.icio.us is a social bookmarking web service for

store, sharing and discovery web bookmarks. Delicious allows user to tag each

of their book marks with freely chosen index terms. All bookmarks posted to

Delicious are publicly viewable by default although users can mark specific

bookmarks as private and imported bookmarks are private by default.

Delicious web service allows client to read/write to their bookmarks and

tags via HTTP-based interface. All delicious APIs are done over https and

require basic authentication. These APIs is still under development and below

is display the list of APIs which are currently used :

Method Meaning

Post/update Check to see when a user last posted
an item.

Posts/add Add a new bookmark

Posts/get Get bookmark for a single date, or
fetch specific items

Posts/dates List dates on which bookmarks were
posted

Posts/recent Fetch recent bookmarks

Posts/all Fetch all bookmarks by date or index

range.

Posts/all?hashes

Fetch a change detection manifest of
all items

Posts/suggest Fetch popular, recommended and net
work tags for a specific url

Tags/get Fetch all tags

Tags/delete Delete a tag from all posts

Tags/rename Rename a tag on all posts

Page 21 of 42

Tags/bundle/all Fetch tag bundles
Tags/bundles/set Assign a set of tags to a bundle
Tags/bundles/delete Delete a tag bundle

Each API’s method structure details can be reference at official site of
Delicious https://api.del.icio.us/
2. Project requirement
Project goal is to develop an innovative application on Android SDK, |
decided to work on HttpClient library default goes with Android SDK which
make use of Del.icio.us web service’s interface allow user to work on his data:
v" Bookmark a website
v Search bookmark base on some criteria (url, date, tag) or recently
bookmarked site.
v' Get all bookmarked site
v' Edit specific bookmark
“My Delicious” application will provide a friendly and easy way to
Android’s users to control their Delicious bookmarks without using a web
browser. By this project I tried to demonstrate as much as possible strength
points which are provided by Android.
3. Project implementation
a. Apache HttpClient library
Http protocol seem to be the most significant protocol used on internet
today. Web services, network-enabled appiances and the growth of
computing continue to expand the role of HTTP protocol beyond
user-driven web browsers while increasing the number of applications that
require HTT supports. My Delicious will be such a kind of application be
cause it needs to work with webservice provided by Del.icio.us. Apache
HttpClient library is the best choice because by default it goes with Android
SDK. Although java.net package provides basic funtionalities for accessing
resources via HTTP, it does not provide the full flexibility or functionality
needed by many Application
HttpClient is not another browser but primary responsibility is the
HTTP protocol excuted directly or through an HTTP proxy to provide
interface and default implementation for cookie and password management
but not for persisting such data. HttpClient do not provide user interface
like browser but work like a core; rest functinalities of browser is our
program responsibility

Page 22 of 42

Cookie Manager

Password Mgr

HTTP

Proxy

Figure 4: HttpClient scope in relation with other browser’s component

To connect to a web service through a secured Http connection,
HttpClient instance needs to be configured and provided necessary
connection parameters (such as authentications’s username and password...).
The snipcode below show step by step to configure an HttpClient instance

to connect to Delicious web service :

Page 23 of 42

= = 0 & ~+ @0 Z

SchemeRegistry supportedSchemes = new SchemeRegistry() ;
// Register the “http” and “https” protocol schemes, they are
// required by the default operator to look up socket factories.
supportedSchemes. register (new Scheme (“http”, PlainSocketFactory
. getSocketFactory (), 80)):
supportedSchemes. register (new Scheme ("https”, SSLSocketFactory
. getSocketFactory (), 443));
// Prepare parameters

HttpParams params = new BasicHttpParams () ;

HttpProtocolParams. setVersion (params, HttpVersion. HTTP_1_1);
HttpProtocol|Params. setContentCharset (params, “UTF-87) ;
HttpProtoco|Params. setUseExpectContinue (params, true);
HttpProtocolParams. setUserAgent (params

DeliciousConstants. USER_AGENT_VALUE) ;

ClientConnectionManager ccm = new ThreadSafeC|ientConnManager (params

supportedSchemes) ;

httpClient = new DefaultHttpClient (ccm, params) ;

//Auto Proxy setting by JRE

ProxySelectorRoutePlanner routePlanner = new ProxySelectorRoutePlanner (

httpClient. getConnectionManager (). getSchemeRegistry (),

ProxySelector. getDefault()) ;

httpClient. setRoutePlanner (routePlanner) ;

// Retry handler

HttpRequestRetryHandler defaultHttpMethodRetryHandler = new

DefaultHttpRequestRetryHandler (0, false) ;

httpClient. setHttpRequestRetryHandler (defaultHttpMethodRetryHandler) ;

// Delicious username and password
httpClient. getCredentialsProvider (). setCredentials (SCOPE

new UsernamePasswordCredentials (username, password)) ;

b. My Delicious core
As described above, del.icio.us webservice expose a set of APIs which
allow user to work on their own bookmark data. These APIs are invoked
simple through secured HTTP protocol with basic authentication. For
example, by entering the url below to web browser we invoke an API to

Page 24 of 42

retreive all posted bookmark of a contact :

https://api.del.icio.us/v1l/posts/all

The result will be in XML format like below :

<posts user=""thanhpt_25" update="2009-05-26T08:15:33Z" tag=""" total="4">

<post href=http://www.youtube.com/

hash=""dfac2ac2f8102bbfbd4ef18a247d74cb" description="Youtube"
tag=""video" time=""2009-05-26T08:15:33Z" extended="My favourite"
meta=""077bb569a39b303b94344117ffa3cdbf"/>

</posts>

<l--

feO06.api.del.ac4.yahoo.net uncompressed/chunked Sat May 30 08:55:04 PDT

2009

-

My Delicious’s main engine is to compose correctly and send a
HttpRequest to webservice, receive the response from server and parsing
this XML data to display human friendly data to user. Formally, base on
request from user, application will compose an URI like above to invoke
corresponding APl and also pass necessary parameters on this URI. By
executing HttpClient.get() method, application connect to web service
based on configured parameters, invoke expected API and receive data
resonse from server. Status of request will be checked to see if request has
been successfully performed or not. Structured XML data then will be
parsed by the XML parser DocumentBuilder. The snipcode below show
corresponding process of above description :

Page 25 of 42

http://www.youtube.com/�

//New a Get request base on URI
HttpGet get = new HttpGet (String. valueOf (uri));

try {
//Get connection and retrieve data

httpResponse = httpClient. execute (get) ;

if (httpResponse != null) {

//process returned status from server

StatusLine status = httpResponse. getStatusLine() ;
int statusCode = status. getStatusCode () ;
checkNotAuthorized (statusCode) ;

J

if (statusCode != HttpStatus.SC_0K) {
throw new DeliciousExceptions ("Http response with status code: “ +
statusCode) ;

//process returned status from server
HttpEntity entity = httpResponse. getEntity () ;

InputStream inputStream = entity. getContent () ;

if (inputStream != null) {
//Process XML structured data

BufferedReader bufferedReader = new BufferedReader (
new InputStreamReader (inputStream, DeliciousUtils.UTF_8));
String input;
while ((input = bufferedReader.readLine()) != null) {
result. append (input). append DeliciousUtils. LINE_SEPARATOR) ;
}
entity. consumeContent () ;
Document document = documentBui lder. parse (new InputSource(
new StringReader (result. toString()))):
NodeList postsTag = document
. getElementsByTagName (DeliciousConstants. POSTS_TAG) ;
if (postsTag !'= null && postsTag. getLength() > 0) {
Node postsltem = postsTag. item(0);
String updateTime = postsltem. getAttributes (). getNamed|tem(
DeliciousConstants. UPDATE_ATTRIBUTE) . getNodeValue () ;
resultMetalnformation = DeliciousUtils. getDateFromUTCString (updateTime) ;
}

All others method of My Delicious’s core are implemented in the same

maner. For more information please refer to the code.
c. Graphical user interface

Main screen : Main screen allows user to choose application’s
functionality. This screen is implemented as an Activity. If refer to
AndroidManifest.xml file, we can find the definition which point out
that class delicious will be the entrance point of this application:

<activity android:name=".delicious”
android: |abel="@str ing/app_name”>
<intent-filter>
<action android:name="android. intent. action. MAIN" />
<category
android:name="android. intent. category. LAUNCHER” />
{/intent-filter>
{/activity>

In the implementation, when user click on button , a Intent
message will be send to activate corresponding Activity associate with

it. For example, activity which display login dialog will be invoke
when user click on buton “Login”:

/* When they click on the login button show the login screenk/
Button button = (Button) findViewByld(R. id. button_ login)
button. setOnClickListener (new View. OnClickListener () {

public void onClick (View v) {

Intent intent = new Intent(delicious. this
DeliciousLogin. class) ;

startActivityForResult (intent, VIEW_LOGIN_ID) ;

}

Page 27 of 42

] Tl @ 4:51pM

MyDelicious

Welcome to My Delicious
Android application

Search Posts

Add Bookmark

MENU

Figure 5: My Delicious’s main screen

Login screen:

Login screen allow user to enter credential data (username,
password) to use del.icio.us web service. These user name and
password must be registered their website because there is no API to do
this kind of stuff. Here we demonstrate the ability of Android when it
comes to display GUI components. A Dialog will be defined very much
alike to other activity but with different android predefined “Theme”

Page 28 of 42

<activity android:name="del. icio.us. activities.DeliciousLogin”
android: label="@string/title_login”
android:theme="@android:style/Theme.Dialog”>
{/activity>

Sign In

User name

thanhpt 25

Figure 6: My delicious’s Login screen
Del.iciou.us also do not have an API to do authentication but
instead authentication information is sent with each invocation of API
using Http’s basic authentication rather than session maintainence. To
confirm that the input information is correct, this application will
perform a trick, it will perform a light load task such as getting last
update time. If user name and password is correct then it will be stored

Page 29 of 42

and used in next transaction otherwise user will be notify about
unauthorized access.

mButtonLogin. setOnClickListener (new View. OnClickListener O {
public void onClick (View v) {
String username =
DeliciousActivityUtil. getText (mEditUsername) ;
String password =
DeliciousActivityUtil. getText (mEditPassword) ;
try {
// Test connect by calling getLastUpdate
MyDel icious myDelicious = new MyDelicious (username
password) ;
myDel icious. getLastUpdate () ;
Intent data = new Intent();
data. putExtra (Del iciousConstants. EXTRA_USERNAME
username) ;
data. putExtra (Del iciousConstants. EXTRA_PASSWORD,
password) ;
setResult (RESULT_OK, data) ;
finish();
} catch (DeliciousExceptions exceptions) {
Intent data = new Intent();
data. putExtra (Del iciousConstants. EXTRA_VIEW_DATA,
exceptions) ;
setResult (DeliciousConstants. RESULT_LOGIN_FAILED,
data) ;
finish();

b

Page 30 of 42

- Search screen:
Search screen allow user to search on variety of criteria:

v

AN NN

By tag

By URL

By Date

Get all posted bookmark or get recently posted
bookmark.

.Date Criteria
.Get all pots
. Get recent posts

Count limit
Time QOut

MENU

() A

Cr"—'\,"-

Figure 7 : My Delicious’s search screen

By this activity, we demonstrated the use of user interface
component, and how to use Layout to organize them to display to user.

Page 31 of 42

We also show example of how to use defined dialog designed by
Androids. The code below show how to display a DatePickerDialog:

private DatePickerDialog.OnDateSetListener
dateSetListener = new
DatePickerDialog.OnDateSetListener() {
public void onDateSet(DatePicker view,
int year, int monthOfYear,
int dayOfMonth) {
mYear = year;
mMonth = monthOfYear;
mDay = dayOfMonth;
GregorianCalendar date = new
GregorianCalendar();
date.set(mYear, mMonth, mDay);
dateSelect._setText(date.getTime().-
toString());

}:
@Ooverride
protected Dialog onCreateDialog(int id) {
switch (id) {
case DATE_DIALOG_ID:
return new DatePickerDialog(this,
dateSetListener, mYear, mMonth,
mDay) ;
}

return null;

//Call show dialog in our program
showDialog(DATE_DIALOG_ID);

Page 32 of 42

Ml @ 4:52pm

® sunday, May 31, 2009

MENU

Figure 8: Set Date criteria dialog
Network on mobile devices are heavy load task we should use
progress bar to tell user that application is not hang but in processing
state. This situation force us to use multi-thread one for performing
network task and other for displaying so that none of them interfered
each other but they should communicate with each other to
synchronize the process.

Page 33 of 42

! Eafl @ 4:52pPm

(® Connecting..

Getting Information

|-

MENU

Figure 9: Progress bar is displayed while retrieving information

The code below shows how to use Handler and Thread class to do
this stuff.

Page 34 of 42

//Define a system handler instance which tell GUI thread that working thread
//Has already finished.
private Handler handler = new Handler O {
@verride
public void handleMessage (Message msg) {
progressDialog. dismiss () ;
if ((list 1= null) && (list.size() !=0))
setContentView(createList (DeliciousListView. this)) ;
else {
new AlertDialog. Builder (DeliciousListView. this)
.setTitle("Result is empty”)
. setMessage (
“Search result is empty. Please try other criteria
or use [Search All]
option¥n”). setNeutralButton ("0k”
new Dialoglinterface.OnClickListener) {
public void onClick(Dialoglnterface dialog
int whichButton) {
}
}). show() ;

//Display progress bar and start working thread

progressDialog = ProgressDialog. show(this, “Connecting..”
“Getting Information”, true, false);

Thread thread = new Thread(this);

thread. start () ;

//Heavy load work stuff
@verride
public void run() {
list = myDelicious. getAlIPosts();
//Send synchronize message

handler. sendEmptyMessage (0) ;

Search result screen :

In search result screen, we tried to create a custom ListView
object to demonstrate the flexibility of Android in allowing developer
to extend default class. Here we can create and organize GUI
components dynamically through code which means do not use XML
resource layout xml file:

h Ml @ 4:52pPm

8:15:337 : Youtube

MEMNU

Figure 10: My Delicious search result screen

Page 36 of 42

For example, we can find the following code which defines the
each components and its configuration in search result screen:

private void createll () {

setColumnShrinkable (1, true);

setColumnStretchable(1, true):

setPadding (10, 10, 10, 10);

TableRow row = new TableRow (_context) ;

LayoutUtils. Layout. WidthFill_HeightWrap
.applyTablelLayoutParams (row) ;

/*Configure first line of row */

IbIName = new TextView(_context) :

LayoutUtils. Layout. WidthWrap_HeightWrap

.applyTableRowParams (Ib|Name) ;

IbIName. setPadding (10, 10, 10, 10);

Ibllcon = AppUtils. createlmageView(_context, -1, -1, -1);

LayoutUtils. Layout. WidthWrap_HeightWrap

.applyTableRowParams (Ibl lcon) ;

Ibllcon. setPadding (10, 10, 10, 10);

row. addView (Ibllcon);

row. addView (IbIName) ;

/*Configure second line of row */

IblDescription = new TextView(_context) ;

LayoutUtils. Layout. WidthFill_HeightWrap
.applyTablelLayoutParams (IbIDescription) ;

IblDescription. setPadding (10, 10, 10, 10);

IblTag = new TextView(_context) :

LayoutUtils. Layout. WidthFill_HeightWrap
.applyTablelLayoutParams (IblDescription) ;

IblTag. setPadding (10, 10, 10, 10);

/*Add the rows to the table */

addView (row) ;

addView (IblDescription) ;

addView(IblTag) ;

Page 37 of 42

Edit bookmark screen: By click on specific bookmark on result
screen, user are moved to edit bookmark screen where they can change
their own information or go to their bookmark URL (automatically

open a new browser to display).

!

View in Browser

Back

MENU

Figure 11: My Delicious’s edit bookmark screen
To view bookmarked URL in default browser we send a
pre-defined intent Intent. ACTION_VIEW. This cause browser to be
opened and displays specific URL that we passed to it:

Page 38 of 42

btnLink = (Button) findViewByld(R.id.btnLink);
btnLink.setOnClickListener(new OnClickListener() {
@Ooverride
public void onClick(View v) {
Intent intent = new Intent(Intent.ACTION_VIEW,
Uri.parse(post

-getHref()));
startActivityForResult(intent, 4);

¥

Add bookmark screen: In this screen user is required to enter an URL
and its information. My Delicious also bases on input parameter URL
to give suggestion about tag should be use or common tags which are
used by other users for this address. Here we use some most common
used GUI component such as: auto complete text box with content
handler, progress bar, check box ...etc.

In fact, add book mark screen also support user to bookmark their
favorite site while they are surfing the net by using “Share Page” menu
in “More” web browser’s menu. By doing this and choose to share
page with My Delicious application, an Intent with data is the URL
which is currently being display will be send to My Delicious to be
bookmark. But we have the “Knowing Issue” that by opening the
browser will cause obstacle to HttpClient which then cause HttpClient
cannot connect to server. Because of this, this functionality is in
“Waiting” state for the patch from Android SDK provider. The
implemented code show as below:

Page 39 of 42

if (savedlnstanceState == null) {
Intent intent = getintent() ;
String action = intent. getAction() ;
Uri data = intent. getData(;
String type = intent. getType() ;
if (Intent. ACTION_INSERT. equals (action) &&
Browser. BOOKMARKS_URI. equals (data)) {
String url = intent. getStringExtra(“url”);
String title = intent. getStringExtra("title”);

] EaMl @ 4:54PM

Add to Delicious
U

No suggestions

Popular Tags

Choose a tag

MENU

Figure 12: My delicious’s add bookmark screen

Page 40 of 42

V.

(® Choose a tag

Choose a tag

delicious

bookmarks

web?2.0

social

hnnltmarkine

MENU

Figure 13: Tag suggestion dialog

Conclusion

My Delicious is developed to be an innovative application and its main
purpose is to get familiar with Android SDK. Because of this reason, here we do
not consider much about optimality attitude of application. The next version of
this will concentrate on remaining problem like portability between different
kinds of device, adaptability with the change of API, friendlier interface, and

also optimality in network usage.

Page 41 of 42

VI.

References

https‘//api.del.icio.us
Android A Programmer Guid —-McGraw Hill

Posts on http://androidforums.com/

http://www.androidmobileforum.com/

http//androidcommunity.com/forums/
Android for Java Developers - Dr. Markus Schmall, Jochen Hiller

SN N N

Table of figure

Figure 1: General architecture of java platform on embedded device........................ 3
Figure 2: Android architeCtUrec..oevviviieiiiiiiiee et eeree e e e e eeraee s 4
Figure 3: Resource managementcccuveeeveiiereiniieeesiiiieeesriieeesssieeeesssnsneesssssseeesnnnns 6
Figure 4: HttpClient scope in relation with other browser’s component................. 23
Figure 5: My Delicious’s Main SCrEEMN.......cccvvuieiirriieeeeriiieeesiieeeesnrreeessarreesssrneeennns 28
Figure 6: My delicious’s LLOZIn SCTEEM.......ccccvuieiiriiiieeeiiiieeeeiireeeeerreeeeseirreeessrneeenns 29
Figure 7 : My Delicious’s s€arch SCIreemNcccevvuvieeiriiieeeiiiieeeesieeeeesireeeseneeeeenns 31
Figure 8: Set Date criteria dialogccccveiieiiieiiiiiiieeeciiieee st eeiree e vree e 33
Figure 9: Progress bar is displayed while retrieving informationcccccccvveeenne. 34
Figure 10: My Delicious search result SCreemN..........ceeevcvrieeeiiiieeeeiiiieeeeriieeesrreeeeenns 36
Figure 11: My Delicious’s edit bookmark SCreenccccceeevvveeeincieeeeincieeeencieeeennns 38
Figure 12: My delicious’s add bookmark SCreenccccveeevvveeeencveeeeniiieeeesieeeennns 40
Figure 13: Tag suggestion dialog........cccuvveiiiiiiiiiiiiiiiiiiee e 41

Page 42 of 42

https://api.del.icio.us/�
http://androidforums.com/�
http://www.androidmobileforum.com/�
http://androidcommunity.com/forums/�

	Overview
	What is android
	Android architecture:

	Application structure
	Application Components
	Intent definition
	The AndroidManifest file:
	Process and thead in Android

	“My Delicious” project
	Delicious Bookmark web service
	Project requirement
	Project implementation

	Conclusion
	References
	Table of figure

