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Abstract
Cheap jogwheel encoders for emulated DJ turntables are often inaccurate, due to the low CPR in the order of some tens.
Precise encoders are rather expensive and are not convenient to keep track of very fast rotations, because they are too
much accurate for the purpose.
The presented research tries to improve the detection of at least small and slow relative rotations of the jogwheel, by
employing a cheap COTS mouse sensor, and keep the absolute position or fast rotation with the classic cheap optical
encoder.
A very crude HID demoboard was developed, so that some simple tests were done. An extended proposal is also described,
in order to achieve better performance and more features, to match those of a commercial DJ controller.

1 Introduction
In the latest years, the market of digital-DJ related prod-
ucts has grown considerably. By the way, cheap digital
turntable emulation is still tricky, because the design of a
cheap yet accurate jogwheel is a challenge even with the
technology available nowadays.
It is true that state-of-the-art processing units are very fast,
but there are still issues such as those related to protocol la-
tency, precise and fast plate motion detection, motion sam-
ples interpolation, and so on.
These issues are not a big problem for the average DJ,
but they arise when requiring a higher performance (e.g.
scratch) while keeping the costs low.
The proposed approach is based on COTS components
called optical mouse motion sensors, which can provide
a very good accuracy when detecting small local motions,
which is a behavior difficult to obtain with cheap encoders.
A simplified verison of the proposal was developed with a
crude prototype, just to check if it is worth at least for the
average DJ – the most demanding ones do not care about
the price of products, and still rely on timecoded vinyl em-
ulation even tough high CPR optical encoders are available
at the same overall price.

2 Current market
The common commercial approaches can be divided into
two groups: jogwheels based on optical encoders, and
reuse of vinyl turntables (or CD players) as if they were
digital jogwheels. These two technologies will be de-
scribed in the following, showing their pros and cons.

There exist also some other ways to emulate turntables,
which are currently still in a niche. For example, there
are some touchscreen-based [1] [2] or capacitive [3] con-
trollers, which follow the market wave of touchscreen de-
vices.
There are also some evolutions of the optical jogwheels,
which are motorized [4] [5] and thus more suitable for pro-
fessionals, but rather expensive.

2.1 Optical encoder jogwheel controllers

The most common technology for turntable emulation is
based on optical encoders. An optical encoder is a device
which detects motion by counting the number of steps an
evenly-marked wheel performs. It is found in almost all
purely digital DJ controllers, which in this context are re-
ferred to those remote digital devices used by the DJ to
control the user application. Some examples of commer-
cial controllers with jogwheels can be found in [6] [7] [8].
A very curious device, the Tascam TT-M1 [9], can be
placed over a turntable to control some Tascam CD play-
ers. This feature is similar to that of RATT, but it touches
the spinning vinyl, while RATT does not.
Common jogwheels have a resolution (CPR, Counts Per
Revolution) in the order of tens, thus are not suitable for
scratching, and are usually addressed only in coarse track
navigation, or bending. Even a resolution in the order of
some hundreds cannot be enough for scratch or precise mo-
tion tracking. For example, with a 720 CPR encoder it is
possible to detect only motions of half degrees, that for a
12 inches wide wheel is still low – keep in mind that a
vinyl spins at roughly 150 degrees per second, and good



sampling should require at least 1500 samples per second
to track it decently enough at nominal speed.

System architecture The basic architecture of these
controllers is shown is Figure 1. The controller commonly
has a set of input devices – buttons, knobs, sliders, etc. –
so that the user can map these inputs to some software ac-
tions, such as the play/stop events, or the desired volume
level.
A special kind of input device focused throughout this
work is the optical encoder, which will be described in
depth later.
Commonly, there is a also set of output devices – LEDs,
displays – so that the user’s sight should not always keep
looking at both the computer monitor and the controller to
see what is going on.
All these devices are managed by a MCU, which detects
their changes, and generates meaningful messages to be
sent to the DJ software, or receives messages from the lat-
ter.
The communication between the controller and the soft-
ware is often performed through an USB bus with
HID/USB or MIDI/USB protocols, but some controllers
still rely on the plain old MIDI port (see Section 4).

Figure 1: Hercules DJ Control MP3 e2 [10] intereface schematic
with buttons, incremental encoders, sliders and knobs

Wheel architecture The wheel is emulated with a so-
called jogwheel. It is a disc whose full rotation is divided
into equally-spaced angle slices. Each slice is assigned a
code.
Usually, the code is marked on the wheel with holes
aligned on circles (see Figure 2), so that holes can be de-
tected by light detectors mounted on the chassis. The light
detector is almost always made with a LED which points
towards the disc, and on the other side the light is detected
by a fast phototransistor. These light sensors are positioned
so that they can detect one and only one code per slice.

Figure 2: A set of incremental (quadrature) rotary encoder
wheels

The code is either abolute or relative. Absolute encoders
assign a unique code to each slice, so that it is always pos-
sible to know the current wheel angle by just reading the
light detector outputs. Due to the need to have a high num-
ber of bits, the number of holes can also grow exponen-
tially (usually as the power of two), and the production of
precisely aligned marks and sensors is expensive – mis-
aligned ones can provide misdetections of the angle, even
with robust codes such as the Gray code.

Instead, relative encoders just need the two least significant
bits of an absolute code, thus cheaper to manufacture. On
the other hand, it is not possible to know the absolute rota-
tion without any additional bits. This is why there is often a
mark which signals a full revolution been performed, and
needs an additional flag bit. The particular subset of the
Grey code used for the relative motion detection is called
quadrature code, because only 4 code sequences (phases)
can be generated by moving to the adjacent wheel slice as
seen in Figure 3.
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Figure 3: Quadrature pattern, going forward left-to-right

An example of jogwheel internals can be seen in Figure 4.
It is a close-up of the Vestax VCI-400 [8] jogwheel archi-
tecture, with a high-resolution wheel – segments can be
barely seen – and an Agilent HEDS-9700 quadrature en-
coder.



Figure 4: A Vestax VCI-400 jogwheel being disassembled

Motion detection When the user turns the wheel, the
light detectors can convert the sight of light into the code
assigned to the focused disc slice. The digital code is then
triggered by the MCU through some interrupts, and a mes-
sage containing the motion (or even the absolute angle) is
sent to the user software.

Pros

• Easy to manufacture
• Code detection is inherently digital
• Fast code transitions can be processed easily
• A cheap MCU can handle jogwheels as well as all

the other digital devices commonly found in DJ con-
trollers

Cons

• Small motions have poor resolution with cheap en-
coders

• High resolution encoders are too much expensive for
the purpose

2.2 Timecoded media turntable emulation

An alternative way to emulate a turntable in software is to
use a timecoded audio track, which is an audio stream en-
coded so that the software can read the track position just
by decoding the incoming audio stream itself.
This technique makes it possible to use existing turntables
or CD players to control the user software, which in turn
will emulate the turntable behavior.
The good side of this approach is that a DJ, who already
owns turntables or CD players, can keep using them just
by buying a sound card with the appropriate audio inputs.
This way the DJ can have almost perfectly the same old
feeling, because he is still using the same equipment.
On the bad side, vinyls and CDs are very sensible to usage,
and decay easily. This makes the timecode unreadable in
the ruined parts of the support, where software cannot al-
ways understand the code thus producing jittered or jerky
behavior.

In addition, turntable needles must follow tracks almost
perfectly, or the timecoded signal would degradate at the
ADC side. In particular, the phase component is necessary
for the purpose, but is almost ignored by audio players be-
cause the human ear has poor phase sensitivity.

Another bad point relates to the overall performance. It is
true that with this technique the performance is almost the
same of a real vinyl, but the need of an intermediate USB
sound card just makes low latencies hard to achieve, unless
the host computer is powerful and well optimised to reach
soft-realtime requirements.

With a timecoded media it is only possible to control the
track position (phase) and pitch (frequency), which is good
for plain turntable emulation, but it is impossible to use
some features – effects, precise loops, track preview, etc. –
of some professional CD players.

When the disc spins at low speed, the intrinsic high-pass
filter of needles and soundcards will fade the signal, and
it can become difficult to find the zero-crossings while de-
coding. This issue makes slow scartches difficult to emu-
late because of jitter and corruption, and will be mitigated
with the work devolped in the rest of this document.

Finally, a novice DJ would hardly choose this approach,
because the overall price of the equipment can be rather
high – turntables/players + good soundcard + accurate nee-
dles + cables + hi-performance computer can easily exceed
$3000.

System architecture A common commercial architec-
ture [11] [12] can be seen in Figure 5. The existing turnta-
bles or CD players are connected to the appropriate sound-
card inputs.

The soundcard can be placed either inside or outside the
host computer. Internal soundcards are very fast in trans-
fering data from the incoming audio signal to the CPU,
thanks to the fast system bus (PCI or PCI-E).

However, as internal soundacards are almost always de-
signed for desktop computers, while notebook computers
are much easier to carry, the choice of an external sound-
card is the most common.

External soundcards are usually connected through an
USB bus, but some professional FireWire (IEEE 1394)
soundcards are still on the market. The USB bus has the
drawback of having a fixed minimum latency of 1 ms for
isochronous signals, which increases latencies even more,
while FireWire is faster – good internal soundcards have a
negligible latency.



Figure 5: Serato Scratch Live setup with two turntables

Signal pattern The timecoded signal is printed on the
source media (vinyl, CD) with patterns recognized by the
specific user software. In general, the timecoded signal is
composed by a left sine and right cosine signals at a con-
stant frequency, usually in the range of 1 kHz to 3 kHz.
The amplitude of each positive half-wave is slightly mod-
ulated with a proprietary digital code, which represents the
absolute position inside the whole timecoded track.
In Figure 6 it is possible to see a slice of the Serato
Scratch Live [11] timecode signal (named noisemap), with
some amplitude-modulated bits at the top peaks of the sine
waves.

Figure 6: Slice of the Serato Scratch Live timecode

To read the code from a timecoded stream it is sufficient
to trigger a positive-slope zero-crossing on one channel,
then the amplitude on the other channel (peak), and finally
convert the amplitude into a bit of the code word. If the
absolute position is not needed, instead of the whole code

it is possible to interpret the sine/cosine pair simply as a
quadrature control signal, for relative motions.
The code is designed to be decoded in both directions, so
that the user can navigate the emulated turntable just like a
real vinyl. The most advanced codes are designed to sup-
port fast error correction, because dust, decay of the vinyl,
or even EMF, would generate a corrupted signal.
In fact, if a single code is a bare label of the position, for
example of 20 bits, it is necessary to read at least 20 con-
secutive half-waves. With a nominal frequency of 1 kHz,
the minimum latency would become 20 ms, which is rather
high for audio manipulation by a human. Advanced codes
would still correctly read the first 20 half-waves, but then
each subsequent bit is sufficient to get the adjacent code,
with only 1 ms delay at 1 kHz.
Some problems arise when the turntable is turning slowly.
Due to the bandpass behavior of the needle and active in-
put/output stages of the whole signal chain, slow transi-
tions have a small amplitude. As it is well known in the
communication technology field, slow and small transi-
tions make zero-crossings much harder to be tracked cor-
rectly, thus generating jitter or missing codes. This is
where optical motion sensors show their best performance
instead.

Pros

• Same old equipment
• Just add soundcard to a computer
• Natural feeling and performance

Cons

• Need of a high quality signal chain
• Expensive for a novice
• Signal subsceptible to corruption
• Bad tracking at low speeds
• Expensive signal processing

3 Optical motion sensors
Optical motion sensors are commonly found in computer
pointing devices called mouses. The job of such sensors is
to capture a photograph (i.e. a frame) of what is beneath,
compare it with the previous one, and finally compute the
motion (i.e. the distance) from the previous relative posi-
tion.
Their main strength is the achievement of very high reso-
lution comparisons, in the order of hundreds, if not thou-
sands, Dots Per Inch (DPI), at a very low price – less than
a dollar for average sensors, or a few dollars for high per-
formance (gaming) mouse sensors. Also, the maximum
detectable speed is in the order of some tens of inches per
second, compatible with human hand motions.
As a drawback, the absolute accuracy is poor, as they
are designed to capture the slow relative movements of a



screen cursor. It can be repositioned by the software, or
its relative motion is exploited for some games (e.g. First
Person Shooters), thus making absolute motion tracking
clueless.
As can be inferred from the previous statements, mouse
sensors come in different classes, based on their main ap-
plications. The most common sensors are for office or
home use, and provide average accuracy and speed. Other
sensors are designed for wireless devices, and can pro-
vide automatic switching between average (or high) and
low performance, based on the amount of interaction of
the user in the last time window. The most advanced sen-
sors are for those professionals or enthusiasts who need a
very high speed yet accurate motion detection, for example
for pro-gamers.

3.1 Architecture and operation

A generic mouse sensor is composed by components of
various nature, as seen in Figure 7.

Lens &
mirror

DSP &
controller

LED &
clip

Board

Chassis

Figure 7: Common motion sensor assembly

Light source A light source, typically a LED, or a laser
for the most advanced models, illuminates the small sur-
face to be captured.

Lens A lens focuses the surface to get the best resolution
at detector side. The lens also increases the effectiveness
of the light source on the surface, when correctly focused
through a mirror.
Usually the lens is placed at a few millimiters from the sur-
face, and it is quite important to keep the nominal distance
for the best perofrmance.

CCD The actual light sensor is a common Charge-
Coupled Device (CCD). It is designed to be very fast, to
reach very high frame rates, in the order of some thou-
sands. It is also sensitive to a very small light spectrum,
typically the infrared one, so that the environmental light
noise is rejected, and image artifacts are acquired better.
There are also some considerations based on the light type.
LED-based devices work well with all the bumpy surfaces,
even the dark ones, but cannot work on trasparent ones,

where the reflection is very bad. They are suited for every-
day use. Instead, laser-based give a way better tracking on
all surfaces but the dark ones. The tracking performance is
suited for professionals.

DSP The frame impressed on the CCD is then processed
by an ad-hoc DSP, which computes the distance – in (x, y)
frame coordinates – from the previously acquired frame.
The DSP must be fast enough to reach the 10x-in/s maxi-
mum detected velocity in both directions.

Controller Finally, the controller accumulates the DSP
deltas. Some configuration parameters and device proper-
ties, along with deltas, can be accessed through an interface
to an external control unit.

3.2 Communication

Optical motion sensors communicate with an external pro-
cessor through an interface which often belongs to stan-
dard I/F types, even though some pins are frequently added
for faster or ad-hoc operation – chip shutdown, chip selec-
tion, flow control, and so on.

Quadrature Sensors with only quadrature wave outputs
(see Figure 3) are now outdated, because they do not of-
fer any advanced features, and require an interrupt-driven
counter at controller side. On the other hand, quadrature
outputs can be used with any devices which natively ac-
cept such signals.

SSP When requiring some more flexibility, it is possi-
ble to adopt a Synchronous Serial Port in both Serial Pe-
ripheral Interface (SPI) or 3-wire, respectively with full-
duplex and half-duplex capabilites, to communicate with
motion sensors.
They usually do not require handshaking, even though
some control pins are often used in such a way (e.g. the
common shutdown pin). Also, the bit rate is often high
enough for simple and fast communication – from 1 MHz
to some tens.
Due to its message-based nature, it is possible not only to
read internal counters, but also to get and set configuration
parameters of the target device.
They can often support multi-master/multi-slave topolo-
gies, even though the most common is single-master/multi-
slave. Slaves are usually chosen by a demultiplexed selec-
tion signal, one per slave.
An example of write operation over a 3-wire SSP bus is
shown in Figure 8. The single master device signals to the
single slave an incoming write operation, tells the register
address and its value.
An example of read operation over the same hardware is
shown in Figure 9. The master signals an incoming read
operation and tells the address. After that, it lets the slave
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slave SDIO

D0D1D2D3D4D5D6D7A0A1A2A3A4A5A6master SDIO

SCLK

Figure 8: A typical write operation over a half-duplex, 3-wire SSP
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D0D1D2D3D4D5D6D7slave SDIO

A0A1A2A3A4A5A6master SDIO

SCLK

Figure 9: A typical read operation over a half-duplex, 3-wire SSP

drive the SDIO line, then eventually reads the addressed
register value.

4 Controller communication proto-
col comparison

When developing a music-oriented controller, there is al-
ways a debate on which communication standard is the
most suitable for the application. The most common stan-
dard are described in the following.

4.1 Plain MIDI

The truly de-facto standard in music-oriented communica-
tion is the Musical Instrument Digital Interface (MIDI).
This was developed in the ’80s to be easy and cheap
to manufacture, robust and rather complete for standard
music production, with some degree of freedom for sub-
protocols developed by manufacturers. It is still widely
supported by digital music equipment nowadays.
Common output and input circuits can be seen respectively
in Figure 10 and Figure 11. Basically, it is a standard se-
rial point-to-point connection based on a common UART
powered at TTL levels. Data transmitted by the UART is
converted into current bursts, which feed the optocoupler
light of the receiver. The optocoupler provides galvanic
isolation, so that no current loops can create audible noise
in the target device, which used to be a synthesizer in the
first place.
Each MIDI connection can handle up to 16 channels, i.e.
virtual music devices. This is enough for common synthe-
sizers, but not to drive an entire production studio.
The event-based nature of the protocol makes it suitable for
most of the situations, except for events which could be ac-
cumulated, or for state streaming. For example, jogwheels
could generate way too many motion delta events, usually
as Control Change messages, which would easily flood the
entire bus. A packed streaming state would be better suited
in such cases. Also, when transmitting to a host computer,
software buffers of its operating system (often time-shared)

can saturate while processing too many events at a time, or
complex sound textures.
The protocol does not support any kind of flow control.
Messages can be lost, partially received (ignored), contain
errors, without being corrected or asked for retransmission.
Also, the relatively slow baud rate can generate small de-
lays between sound generation/control events, which can
be detected by the human brain, which is very sensitive to
audio timing.

Figure 10: MIDI output circuit, UART sends the OUT signal

Figure 11: MIDI input circuit, UART receives the IN signal

Basic protocol The serial protocol message word is 8
bits long, with one start (low) and one stop (high) bits,
MSb first, 31250 baud. The protocol is message-driven,
with standard messages 3 bytes long. Special messages are
1 to 3 bytes long, while manufacturer-defined System Ex-
clusive (SysEx) messages can be arbitrarily long. Most of
the messages were associated to common synthesizer fea-
tures [13], even tough manufacturers often interpret them
freely (e.g. through remapping).
The first word of a message (control word) is always iden-
tified by the MSb set to 1, while it is always 0 for data
words, which are always 7 bits wide.



Standard messages are those referred to the actual mu-
sic content, such as Note On/Off, Control Change, Pitch
Change and so on, also called voice messages. A timing
diagram of a voice message is shown in Figure 12.
The control word identifies the message type and the chan-
nel number. The second word is usually the identifier of
the control (key, knob, slider, wheel, etc.) being actioned,
and the third word tells its value or velocity.
Special messages include transport control (time, posi-
tion), program selection, system messages, etc. These are
advanced messages, often only partially supported, if not
at all, by cheap controllers.

Pros

• De-facto standard for digital music equipment
• Intuitive message semantics
• Simple, robust, noise-free, cheap hardware

Cons

• Slow communication
• No flow control
• Low resolution controls
• No streaming state support

4.2 MIDI/USB
The Universal Serial Bus (USB) [14] is probabily the most
available for consumer electronics interfacing nowadays.
Its multipurpose nature, speed, and robustness, made it the
de-facto standard for connecting an actual universe of de-
vices. Among this huge load of devices, also the digital
music related ones can be found.
Since the MIDI standard was the most common digital mu-
sic standard at the time USB was released, it was conve-
nient to encapsulate it inside USB packets. So, an appli-
cation protocol was developed over the USB protocol: the
MIDI over USB (MIDI/USB).
This way, compatibility with standard MIDI interfaces was
kept. Production software and hardware devices kept using
it, an so did music production people. USB is simply the
low-level interface, which can be found on all consumer
computers.
MIDI/USB has some advantages over the plain MIDI pro-
tocol. Since USB has a higher baud rate than MIDI, it is
possible to reduce delays when handling many messages
in a short interval.
Also, MIDI/USB introduces the concept of cable. It sup-
ports up to 16 cables, which are 16 virtual plain MIDI de-
vices. This makes theoretically possible to drive up to 16
hardware synthesizers through a single USB cable, by dis-
patching the 16 virtual cables to as many real plain MIDI
devices.
The MIDI/USB protocol exploits the features of bulk trans-
fers. This way, packets will not be lost, thanks to the flow
control of USB bulk transfers.

USB devices can also show many indipendent behaviors,
by choosing different application protocols per each USB
endpoint. For example, this allows to have a MIDI/USB
device with an integrated HID/USB trackpad, by using a
single USB cable, like the M-Audio Torq Xponent [15].
All the MIDI drawbacks are kept, except for the baud rate
and flow control. The USB, by its time-shared nature, al-
ways introduces some delays – at least 1 ms per query,
and a few milliseconds for software stack processing. As
a drawback of bulk transfers, the delivering time is uncer-
tain, because many retansmissions can be issued, or there
is not enough free bandwidth on the bus, introducing even
more delay.

Basic protocol The MIDI/USB protocol is a sub-class
of the Audio class, defined by the USB standard [14]. This
parent class is oriented to audio equipment communica-
tion and control – speakers, microphones, keyboards, con-
trollers, synthesizers, DSPs can all be driven by this class.
The packet is composed by a header byte, and the remain-
ing 3 bytes are the encapsulated MIDI packet – all but the
SysEx messages, which have variable length. The header
byte addresses the cable, and defines the following MIDI
message type – some bytes can be unused, and thus ig-
nored by the USB parser. SysEx messages are simply split
into 3-bytes chunks, merged by the USB parser when the
trailing byte(s) are received.
The protocol supports bulk USB transfers. They add flow
control to bare USB streams, which in order adds flow con-
trol to the encapsulated MIDI stream. Bulk packets have
the lowest priority over the USB bus, which could intro-
duce delays when the bus is saturated by interrupt and
isochronous endpoint transfers.

Pros

• USB is de-facto standard for consumer electronics
• Much higher bandwidth than plain MIDI
• Flow control of USB bulk transfers
• Up to 16 virtual cables
• Multi-purpose device through a single USB cable

Cons

• All the MIDI drawbacks, except for baud rate and
flow control

• Delays introduced by USB time-sharing and bulk
transfers

4.3 HID/USB
Besides MIDI/USB, another application protocol was de-
veloped to handle those devices which interface with hu-
man beings, and is much widely implemented. The Human
Interface Device (HID) [16], in fact, is an USB class with
huge flexibility and support – it can be found in almost
any USB device with keys, knobs, sliders, simple displays,
LEDs, control wheels, and so on.
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Figure 12: Timing diagram of a MIDI voice message

USB endpoints for HID applications are scheduled with
interrupt priority. This means that HID is suitable for low-
latency devices, but does not offer high bandwidth.
A strength of the HID protocol is that it is highly avail-
able. Any decent host OS has full native support for it.
Also, HID reports are described upon connection, and the
host can actually parse not only the bare syntax, but also its
semantics for some common cases – keyboards, joysticks,
gloves, etc. This often makes the device immediately avail-
able to the user, without the need of custom device drivers.
Being developed over the USB protocol, HID packets suf-
fer from USB scheduling delays. This means that a USB
full speed device has a minimum latency of 1 ms between
its packets – the minimum interrupt latency.

Basic protocol The HID protocol is based on the ex-
change of report packets. A report has a structure de-
scribed in the setup phase of the USB HID class interface.
Its size is constrained by that of USB interrupt packets,
so it cannot contain too much data. By the way, it is big
enough to support state streaming of a small set of data, or
to describe a few events per packet.
State streaming becomes handy when tracking the sta-
tus of some critical or rapidly changing data sent by the
device. In the case of the simplified RATT prototype
(see Section 5), deltas and absolute positions of both the
mouse sensor and the incremental encoder are continu-
ously streamed. This optimizes the USB bandwidth us-
age. In fact, those devices would generate a huge number
of motion events if sent with an event-based protocol, like
MIDI/USB, wasting the available bandwidth and introduc-
ing queuing delays.
The exchange of HID reports is straightforward, but the
report definitions need some attention. As told before, the
HID report structure must be communicated when config-
uring the HID connection, with a Report descriptor. This
descriptor is written in a dedicated language [17], which
might be tricky – some tools are available to help the de-
sign of such descriptors.

Pros

• Natively supported by most operating systems
• USB interrupt priority
• Suitable for small state streaming
• Common semantics automatically inferred

Cons

• Sill some USB delays
• Custom HID reports to design

5 Simplified proposed approach

The proposed approach was developed so that it is possible
to achieve good performance both at high and low speeds,
without introducing expensive parts.
The main idea is to use a mouse sensor to measure slow lo-
cal motions, which are difficult to process with timecode,
and need high resolution jogwheels. As seen in the previ-
ous section, this is not possible with cheap designs.
Slow local motions are common when scratching or trying
to reposition the virtual needle of the emulated turntable,
for example when the DJ is searching for a good point
where to start playing from (cue point).
When the disc is spinning at cruise speed, or when the ro-
tation is fast enough, the classic methods can be used to
keep track of the position. Mouse sensors, in fact, are not
able to keep track of absolute movements, especially when
they are very fast. Anyway, even cheap sensors have a res-
olution in the order of several hundreds, if not thousands,
DPIs nowadays.
As proven later, the disc can theoretically be divided in
thousands slices, thus providing a local resolution higher
than the most expensive encoders on the market – obvi-
ously in the set of those affordable for a DJ, not the state-
of-the-art encoders for hi-end industrial machineries.
In the following, a simplified prototype will be presented.
A low-end MCU and a standard COTS mouse sensor were
chosen, just to check if it is possible to achieve good per-
formance with a simple circuit.
All the source code is hosted by github [18].

5.1 Hardware architecture

The simplified prototype has a very crude hardware ar-
chitecture. It is split into three modules: the controller
board (aka main board), the sensor board and an optional
timecode preamp board for the use with timecoded media.
This subdivision was done just to decouple the controller
with the sensor, for further experiments with other hard-
ware configurations.

Controller board The controller board in Figure 13
hosts the MCU, a PIC18LF14K50 [19] by Microchip,
which is a 8-bits MCU running at 48 MHz (16 MIPS). It
is fast enough to handle a single wheel, but nothing more
advanced such as DSP, which is left to the user software
application.
This board also mounts the voltage regulator, to get 3.3 V
from the standard 5 V sourced by the USB host. Bulk ca-
pacitors keep it stable.



There are also a user button for input, and three LEDs for
user interactions.

A standard UART can be used for basic messaging with an
optional text console.

There are also two pins dedicated for an additional quadra-
ture encoder input. They can be configured to be directly
coupled with the MCU comparator interrupts, in order to
trigger encoder changes.

To communicate with the sensor module some control and
interrupt signals, and a half-duplex serial port are provided.

The USB bus is directly connected to the MCU, which
has an internal Serial Interface Engine configured for Full
speed transfers.

Figure 13: The controller prototype board

Sensor board The sensor board in Figure 14 simply
hosts the mouse sensor, the surface illumination LED, and
the lens. The sensor is an ADNS-2080 [20] by Avago. It is a
sensor aimed at office users, with average performance and
low cost. Like for the MCU, higher performance modules
are on the market, but the challenge of this proposal was to
find a basic average solution, which can be improved with
further research.

Briefly, the sensor can reach an interesting resolution of up
to 2000 DPI, and motion speed up to 30 in/s (76.2 cm/s).
There is no guarantee of constant latencies, because the
clock speed is variable, but the datasheet reports an aver-
age delay of 4 ms.

Figure 14: The optical motion sensor prototype board

Timecode preamp board An optional board, seen in
Figure 15, was designed to properly amplify a Line – no
Phono! – timecode signal so that it can be recognized by
two comparators of the controller board.
Each audio channel can be regulated in amplitude, by con-
trolling the inverting gain of the opamp with a potentiome-
ter. A spare opamp generates the VDD/2 voltage reference
for single-supply conditioning.
Two LEDs help the user in keeping the overall timecode
level compatible with the comparator inputs on the con-
troller board, by warning if the signal is near saturation, or
too low to be squared correctly by comparators. In fact,
when the volume is too low or saturates, the sinusoidal
timecode signals won’t be squared with 50% duty cycle,
which can generate some jitter.

Figure 15: The timecode preamplifier prototype board

5.2 Firmware architecture

Due to the lack of a Real-Time Operating System (RTOS)
support on the chosen MCU, the application is written in
a while-loop fashion, with interrupt-driven tasks at high
priority.



A logical view of the implemented firmware framework is
depicted in Figure 16.
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Figure 16: Logical view of the simplified firmware architecture

Bootloader In order to simplify firmware deployment,
a HID bootloader is added to the development prototype.
This fills the first 2048 words of the program space, which
is not that small. The bootloader is the one provided by
the Microchip Application Libraries [21], and implements
HID control.
The bootloader can be called by plugging RATT into the
USB host socket, while pressing the user button. The de-
veloper can then use the HID bootloader software provided
by Microchip to download the compiled HEX executable
to the program memory of the MCU.

HID/USB module The HID/USB module is developed
over the HID Simple Custom Demo provided with the Mi-
crochip Application Libraries [21], using the USB Frame-
work version 2.9d. The code itself is almost the same, so
please refer to the documentation delivered by Microchip
for more information, as the topic is very complex and can-
not be described in a few words here.
RATT is a simple I/O HID device, which uses the endpoint
1 for both input and output transfers. In the following, the
descriptors used by HID/USB will be described briefly.
Table 1 shows the Device descriptor. It tells the host it is a
standard USB 2.0 device, with its vendor and product iden-
tifiers (dummy in this case), with only one configuration.
It also indicates that there are a manufacturer and product
name strings to be received and indexed later.

Offset Field Size Type Value
0 bLength 1 Number 18
1 bDescriptorType 1 Constant 0x01
2 bcdUSB 2 BCD 0x0200
4 bDeviceClass 1 Class 0x00
5 bDeviceSubClass 1 SubClass 0x00
6 bDeviceProtocol 1 Protocol 0x00
7 bMaxPacketSize 1 Number 8
8 idVendor 2 ID 0xDEAD

10 idProduct 2 ID 0xBEEF
12 bcdDevice 2 BCD 0x0002
14 iManufacturer 1 Index 1
15 iProduct 1 Index 2
16 iSerialNumber 1 Index 0
17 bNumConfigurations 1 Integer 1

Table 1: USB Device descriptor

The single Configuration descriptor in Table 2 tells the
host that the device is powered by the USB bus at 100 mA

maximum, and there is only one interface for this configu-
ration.

Offset Field Size Type Value
0 bLength 1 Number 9
1 bDescriptorType 1 Constant 0x02
2 wTotalLength 2 Number 41
4 bNumInterfaces 1 Number 1
5 bConfigurationValue 1 Number 1
6 iConfiguration 1 Index 0
7 bmAttributes 1 Bitmap 0b11000000
8 bMaxPower 1 mA/2 50

Table 2: USB Configuration descriptor

The single Interface descriptor in Table 3 simply indicates
that it is a HID device (HID class). All the other options
are ignored for this device.

Offset Field Size Type Value
0 bLength 1 Number 9
1 bDescriptorType 1 Constant 0x04
2 bInterfaceNumber 1 Number 0
3 bAlternateSetting 1 Number 0
4 bNumEndpoints 1 Number 2
5 bInterfaceClass 1 Class 0x03
6 bInterfaceSubClass 1 SubClass 0
7 bInterfaceProtocol 1 Protocol 0
8 iInterface 1 Index 0

Table 3: USB Interface descriptor

The HID Class-specific descriptor in Table 4 is for the HID
1.11 protocol, no country-specific address, with a single
HID report descriptor 48 bytes long.

Offset Field Size Type Value
0 bLength 1 Number 9
1 bDescriptorType 1 Constant 0x21
2 bcdHID 2 BCD 0x0111
4 bCountryCode 1 Number 0x00
5 bNumDescriptors 1 Number 1
6 bDescriptorType 1 Constant 0x22
7 wDescriptorLength 2 Number 48

Table 4: HID Class-specific descriptor

The USB Endpoint descriptors in Table 5 and Table 6 refer
to the bidirectional endpoint 1, used to handle HID trans-
fers, polled each 1 ms with interrupt scheduling. Since
the user needs very fast responses for very few data from
the motion sensor (16 bytes per report), these settings are
optimal for the device being developed.

Offset Field Size Type Value
0 bLength 1 Number 7
1 bDescriptorType 1 Constant 0x05
2 bEndpointAddress 1 Number 0x81
4 bmAttributes 1 Bitmap 0b00000011
5 wMaxPacketSize 2 Number 16
6 bInterval 1 ms 1

Table 5: USB IN Endpoint 1 descriptor



Offset Field Size Type Value
0 bLength 1 Number 7
1 bDescriptorType 1 Constant 0x05
2 bEndpointAddress 1 Number 0x01
4 bmAttributes 1 Bitmap 0b00000011
5 wMaxPacketSize 2 Number 16
6 bInterval 1 ms 1

Table 6: USB OUT Endpoint 1 descriptor

As told before, manufacturer and product names are in-
dexed inside the Device descriptor. The language code and
those names are defined by the String descriptors shown in
Table 7, Table 8, and Table 9.

Offset Field Size Type Value
0 bLength 1 Number 4
1 bDescriptorType 1 Constant 0x03
2 wString 2 Unicode 0x0409

Table 7: USB Language Code string descriptor

Offset Field Size Type Value
0 bLength 1 Number 12
1 bDescriptorType 1 Constant 0x03
2 wString 10 Unicode "TexZK"

Table 8: USB Manufacturer string descriptor

Offset Field Size Type Value
0 bLength 1 Number 10
1 bDescriptorType 1 Constant 0x03
2 wString 8 Unicode "RATT"

Table 9: USB Product string descriptor

Finally, the HID Report descriptor in Table 10 describes
the syntax and semantics of the actual data being trans-
ferred by the device application. Because of the custom
semantics, the descriptor simply indicates 16 bytes for both
input and output transfers. Semantics of the IN (device-to-
host) report are listed in Figure 17, while that of the OUT
report is currently reserved.

Field Value
0x06 Usage Page 0xFF00 Vendor Defined Page 1
0x09 Usage 0x01 Vendor Usage 1
0xA1 Collection 0x01 Application
0x19 Usage Minimum 16
0x29 Usage Maximum 16
0x15 Logical Minimum 0x00
0x25 Logical Maximum 0xFF
0x75 Report Size 8 field bits
0x95 Report Count 16
0x81 Input 0x00 Data, Array, Abs
0x19 Usage Minimum 16
0x29 Usage Maximum 16
0x95 Report Count 16
0x91 Output 0x00 Data, Array, Abs
0xC0 End Collection

Table 10: HID IN Report descriptor

typedef struct {
unsigned long timestamp; // milliseconds
struct {

signed short dx; // X motion
signed short dy; // Y motion

} sensorMotion; // sensor motion
struct {

unsigned short x; // X position
unsigned short y; // Y position

} sensorPos; // sensor position
signed short incencMotion; // encoder motion
unsigned short incencPos; // encoder position

} APP_HID_TX_REPORT;

Figure 17: HID IN report semantics

LED module The LED module simply drives the three
LEDs on and off.

Encoder module A small software module (incenc) de-
codes the quadrature signal fed by a rotary encoder, or ex-
ploited from a properly timecoded media stream.
The quadrature encoder waves are gathered by the MCU
by triggering interrupts in a rather tricky way. The two
quadrature inputs, namely A and B, are connected to the
negative inputs of the two comparators of the chosen MCU.
The comparators have an internal reference (positive input)
voltage fed by the internal DAC module at VDD/2, with a
small hysteresis.
Whenever the quadrature signal (A or B) crosses the refer-
ence voltage, an high priority interrupt is generated. The
ISR detects the current quadrature phase and accumulates
the single step into a global delta counter.
The delta counter can then be collected by the (slower)
HID report generator, which resets it.
The initialization routine simply configures the voltage ref-
erence DAC, the two comparators, and interrupts.
The background service simply synchronizes the cached
data, for the collection of deltas by the main module.

Sensor module Another software module (adns2080)
handles the mouse sensor. This module provides commu-
nication rountines over the SPI port of the MCU in a half-
duplex fashion.
All the communication routines are blocking, but this is
not a problem because they are executed in the background
service (main loop) of the firmware architecture.
An initialization routine configures the SPI port, then the
mouse sensor. Its setup will allow for 12-bits deltas report-
ing, and active-low level-sensitive motion interrupt gener-
ation. This routine will also check for proper communica-
tion with the daughter board.
The high-priority motion interrupt is generated by the sen-
sor whenever motion is detected. This interrupt is cached
by raising a firmware flag. The high priority level will min-
imize CPU cycles for this very simply operation.
The background service polls for the interrupt flag, and
starts a motion burst read, which collects motion deltas
over the serial port by minimizing dead times. Deltas are



accumulated on global counters, which will be gathered by
the HID report generator and thus reset.

Main module The main module, also called the app, ini-
tializes the system, handles the main loop, and provides
some interrupt functions.
The initialization sequence calls the initialization of all the
sub-modules.
The main loop cycles through the service task of the sub-
modules, so that motion deltas are computed for both the
sensor and incremental encoder modules. If the deltas are
meaningful and the HID transmission endpoint is avail-
able, a new HID report is built and sent to the host.
The two interrupt handlers, one for high-priority and one
for low-priority interrupts, will obviously handle events
generated by peripherals.
Some functions are dedicated to locking and unlocking of
the application resources, and are basically wrappers re-
spectively to global interrupt disable and enable.

Tasks organization The modules are organized in a
while-loop fashion, because the chosen MCU has not
enough computational power, nor a stack manageable by
an actual RTOS.
An initialization procedure will turn all the modules on,
and enables interrupts. After that, the main loop is entered.
Inside the main loop, incremental encoder and mouse sen-
sor deltas are gathered and, if the USB endpoint is free,
sent by an HID report.
Fast and simple interrupt events are processed by the
high-priority ISR, while communication events, which are
slower, are processed by the low-priority ISR.

5.3 Software architecture

Thanks to the adoption of the HID standard, host software
can communicate with the device easily. In fact, all the ma-
jor operating systems have full support for the USB stack,
including the HID application protocol.
The target software for RATT is a vinyl emulation soft-
ware. There is a huge load of programs to emulate tra-
ditional DJ consoles, but not so many support HID con-
trollers, and fewer let the user define his own mappings.
Among all of them, the reference software is Virtual DJ
by Atomix Productions [22], available for both Microsoft
Windows and Apple MacOSX.

HID/USB connectivity Connection between Virtual DJ
and RATT is straightforward. This software has native sup-
port for HID devices, which are plug and play and hot-
pluggable.
After connection, Virtual DJ searches for a valid mapping
for the device. If found, it is immediately loaded, other-
wise the invalid device is simply ignored.

Device description In order to be considered, a device
must supply the device definition to Virtual DJ, in this case
for a HID device [23] as seen in Figure 18. The VID and
PID are the actual HID device identifier, and the HID re-
port size is specified. The device supports only one deck at
a time.
The device description is divided into four pages. The init
and exit pages should contain information for both initial-
ization and deinitialization respectively, and are ignored.
The out page is ignored too, because the device does not
receive any meaningful messages from the host software.
Instead, the in page contains the description of the three
motion sources. They are all interpreted as jogwheels, with
full 16-bit unsigned counters which keep track of the accu-
mulated position. The full attribute tells the jogwheel CPR,
and needs to be calibrated with the geometrical parameters
of the wheel itself, as seen later.
On Windows, the XML text must be saved in:
%UserProfile%/Documents/VirtualDJ/Devices/

while on MacOSX in:
~/Documents/VirtualDJ/Devices/

for example as ratt_device.xml.

<?xml version ="1.0" encoding ="UTF -8"?>
<device name="RATT" author="Andrea Zoppi" decks="1"
type="HID" vid="0xDEAD" pid="0xBEEF"
reportsize="16">
<page type="init">
</page >
<page type="in">

<jog name="SENSOR_POS_X"
byte="8" size="word" endian="little"
full="50265" min="0" max="65535"/>

<jog name="SENSOR_POS_Y"
byte="10" size="word" endian="little"
full="50265" min="0" max="65535"/>

<jog name="INCENC_POS"
byte="14" size="word" endian="little"
full="4000" min="0" max="65535"/>

</page >
<page type="out">
</page >
<page type="exit">
</page >

</device >

Figure 18: Virtual DJ device definition for RATT

Device mapping Once the device is recognized by Vir-
tual DJ, it needs to be mapped [24]. The mapping process
associates a control event, declared by the device defini-
tion, to some actions. These actions are executed by pars-
ing the VDJscript syntax [25].
For demonstration purposes, only the optical motion sen-
sor X position will be processed as jogwheel position by
the software, while the Y position and the quadrature posi-
tion will be ignored.
The XML text in Figure 19 summarizes the actions being
mapped. On Windows, it must be saved in:
%UserProfile%/Documents/VirtualDJ/Mappers/

while on MacOSX in:
~/Documents/VirtualDJ/Mappers/

for example as ratt_mapping.xml.



<?xml version ="1.0" encoding ="UTF -8"?>
<mapper device="RATT" author="Andrea Zoppi"
description="RATT" version="704" date="10/08/2012">
<map value="SENSOR_POS_X" action="jogwheel"/>
<map value="SENSOR_POS_Y" action="nothing"/>
<map value="INCENC_POS" action="nothing"/>

</mapper >

Figure 19: Virtual DJ device mapping for RATT

5.4 Sizing and computations
The device must be able to keep track of turntable move-
ments. This can be achieved only if the platter is moving
at less than the maximum speed that the optical motion
sensor can reach. Given this constraint, it is possible to de-
termine the radius at which the center of the sensor can be
placed. In the following, some computations will lead to
the expected results.

Turntable Nominal turntable data can be found in Ta-
ble 11. Nominal settings are for a 12.00 inches disc, spin-
ning at 33.00 rotations per minute, with no pitch correc-
tion.
Computations are done with well-known basic equations.

Name Description Value
ttDiscDiam Disc diameter 12.00 in
ttNomAngSpeed Nominal angular speed 33.00 rot/min
ttPitchOff Pitch offset 0.00 %
ttDiscPerim Disc perimeter 37.70 in
ttAngSpeed Angular speed 33.00 rot/min
ttRevRate Revolution rate 0.550 Hz
ttRevTime Revolution time 1.818 s
ttTgSpeed Tangential speed 20.73 in/s

Table 11: Nominal turntable data

Sensor Optical motion sensor computations are very
easy. Given the sensor resolution and maximum speed, it is
possible to know the maximum theoretical dots count per
second.
Also, the HID configuration of the device indicates a
polling interval of 1 ms, so it is useful to know the maxi-
mum counter value in that that time interval. Since RATT
is using a 12-bits report count, counters will never be
saturated even with some jitter in the main loop of the
firmware.
Data can be found in Table 12.

Name Description Value
ssRes Resolution 2000 dot/in
ssMaxSpeed Maximum speed 30 in/s
ssMaxDotRate Maximum dots rate 60000 dot/s
ssMaxDotOneMs Maximum dots in 1 ms 60 dot

Table 12: Optical motion sensor data

Measurement Finally, it is possible to define the mea-
surement environment. The center of the motion sensor

must be placed at an appropriate distance from the disc
center, so that motion can always be detected correctly.
This means that the speed of the disc below the sensor is
always lower than the maximum speed detectable by the
sensor itself.
Consider the case of the Y direction of the sensor being
perpendicular to the tangential velocity. The X counter
represents the number of virtual dots been measured by the
sensor until that time, while the Y counter should always
be clear.
The disc is supposed to spin at nominal angular speed, so
after a single full revolution the X counter tells how many
dots make the perimeter at that radius.
By choosing a measurement radius of 4.00 inches, even
when spinning at twice the nominal speed the sensor
should measure the speed correctly. In fact, the speed is
less than half of the maximum reachable by the sensor.
Results are shown in Table 13, while an example of place-
ment can be seen in Figure 20.

Name Description Value
mmRadius Radius 4.00 in
mmAngleOff Angle offset 0.00 ◦

mmRadiusCm Radius [cm] 10.16 cm
mmPerim Measurement perimeter 25.13 in
mmSpeed Speed 13.82 in/s
mmDotRate Dots rate 27646 dot/s
mmRevDots Revolution dots 50265 dot

Table 13: Nominal measurement data
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Figure 20: Sensor placement over a 12” vinyl record

5.5 Field results

Some empirical test were performed to check the goodness
of the chosen approach.
First, some timing tests will determine if the device is rapid
enough to handle fast changes in speed, without delays no-
ticeable by an average DJ.
Moreover, some space tests will show if the motion sensor
alone is capable of keeping track of absolute motions, with
a small accumulated displacement error.
Finally, an opinion about the overall feeling of the device
behavior will be given.



A video was published on YouTube [26].

Motion detection rate A first test measures the interval
between MOTION interrupts called by the optical motion
sensor. The sensor does not have a fixed acquisition clock,
but instead it is adapted on the speed of the moving surface
beneath.
When moving at a fairly slow speed, the interval between
interrupts is around 3.7 ms (4 ms inside the datasheet) as
seen in Figure 21.
When the moving surface gets faster, the interrupt genera-
tion slows down at about half that speed, with an interval
around 7.2 ms, as shown in Figure 22.

Figure 21: MOTION interrupt delay for slow steady speed

Figure 22: MOTION interrupt delay for fast steady speed

Motion processing time After being issued, the MO-
TION interrupt has to be processed. The sensor is con-
figured so that the interrupt signal goes low when motion
is detected, then is kept low until all the motion counters
are read, going back high after the reading.

By measuring this delay, it is possible to know how long
it takes for the MCU to read those counters after the MO-
TION interrupt is reported. As captured in Figure 23, the
processing takes typically 30 µs, with a maximum of 72 µs
in Figure 24.
This delay is clearly negligible, and does not affect the
overall latency nor the internal motion sensor counters.

Figure 23: Typical MOTION pulse duration

Figure 24: Maximum MOTION pulse duration

HID motion processing time A final timing test will
prove that the MCU is fast enough to handle HID trans-
actions in time.
As an extension of the previous test, the measured delay
adds the time needed to build and buffer the HID report
into the hardware USB RAM. A LED signal was used to
draw the processing length.
The minimum and maximum delays can be extracted by
Figure 25 and Figure 26. The delay is thus in the range of
74 µs to 110 µs, which is still negligible for the purpose.



Figure 25: Minimum MOTION interrupt total time

Figure 26: Maximum MOTION interrupt total time

Absolute tracking In order to give a coarse estimate of
absolute tracking errors during normal operation, a scratch
test was conducted.

The initial status of the device was recorded, as in Fig-
ure 27. Then, 10 scratches were done, with simple for-
ward/backward rotations in a range of around 90◦ each.
The final status is finally recorded, as in Figure 28.

The sensor was placed at 3.00 in (7.62 cm) from the center
of the wheel, thus reaching theoretically 37699 counts per
rotation.

The error between the start and the end position was 949
counts, which is an error of 9.06◦. This error is not small,
but is still quite acceptable for such a long travel (≈1800◦,
total length of ≈94 in), keeping in mind that mouse senors
are designed only for relative motions.

Figure 27: Status before the absolute tracking test

Figure 28: Status after the absolute tracking test

Overall feeling The overall feeling is good. The latency
is low enough – comparable to that of the soundcard, which
is still dominant – and it is possible to scratch with ease,
even though very fast scratches feel a bit odd.
Anyway, when trying to reposition the virtual needle the
precision is very high, altough the absolute tracking of the
sensor alone is not as accurate as with the help of an incre-
mental encoder. Such a good precision comes handy also
when using the jogwheel to push/pull the virtual vinyl –
usually called nudge operations.
The software seems to handle the workload with no stress
on the CPU, even with high deltas.

6 Advanced proposed approach
Due to the few capabilities of the simplified approach,
which is just for basic research and demonstration pur-
poses, a more advanced way to achieve better results is
presented in the following. No prototype was made, but a
high-level description of the target architecture can drive
the development of an actual device.
Basically, the advanced approach exploits the computa-
tional power of the most recent MCUs, in order to provide
faster motion detection and processing rate, as well as the
opportunity to handle tasks outside those for the motion
detection.
The whole system will be capable to manage a wide range
of input devices – buttons, sliders, jogwheels – and some
displayed information. The workload is split into simple



tasks, handled by a Real-Time Operating System so that it
will be easier to develop the firmware.

6.1 Hardware architecture

The generic architecture reflects that of complex digital DJ
controllers which offer jogwheels (often touch-sensitive),
but also buttons, knobs, sliders, lights, displays, external
connections, audio piping to DSP, and so on.
By choosing a fully-featured MCU of nowadays, such as
the STM32 F4 series [27], it is possible to handle almost
all these devices with only one MCU, at reduced overall
price. Obviously, some additional chips are still needed –
motion sensors in primis – but the whole architecture can
be shrunk into a few chips.

Digital inputs The most basic type of inputs is discrete-
state (digital) input devices, such as buttons, switches, tog-
gles, and so on. In order to handle them, a matrix topology
often suffices, such as the one seen in Figure 29. Such ma-
trix can be scanned row-by-row, active low logic, with full
support for multiple elements active at the same time.

Figure 29: 3 × 3 keypad, active low, multiple key presses

Analog inputs The user should also be able to control
DJ software parameters with a continuous values range.
Such values are provided through knobs and sliders. Elec-
trically, these devices are all potentiometers connected to
the ADC module of the MCU through its analog multi-
plexer, as shown in Figure 30. The analog values will then
be converted by the ADC and processed by the analog in-
puts task of the firmware.

Figure 30: 4 potentiometers connected to a MCU, through its
built-in analog multiplexer and ADC

Jogwheels Jogwheels are fundamentally those devel-
oped with the simplified approach at Section 5. Each jog-
wheel is made by a medium-resolution optical quadrature
wheel and its encoder, plus an optical motion sensor.
The quadrature encoder, thanks to its fairly low speed, can
be handled by MCU interrupt signals (edge-triggered, both
signs).
Instead, motion sensors must be connected to the appropri-
ate digital bus (SSP, SPI), and additional pins to suitable
inputs.
Jogwheels should also provide touch sensitivity, so that a
digital signal (see above) can be generated when the user
puts fingers on the wheel. There are different ways to pro-
vide touch sensitivity, but will not be covered in this docu-
ment.
In order to shrink the design for low-end controllers, it is
possible to choose a smaller sensor package. For example,
the ADNS-3550 by Avago [28] (see Figure 31) features an
ultra slim design. This may reduce manufacturing costs,
because it integrates the LED, has a very small size, and is
suitable for SMD soldering. As a drawback, it is addressed
to ultra-low-power wireless devices, so its performance is
worse than the average sensor used for the prototype – up
to 20 in/s at 1000 DPI instead of 30 in/s at 2000 DPI – but
is still very good for medium-sized jogwheels.

Figure 31: Avago ADNS-3550, an ultra slim motion sensor

Lights Some light can help the user in keeping track of
some DJ software states. Thanks to their very low cur-
rent consumption and simplicity, LEDs are always the best
choice.
Simple lights can be driven directly by the MCU digital
pins, in any desirable fashion – could it be direct coupling,
LED matrix, or charlieplexing. These lights can be either
on or off.
Dimmed lights are more complex to handle, and need to
be connected to PWM outputs to give an intensity effect to
the human eye, proportional to the PWM duty cycle. Due
to scarcity of such outputs, this feature is often not im-
plemented at all, or applied to simple behaviors – for ex-
ample, the M-Audio Torq Xponent [15] gives the so-called
Christmas tree effect, with all LEDs beign modulated by
the music tempo.



Displays Very advanced controllers sometimes provide
information through one or more displays. There are so
many display types on the market, that it is difficult to sug-
gest one. Anyway, for pure text displays, or generally soft-
realtime information visualization, the connection to one
among the common UART, I2C, SPI buses is enough.

6.2 Firmware architecture
The firmware architecture relies on those capabilities given
by an RTOS. With such an operating system, it is possible
to divide the firmware into isolated entities, which collab-
orate to fulfill the final goal.
Depending on the device being engineered, there is no op-
timal firmware architecture, but a general one will be de-
scribed.

RTOS overview A RTOS-based firmware can be split
into the following entities: tasks, drivers, and concurrent
data structures.
A task is a routine which runs continuously. It can receive,
process, and send data to other entities (tasks or drivers).
More tasks can run at the same time. If it is not possible to
run more tasks contemporaneously, the RTOS must be able
to approximate this behavior by an appropriate scheduling.
Also, in some scheduling policies a taks is given a priority,
so that those with a higher priority can suspend those with
a lower one, and take control of the required resources.
Suspendable tasks are called preemptive.
A driver is a collection of routines which control peripher-
als, and give a standardized abstract interface to the user. A
driver can rely on both tasks and interrupt service routines,
being seen as part of the OS – instead, the user code is al-
ways based on tasks, because ISRs are always processed
by drivers.
Concurrent data structures are used to exchange data
among tasks and drivers. Because of concurrency, tasks
and drivers must be able to exchange data without corrup-
tion, through atomic operations. In order to achieve atom-
icity, a locking system is implemented by such data struc-
tures, handled by the RTOS. These data structures can span
from simple semaphores to complex data queues.
A very important feature of a RTOS is its ability to sched-
ule tasks deterministically. Tasks are often assigned a fixed
period, which should expire with the lowest uncertainity.
By choosing a RTOS scheduling policy, and with a com-
patible workload, such predictability can be achieved.
A global logical view of the firmware architecture is de-
picted in Figure 32.

Digital inputs Digital inputs are very easy to handle.
Supposing a matrix hardware topology, the Digital task
simply cycles through all the rows and colums to detect
changes, operations done by the Digital driver.
Since in audio applications timing is critical, this loop has
to be fast enough so that the user will not notice delays.

The Digital task is pretty simple, so it can be given high
priority, and the cycle period will match that of HID pack-
ets.
The state of digital inputs is held by a double-buffered
record, which is then read by the Controller task.

Analog inputs Analog inputs require an ADC driver to
handle the ADC and its analog multiplexer.
The Analog task polls each analog input for changes. Since
human hand movements have a dynamic rate lower than
10 Hz, a sampling rate of 200 Hz (5 ms) per channel is
enough to keep track of smooth motions. Further smooth-
ing can be performed with some digital filtering, but is not
required.
Like for digital inputs, the state of analog inputs is kept by
a double-buffered record, read by the Controller task.

Lights module A module managing lights can be added
to the fimware architecture.
A driver will provide a suitable software interface to lights.
It might support simple on/off lights, but also modulated
lights. In the case of lights modulated by PWM outputs, it
might lean on the PWM driver of the RTOS.
In the case of charlieplexing, but also for modulation, there
is a need to refresh periodically some hardware peripherals
inside a task, to have light correctly lit. This task could be
given a low priority, because delaying the deadline for a
few milliseconds is not that critical. Anyway, the refresh
rate should be high enough to give a smooth transition be-
tween light states, around 60 Hz (≈16 ms) for the best feel-
ing and user reaction time.
The Controller task tells the state of lights to the Lights
task through a double-buffered record.

Encoder module As for the simplified approach, when
requiring absolute jogwheel positioning it is possible to
add support for incremental encoders. Such encoders out-
put quadrature waves, which can be used to increment or
decrement some firmware counters. Again, edge-triggered
interrupts should be used to manage counters.
The Encoder driver will handle such interrupts, and it will
give access to counters atomically.
The Encoder task awaits for interrupt signals by the driver,
occurring when the quadrature wave performs a transition.
The internal counter accumulates the step, so that the ab-
solute position is tracked. This task is the most critical,
because no steps can be lost, and is given the highest pri-
ority with instant response.
The Encoder task tells the current position and deltas to the
Controller task by the use of a double-buffered record.
There can be multiple incremental encoders in the design.

Sensor module The sensor module will keep track of the
position estimated by the optical motion sensor.
The Sensor driver will communicate to the sensor through
the SSP bus, which in turn is managed by the SSP driver.
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Figure 32: Logical view of the advanced firmware framework

The Sensor task can have different behaviours, depending
on the capabilities of the sensor. If it features a motion
interrupt, like the one chosen for the simplified approach,
the sensor awaits for it, then retrieves the motion delta. If
such an interrupt is not present, the Sensor task has to poll
continuously for new data at a very fast rate. This case is
typical for pro-grade sensors, which have a very high fram-
erate, so it is most convenient to run a tight polling loop at
high speed.
The Sensor task tells the current position and deltas to
the Controller task by the use of a double-buffered status
record.
There can be multiple optical sensors in the design.

HID/USB module In order to communicate with the
host the host, HID reports are processed by the HID driver,
which in turn is built on top of the USB driver. Such drivers
will simplify the packet management by the user, also by
providing a template HID task. This task will exchange
HID reports with the Controller task, in the form of plain
data records. Such record will be marshalled and sent to
the USB host through the aforementioned drivers.
HID processing should be faster than the report generation
of the Controller task, so the HID task has a higher priority.
Also, reaction time should be minimized.

Console module A console module could be added for
debug purposes only. By the way, an advanced hardware
debugger is almost always present in MCUs today, so there
is no real need for a debug console inside a consumer DJ
controller.
If the console module is added, it needs to be interfaced to
the UART through a driver provided by the RTOS. It also
needs a task with low priority in the case of a simple debug
console – if necessary, immediate commands can always
be issued through the hardware debugger. Response time
to incoming messages should be the shortest possible, as
well as outgoing messages should be sent immediately.
The Console task manages console commands and inter-
actions with the UART driver. Messages, in the form of
user-friendly data structures, are exchanged between the
Controller and the Console tasks. The latter performs mar-
shalling with the UART streams.

Main module The main module is composed by the
Controller task. It collects the status of user inputs to gen-

erate a HID report, handles incoming commands, sends
data to be displayed to screens and lights, and so on. It
is the core of the whole device, which performs all the data
processing among the other modules.
Data collection and HID report generation should occur at
most each 1 ms, so that the latency is minimized to that of
USB Full Speed interrupt polling.
The Controller task also manages commands of the Con-
sole and Debug tasks, which must be processed in a very
short time – this is why bare raw data structures are used
instead of strings to be interpreted.

Tasks summary The Table 14 summarizes the meaning-
ful settings to be assigned to tasks inside the chosen RTOS,
as described by the previous paragraphs.
Of each task, its weight is extimaed, which is a coarse ap-
proximation of the complexity of operations it should per-
form. It is not a RTOS setting, but is useful to identify the
workload of tasks.
Moreover, the priority is intended for a preemptive and
priority-based scheduler, which is common for a state-of-
the-art RTOS.
At last, the expected response time indicates the target pe-
riod of the task routine. For routines heavily based on
semaphores – typically activated by interrupt signals or
software messages – no delay is expected, so it is marked
as immediate.

Task Weight Priority Response time
Encoder 1 5 immediate
Digital 2 4 1 ms
HID/USB 5 4 immediate
Controller 4 3 1 ms
Sensor 3 3 immediate
Analog 3 2 5 ms
Console 4 1 immediate
Lights 2 1 16 ms
Display 5 1 16 ms

Table 14: RTOS settings of tasks

7 Conclusions
A simplified approach supporting a single jogwheel was
developed. Its performance is suitable for the average DJ,
achieving good tracking even with cheap COTS. Initial
motion latency is fairly high, due to the power-saving states
entered by a mouse sensor for wireless appliances, but is



still accetpable. Motions are tracked with outstanding pre-
cision and accuracy. Repeatability is on the average, ap-
proximating absolute positioning with some errors, but still
acceptable. An optional incremental encoder can help the
tracking of absolute movements, through some software
data processing. Software can be interfaced to the device
with ease, thanks to the adoption of the HID protocol over
the USB bus.
Furthermore, an advanced approach was proposed. It will
support not only the kind of jogwheel presented in the sim-
plified approach, but also peripherals of various nature.
The advanced device needs a more powerful MCU to han-
dle all those peripherals. In order to make firmware pro-
gramming more flexible and easier to manage, a RTOS
should be chosen. Thanks to this advanced approach, it
is possible to develop a whole commercial DJ controller,
with cheap yet accurate jogwheels.
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